
Volume 186, number 3, 4 PHYSICS LETTERS B 12 March 1987 

DEPARTURES FROM SCALING IN SU (2) LATTICE GAUGE THEORY 

F. GUTBROD 
Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Fed. Rep. Germany 

Received 15 August 1986; revised manuscript received 19 December 1986 

High statistics Monte Carlo Data in SU(2) lattice gauge theory are presented. At fl=2.6 and fl=2.7 large deviations from 
scaling are observed for Creutz ratios, when 124 and 244 lattice data are compared. There is a trend towards a restauration of 
asymptotic scaling with increasing fl, which vanishes if at the higher value of,8 larger loops are considered than at lower ft. The 
static q~l-potential and an upper limit for the string tension are given. 

How lattice gauge theories reach the continuum 
scaling behaviour in the limit f l~oo is an open prob- 
lem. Both for SU (2) and SU (3) sizeable deviations 
from asymptotic scaling (AS) are by now well estab- 
lished [ 1-7] (we follow the convention to call AS 
the variation of physical dimensionful quantities 
proportional to the two-loop lattice scale parameter 
Alatt). Presently there are mainly Monte Carlo data 
[8,9] for the critical temperature in SU(3) ,  which 
point towards a rapid restauration of  asymptotic 
scaling at fl/> 6.2. Monte Carlo renormalization group 
studies (MCRG)  suggest the same behaviour for 
f l>  6.3 in SU(3) [ 1,2] and for f l>  2.5 in SU(2) [6]. 
It is fair to say that the systematic errors in MCRG 
are not easy to pin down. Especially one has to rely 
on the assumption that there exists one universal fl- 
function for objects of  all sizes (in lattice units). 

Doubts with respect to the latter point have been 
raised in ref. [ 10] for SU(2).  There is evidence that 
short-distance quantities have a fl-dependence closer 
to AS than large-distance quantities. It is worthwhile 
to extend the Monte Carlo measurements of  refs. 
[ 10] to larger valhes offl  to get a better understand- 
ing of the details of  the approach to AS and its pos- 
sible size dependence. Here I present new Monte 
Carlo data in SU(2) ,  taken at fl2=2.7 on a lattice 
with size 244 , together with extended results at 
fl~ = 2.6 on the same lattice. This paper will give only 
a summary of numerical results; for details ref. [ 10] 
has to be consulted. The analysis will show that there 

is indeed a tendency for a return to AS for increasing 
fl, if  generalized Creutz ratios [11] are taken as a 
probe. However: 
- This approach to AS does not change the tendency 
observed at ill, namely that ratios formed out of  larger 
Wilson loops show a larger departure from AS than 
those from smaller ones. Deviations from AS at f12 
thus are as large as the deviations at fll of  somewhat 
smaller loops. 
- The pattern of  scaling violations follows closely the 
fraction of  the perturbative contributions in the 
Creutz ratios. I f  one considers the ratios as functions 
of  this fraction, the deviations from AS at fl~ and at 
f12 fall on a single curve within reasonable accuracy. 

It is natural to suspect that at large fl it is the small- 
ness of  the non-perturbative contributions to Creutz 
ratios which is responsible for the return to AS, and 
that there is no indication that the nonperturbative 
terms will obey AS themselves. 

The analysis is based on the material listed in table 
1. Throughout the standard single-plaquette action 
has been used, but both boundary conditions and the 
group varied somewhat. At low fl occasionally the 
120-dimensional icosahedral subgroup of SU (2) has 
been used. The data at f12 have been taken on a VP200 
vector computer. In order to obtain short update 
times, helical boundary conditions [ 12 ] with a shift 
of  s = 2  lattice units have been used at f12. They are 
defined by the relation between the link variables 
U~,(x, y, z, t), valid cyclically for all directions, 
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Table 1 
Survey of statistics collected on various lattices. 
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fl L No. No. of sweeps Group Boundary Maximal size of 
of sweeps discarded conditions measured loops 

2.4 12 27000 1000 icosahedral periodic 6 × 6 
2.45 12 34000 4000 icosahedral helical, s = l 6 × 6 

12 41000 4000 full SU ( 2 ) helical, s = 1 6 × 6 
2.5 12 32000 4000 icosahedral periodic 6 × 6 

12 30000 2000 full SU(2) helical, s = 1 6 × 6 
24 3000 1000 full SU (2) periodic 5 × 7 

2.6 24 6000 1000 full SU (2) periodic 8 × 8 
24 4000 1000 full SU (2) periodic 8 × 8 

2.7 24 50000 9000 full SU (2) helical, s = 2 8 × 10 

U~(x+ L, y, z, t) = U~(x, y+s, z, t) . (1) 

The CPU time needed to update one link could thus 
be lowered to below 3 #s, which corresponds to a sus- 
tained rate of  210 MFLOPS. On the 124 lattice a shift 
of  s =  1 has been employed. For  the full group I 
applied a vectorized heat-bath method and the mul- 
tihit method [ 13 ], measuring Wilson loops in one 
out o f  four planes after 30 sweeps. At fl = 2.5 no sig- 
nificant differences between lattices of  size L i> 12 and 
with different boundary conditions were found, and 
all available data were averaged in order to reduce 
the statistical errors. 

First of  all I will present the static qCl-potential, 
defined in the usual way. The extrapolation o f  Wil- 
son loop expectation values W(R, T) to T-~oo was 
performed by the 2N-parameter fit 

N 

W(R, T) = ~, c,(R)exp [ -;~, (R) T ] .  (2) 
i = 1  

A i r 2 1  used N =  3 for R~< 4 and N = 4  forR>t 5. In the 
latter case I included the point T = 0  with W(R, 
0) = 1. The stability of  the fit was judged positively 
by dividing the data into 10 subsamples, and the sta- 
tistical errors for ;q (R) and 22(R) were estimated in 
the same way. The potential 2~(R) is still 1.5 s.d. 
below the logarithmic ratio 

Vr(R ) = - I n [  W(R, T) /W(R,  T - 1  )1,  (3) 

at R = 8 for T= l O. 
In order to obtain a potential V(R) as closely 

related to the cont inuum potential as possible, 21 (R) 
has to be corrected for finite lattice spacing. I repeat 
the method applied in ref. [ 10 ], where the difference 

between the cont inuum propagator 1/R and the infi- 
nite-size lattice propatator is considered. This differ- 
ence times the bare a s  describes scaling violations in 
tree approximation. Since there is a strong renormal- 
ization of  a s  by higher-order terms, I multiply the 
above difference by an effective coupling constant 
deduced from the small-R behaviour o f  the potential 
and add the result as a correction to the lattice poten- 
tial. An error of  20% of  this correction is added to 
the negligible statistical errors at small R. In table 2 I 
give the values of2~ (R),  V(R) and 22(R ) with errors. 
The values o f  22 (R) at fll are consistent with those 
ofref.  [ 14]. The potential V(R) is also shown in fig. 
1 together with the parameter-free two-loop contin- 
uum potential [ 15 ]. Constants have been added to 
make the potentials at fixed fl to agree at R = 1. 

The difference A Vp(R) between perturbation the- 
ory and lattice potential ~ is already quite small at fiE 
and R = 2 ,  i.e. 10% of  the potential difference 
V(2) - V(1 ). One cannot represent AVe(R) by a term 
linear in R, as it still contains a contribution varying 
like 1/R. If, however, the A-parameter is increased by 
20% beyond the value derived in ref. [ 15], AVe(R) 
is linear in R (within the systematic errors due to the 
finite "a"-corrections). This presence of  a linear term 
also in the perturbative region is consistent with bag- 
type models [ 16-18 ]. But to identify the coefficient 
o f  the linear piece with the string tension K is just 

~ In the preprint version DESY 86-065 the evaluation of the per- 
turbative potential contained a programming error, which pro- 
duced a somewhat too steep potential. The error is present also 
in ref. [ 10], where, however, no significant changes in the value 
of the string tension, cq. (11 ), arise after correction of the error. 
Only the curve lib in fig. 1 is affected. 
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Table 2 
Results on the lattice potentials. The 2~(R) are defined in eq. (2). 

12March 1987 

# a Xt(R) V(R) AV(R) 22(R) ~2(R) 

2.6 1 0.3076 0.3236 0.0032 1.43 0.04 
2 0.4327 0.4404 0.0016 1.38 0.02 
3 0.4951 0.4976 0.0006 1.45 0.02 
4 0.5360 0.5368 0.0005 1.44 0.02 
5 0.5682 0.5686 0.0009 1.42 0.03 
6 0.5946 0.5948 0.0016 1.38 0.05 
7 0.6168 0.6169 0.0021 1.32 0.07 
8 0.6341 0.6342 0.0033 1.26 0.09 

2.7 1 0.2857 0.3003 0.0029 1.24 0.09 
2 0.3956 0.4026 0.0014 1.24 0.05 
3 0.4464 0.4487 0.0007 1.20 0.04 
4 0.4764 0.4771 0.0006 1.07 0.04 
5 0.4981 0.4985 0.0007 1.05 0.04 
6 0.5168 0.5170 0.0009 1.08 0.04 
7 0.5320 0.5321 0.0011 1.09 0.03 
8 0.5458 0.5459 0.0017 1.03 0.04 

one of many possibilities. E.g., at f12 in the so-called 
"log-log" model of ref. [18] a string tension 
K,~,O.OO2/a 2 is required to fit the data at small R, 
whereas from A Vp (R) one derives K~, 0.0045/a 2. T h e  

significance of  the above representation lies more in 

fi/[R'] . . . . . .  
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Fig. t. The static qqopotential at fit = 2.6 and f12 = 2.7, corrected 
for finite lattice spacing. The curves are the two-loop perturba- 
rive potential [ 15 ]. 

what one can learn about the scaling behaviour of 
V ( R ) .  Thus the "string tension" differs by a factor 
2.3+0.1 between fll and f12, which is not in agree- 
ment with AS (which predicts 1.66 for this factor) 
and also not with scaling, since the perturbative piece 
obeys AS by construction. 

At f12 the potential V ( R )  is inconsistent with a lin- 
ear behaviour for R~> 5, since such an assumption 
gives a z2/d.f. = 4. Various subtraction methods of  
nonleading terms for large R lead to a range of values 
for the string tension: 

0.0055/a 2 <K,<< 0.011/a 2. (4) 

The smallest value of K is obtained, if two-loop per- 
turbation theory is subtracted, and the largest value 
follows from the standard linear + Coulomb fit. At f12 
a stringent upper limit for K is given by the potential 
difference: 

K~< ( l /2a)  [ II(8) - V(6)] 

= (0.0145 + O.O01)/a z . (5) 

This upper limit is considerably higher than the 
quoted values for K, and this is true even for the low- 
est value for K at fll given in ref. [ 10 ]. The pertur- 
bative subtractions, which amount at least to 
AK= 0.004/a 2 at the presently obtainable range of  R, 
will of course prevent any reliable determination of 
Kfo r  higher values offl  unless the range of R can be 
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extended considerably. The upper limit for Kis 1 s.d. 
below the value quoted for K in refs. [ 19,20 ], where 
it was obtained from correlations of Polyakov loops 
on a 64× 6 ~ lattice. In view of the preceding remarks 
this may be a real discrepancy, and most likely such 
lattices are too small to measure K reliably. 

I proceed to study the scaling behaviour of  gener- 
alized Creutz ratios g(l) ,  where 1 stands for the 8 
numbers describing the geometry of 4 rectangular 
Wilson loops. Ratios Z(/, fl) on a 124 lattice with 
# = # i - A f t  are compared with ratios Z(2/, fli) on the 
244 lattices. The former are multiplied by a correc- 
tion factor cp(l, #) to suppress lattice artifacts. This 
factor is determined in such a way that perturba- 
tively calculated ratios Z p ( l ,  f l)  will scale 
asymptotically: 

cp( l, #A)Xp( l, #A) =Zp(2l, # ) ,  (6) 

with #g ~ #--  0.275. The ratios )~p(l, #) are taken from 
the O(g4) calculation [21], where periodic bound- 
ary conditions have been used. I do not expect that 
finite "a"-effects, which are predominantly a smaU- 
distance effect, depend crucially on boundary con- 
ditions. The perturbative ratios are actually used in 
a "Paddized" version [10], which includes higher- 
order terms in g2. I now define Aft by 

cp(l, fla)X(l, #-Af t )  =• (2l, f l ) ,  (7) 

where for the l.h.s, quadratic interpolation between 
the data listed in table 1 is used. 

In fig. 2 1 show a selection of values Aft for various 
sizes of ratios ~2. The errors are deduced from com- 
bining 3000 sweeps into 1 bin. Only ratios of quad- 
ratic or elongated form, which closely correspond to 
potential differences, are included. As illustration, the 
ratio denoted by ~ is very close to the potential 
difference V ( 3 ) -  V(2) on the small lattice and to 
2[ V(6) - V(4) ] on the large lattice. The standard 
Creutz ratios, where the largest loop is of quadratic 
form, differ more strongly from potential differ- 
ences, since the perturbative background present for 
R ~ T is not reduced as strongly as in the previous 

~2 Values of AO derived from the sweeps no. 1500 to 6000 at #z 
are also included. This material corresponds roughly to the 
amount of data collected in refs. [ 1,2]. Both the deviations 
from the results from the later iterations and the large errors 
for large ratios show that our statistics at f12 is necessary to 
establish scaling violations. 
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Fig. 2. Values of Aft for square and for elongated Creutz ratios at 
#t=2.6 and fl2=2.7. The symbol 32~u stands for the ratio 22121 
- In [ W(3,2) W(1,1 )/1V(2,2) W(2,1 ) ] etc. Open circles refer to 
Aft derived from iteration 1500 to 6000 at flz, and crosses denote 
the perturbative fraction in the measured ratios [see eq (8)]. The 
horizontal line gives the prediction of the two-loop r-function. 

"oblique" ratio. 
The ratios have been ordered according to the per- 

turbative fraction 

Rp(l) =ZP(/, PA)/X(I, #A) ,  (8) 

which quantity is shown by crosses in fig. 2. The 
ordering with respect to Rp(1) almost agrees with a 
naive geometrical ordering, where the ratio is inter- 
preted as a potential difference, and for equal spatial 
distance the ordering is with respect to the timelike 
extension. Two observations are evident from fig. 2: 

(1) For fixed l, Aft is an increasing function of #, 
i.e., deviations from AS decrease with increasing# in 
the region under study. 

(2) Aft drops with increasing loop size, which 
means that there is only approximate scaling. Fur- 
thermore one sees that Aft closely follows Rp (l). 

Property (1) does not necessarily imply that SU (2) 
lattice theory will return to AS in a way which is use- 
ful for physics. For this purpose objects of fixed 
physical size have to approach AS for increasing #, 
which means that we should look at the #-variation 
of A# for objects of increasing size in lattice units. 
Unfortunately there is still not enough information 
in the present data to test this behaviour in a 
straightforward way because of the many scales con- 
tained in a Creutz ratio. I therefore consider the frac- 
tion of the perturbative contribution as a variable 
playing the role of a size. In fig. 3 many more values 
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Fig. 3. Values of Aft for all ratios allowed by the cuts given in the 
text, plotted as function of Rp [see eq. (8)]. Data are from #l 
and #2. Many error bars have been omitted. 

of Aft than in fig. 2 are plotted, now as a function of 
Re(l). The following selection criteria were applied: 
The correction factor Cp(/, #A) should not deviate 
from I by more than 20%, and its value derived from 
the tree approximation should agree with the one- 
loop result within 5%. Only ratios with positive val- 
ues and with an area difference between numerator 
and denominator of  1 and 2 were considered. 

One notices that the ratios tend to fall on one curve 
with a spread of  Aft ~ + 0.06. Property (2) is there- 
fore likely to be a consequence of the fact that the 
ZP(/, #) give a dominant contribution for ratios of  
small loops, but not for those of  large loops. We have 
to conclude that there is evidence that nonperturba- 
tive quantities vanish faster than Alatt in the pres- 
ently accessible region of fl and that there is no 
evidence for a change in this trend. 

Of  course, it cannot be excluded that the multipli- 
cative method of removing lattice artifacts is incor- 
rect for the contributions of  O(g  6) and for the higher- 
order terms. We therefore should he especially cau- 
tious to infer scaling violations alone from the vari- 
ation of Aft of  ratios including length 1. The difference 
between the ratios ~ - ]  and ~ ,  however, amounts 
to more than 3 s.d. and should be considered as sta- 
tistically significant. Even larger differences exist 
between ratios of  essentially different shape. One 
argument in favour of  the scaling violations being real 
is the fact that without the perturbative improve- 
ment of  ratios the Afl's would scatter around the band 
visible in fig. 3 with a spread larger by a factor of  10 

or more than with improvement. The second argu- 
ment is that the potential at short distances (after 
correction) agrees so well with two-loop perturba- 
tion theory. The quality of  this agreement can cer- 
tainly be checked for larger values of  fl in the near 
future without exorbitant computer resources. 
Finally, it has to be noticed that Aft does not depend 
on how often the length 1 appears in the ratio. I.e., 
ratios like ~ - ~ ,  ~ - ~ ,  ~ or ~ show no devia- 
tion from the band in fig. 3, which contains many 
ratios with length 1 appearing only once. Neverthe- 
less, for the ratios there does not seem to exist a rig- 
orous method to get rid of  finite "a"-effects except 
the expensive one to measure operators of  larger 
extension on larger lattices. Although the claim for 
substantial scaling violations thus needs further cor- 
roboration, there is certainly no positive evidence for 
scaling from the present Monte Carlo data, which are 
much more precise than corresponding SU(3) data 
[1,2]. 

As to the apparent discrepancy between the scaling 
behaviour of  the critical temperature on one side and 
of Creutz ratios on the other side, only a speculative 
remark can be made. From the potential it is clear 
that large violations of  scaling occur only if we insist 
on all dimensions of  ratios to become large (e.g., we 
begin to see large effects for loops of  size 6 x 4 on the 
large lattice). For the critical temperature the situa- 
tion is different. There large distances are enforced 
only in the timelike direction, whereas in the space- 
like directions no scale is specified. It may be well 
that in spacelike directions short-distance contribu- 
tions play a crucial role. 

A qualitative statement on the magnitude of the 
departure from AS may be in order. We see that for 
the largest ratios a change in scale by a factor of  2 is 
accomplished by a change Aft ~ 0.20 both at fl~ and 
at #z. Thus going from f l=2.4  to fl=2.7,  the string 
tension will change a factor of  8, whereas AS predicts 
a change by a factor of  4.55. This is a substantial dis- 
crepancy. It has the consequence that the traditional 
way [22,23] to measure the static qCl-potential over 
a wide range of physical distances does not seem to 
be legitimate. I f  one keeps R small in lattice units but 
varies fl over the indicated range and invokes AS, the 
asymptotic slope of V(R) may be in error by about a 
factor 2. Thus the existence of a linear term in the 
potential at large fl needs much better support than 
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avai lable  up  to now. 
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