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We use recent data on z-lepton hadronic decays to extract the q2 dependent vector and 
axial-vector spectral functions Even though our results are necessarily restncted kinematically, we 
make use of these experimentally deternuned spectral functions to check to what extent the 
Weinberg sum rules are satasfied and to compute the plon electromagnettc mass difference. 
Although the results we obtain are satisfactory, the agreement vath theoretxcal expectatmns 
appears to be somewhat fortuitous. A much more relevant and rehable theorettcal comparison is 
provided by a Laplace transform version of the sum rules, wtuch is more convergent and for which 
the QCD correclmns are under better control 

A very important early step in the theory of the weak interactions was the 
realization that the currents which enter in weak decays are also the (approximate) 
symmetry currents of the strong interactions [1]. This deep interconnection is now 
simply understood in the standard model of the strong and electroweak interactions 
in terms of invariances related to the quark degrees of freedom. QCD, in the limit in 
which one neglects the mass for the u and d quarks, has a global SU(2)R × SU(2)L 
symmetry in which the quark doublets are transformed as: 

qL=(Ud)L ~e'~L°'°/E(u~ 

• (1) 

The symmetry currents for these transformations are conventionally written in 
terms of the vector and axial currents: 
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Because the left-handed u and d quarks transform as a doublet under the electro- 
weak SU(2) group, it is clear that, as far as the u and d quarks go, the weak SU(2) 
current is simply related to Va ~ and A~. One has 

_ % 
J~ = qLy~'~qL = ½(Va ~ - A~). (3) 

This interrelationship has been used in the past to predict certain features of weak 
decays (for example weak magnetism [2]) from properties of the strong currents. 
Here we would like to do the reverse and use weak decay results to infer structural 
properties related to the strong symmetry currents. More specifically, we shall 
analyze recent data on the semileptonic decays of the • lepton to extract informa- 
tion on the q2 dependence of the spectral functions connected with the vector and 
axial currents of eq. (2). Having these results in hand, we shall then examine how 
well do certain sum rules, based on the global symmetries of QCD, work and 
attempt to compute the qr + - ~r ° electromagnetic mass difference. 

It is convenient to write down a spectral decomposition for the two-point 
correlation functions associated with the currents Vf and A~a . One has: 

i(01T(V:(x)V;,(o))lo) 

: =8~b e'W (Pv(ME)(M2~"+P~'P ") p2 + M 2 _ ie 

+p°(M2)p~'p~) + S.T., (4a) 

i(0l T( A~a( X )A~(O) )[O) 

r d 4 p  , x  r d M  2 
= 8 , , b J ~ - j - / e p  J p 2 + - - ~ _ i e ( p A ( M 2 ) ( M 2 ~ " + P ~ ' P ' )  

+ s:r . .  (4b) 

In the above S.T. stands for possible Schwinger terms [3] which, however, will play 
no role in our considerations. In what follows, we shall be mostly interested in the 
chiral limit, where mu= md=0.  In this case the longitudinal vector spectral 
function p° v vanishes, while the corresponding axial spectral function has only a 
contribution from the Goldstone pions: 

: ( M  = O, 

p°(M2) = f 2 8 ( M 2 )  (chiral limit). (5) 
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Here f~ = 93.3 MeV, is the pion decay constant. In principle the vector and axial 
spectral functions are calculable in QCD, but in practice we are still very far away 
from being able to do that in the low-energy region. However, because of the 
connection of V~ and A~ with the weak current (eq. (3)) it is possible to infer 
experimentally some information about Pv and PA by studying the semileptonic 
decays of the z-lepton. Of course, in these decays the accessible M 2 range is 

2 However, as we shall see, one already obtains important restricted to be below m,. 
information, even within this narrow kinematical range. 

Almost twenty years ago, Weinberg [4] derived two sum rules for P v and OA, 
using some general arguments related to the expected asymptotic behaviour of 
strong interaction processes. Weinberg's sum rules read 

f dM2 ( p v ( M  2) _ PA(M2)) = f  z, (6) 

f dM2M2(Pv(M2) - PA(M2)) = O. (7) 

One can show that these sum rules, obtained before the development of QCD as a 
theory of the strong interactions, are actually valid in QCD in the chiral limit [5]. 
However, when quark masses are included only the first Weinberg sum rule, when 
appropriately reinterpreted, remains valid. The second sum rule breaks down since, 
in perturbation theory, the spectral function difference receives contributions of 
order m2q/M 2, which lead to a quadratic divergence. One can, nevertheless, con- 
struct appropriately weighted combinations of the transverse and longitudinal 
spectral functions which lead to convergent Weinberg sum rules of the second kind 
[5]. In QCD, the first Weinberg sum rule is replaced by: 

f dM:[(pv(M2)-#A(M2))+(O(~)(M:)-p~)(M2))]=O. (8) 

Recalling eq. (5), one sees that in the chiral limit the second term above precisely 
reproduces the f2  factor of eq. (6). Note also that although in QCD the transverse 
and longitudinal spectral functions contain terms of order m2q/M 2 these terms 
cancel each other in eq. (8) [5]. 

Rather than giving a modified second Weinberg sum rule in QCD, it is more 
useful to consider, following the original suggestion of Shifman, Vainshtein and 
Zakharov [6], a Laplace transformed version of these sum rules. For these Laplace 
transform sum rules one introduces an extra scale K 2 and, in effect, one is then 
dealing with an infinite set of relations, one for each value of r2 Because the 
Laplace transform sum rules contain a weight e -M:/~: their convergence in QCD is 
controlled by a series of operator expectation values of increasing dimensionality 
each weighted by an appropriate x 2 factor. 
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Corresponding to the first Weinberg sum rule, one has [5, 7, 8]: 

fo°°dM2e-M2/~2((pv(M2) - PA(M2)) + (P(v°) ( M 2 )  - p(A0) ( M2))}  

{ 
8 ( m u +  md)(01~ul0 ) (<01~ql0>) 2 

+ 3 x 2 -- ~ ¢  x4 + "'" / '  (9) 

where as(/¢ 2) and m ( g  2) are the QCD running coupling and mass, respectively. 
Since the r.h.s, of eq. (9) vanishes as r 2 ~ oo, one recovers immediately in this limit 
the first Weinberg sum rule, eq. (8). More importantly, already for moderate values 
of r 2, of O(GeV2), one sees that the corrections on the r.h.s, of eq. (9) are small 
compared to f2.  Hence, using these Laplace transform sum rules, one may well be 
able to test the expectations of QCD, using values of Pv and PA obtained for 
moderate values of M 2. 

The Laplace transform version of the second Weinberg sum rule (7) reads [5, 7, 8]: 

f dM2 M2e-M2/~2(pv(M2) - PA(M2)) 

3/¢ 2 
= 4¢rZ ~ u ( x Z ) ~ d ( r  2) -- ( m u +  ma)(Ol~u[O) + O ( 1 / r 2 ) .  (10) 

It is now no longer possible to take the limit of I~ 2 "-'> 00, and therefore recover the 
second Weinberg sum rule, except in the chiral limit. Note  that the badly divergent 
term is of second order in the quark masses. To first order in the quark masses the 
second Weinberg sum rule eq. (7) receives a finite contribution 

1.h.s= -(mu + ma)(Ol~ulO ) =f4m,,,2 2 (11) 

where we have used the usual current algebra expression for the pion mass [9]. The 
¢r + -  ¢r ° electromagnetic mass difference can be calculated in principle using the 
vector and axial-vector spectral functions. Using current algebra techniques Das, 
Guralnik, Mathur, Low and Young [10] derived the classic formula 

2 2 12~ra /. d4q 1 oo [Pv(M2)-PA(M2)] 
m'~+-m'~°=~2i  J ( ~ ) 4  q 2 f  0 d M 2 M 2  q 2 + M 2 _ i  e (12) 

If the second Weinberg sum rule holds - as is the case in the chiral limit - eq. (12) 
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yields a finite result. This result is expected in QCD from an analysis of the 
short-distance expansion of the product of two electromagnetic currents [11]. 
However, if one retains terms of first order in the quark masses, one can show that 
the pion electromagnetic mass difference will then exhibit a logarithmic divergence, 
proportional to (m u + ma)(Ol~u[O ) [11]. This result follows directly also from eq. 
(12), using eq. (11) as the 1.h.s. of the second Weinberg sum rule. The presence of 
this divergence should not be troubling since it can be absorbed by a redefinition of 
the quark mass terms. Indeed, since in QCD one is near the chiral limit, it is sensible 
to attempt to evaluate (12) using whatever information is available on the spectral 
functions. In fact, this is precisely what Das et al. [10] did. They assumed that Pv 
and p^ are saturated by the p and A 1 mesons respectively and, using the Weinberg 
sum rules and the KSFR relation [12], obtained m,~÷- m,,0 = 5 MeV, in amazing 
agreement with the experimental value of 4.6 MeV. We will repeat this analysis 
using the spectral functions that we will determine from ~- decay, to which we now 
turn. 

The amplitude for the semileptonic decay of the ¢ lepton into non-strange 
hadrons (S = 0) in the 4-Fermi approximation, reads: 

A(¢ -+ ---, v, + hadrons(S = 0)) 

= ~ -GF cos 0c~(p~,) y~,(1 - y5) u(p¢) 

× (hadrons(S = 0)[J~+,210). (13) 

If  the S -- 0 hadrons are an even number of pions then only V~+,2 contributes in eq. 
(13), while for an odd number of pions only Al~+,2 contributes. Thus the differential 
transition probabilities per invariant mass squared, for the process ¢ ~ v~nrr will be 
a measure of Pv and PA, respectively, depending on whether n is even or odd. Using 
eq. (13) and the definition of the spectral functions in eqs. (4), neglecting the 
longitudinal pieces, one arrives at the general formula [13] 

E 
d r ( ¢  ~ ~ + n~r) 

d M  2 
G2 c°s2 0c 2M2)(m2-M2)2{v(M2)} ,  (14) 

= 32~r2m 3, ( m2+ a(M 2) 

where the upper line applies for n even and the lower line for n odd (n > 1). Here v 
and a are simply related to the spectral functions pv and PA by 

v ( M  2) = 4rrPv(M2),  

a ( M  2) = 4~rpA(M2). (15) 

Apart from the single pion decay ¢ ---> v~rr, the most important decay channels for 
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Fig 1. Fit of the mvanant mass ~ = M2~ distribution for the decay z + --* v~ + ~r ±~r ° 
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Fig. 2 Fit of the invanant mass squared s = M2~ distnbuUon for the decay 1" :t ...} v~ + ~r ±~r+~r - 

the  ~" involve  two, three and four  pions,  for which we have de ta i led  exper imenta l  

i n fo rma t ion .  There  exist no  precise  d a t a  on  higher  mul t ip l ic i ty  f inal  s tates  l ike 

~" --* v~5rr or  "r ---> v,6~r, bu t  these con t r ibu t ions  are thought  to be  negl igible  [14,15]. 

A s  far  as the  d o m i n a n t  decays  go, we will base  our  analysis  mos t ly  on  recent  da t a  

o b t a i n e d  b y  the  Argus  co l l abora t ion  at  D O R I S  [16,17]. The  re levant  d i s t r ibu t ions  

for  the  o n e - p r o n g  channel  "r + ~ v~rr ±~r ° and  for the three p rong  channels  • ± ---} 

v~r +~r+~r - a n d  ~" ± ~ v~r ±~r+~r-~r ° are  shown, respect ively,  in figs. 1, 2 and  3. The  

o n e - p r o n g  d i s t r ibu t ion  of  fig. 1 is no t  acceptance  correc ted  (and  i t  is p lo t t ed  for  

conven ience  aga ins t  v~- no t  s).  However ,  this d i s t r ibu t ion  is qui te  c o m p a r a b l e  to the 

d a t a  p u b l i s h e d  by  the M a r k  I I  co l l abora t ion  [18], and  so we bel ieve  tha t  these 

co r r ec t ions  are  no t  of  ma jo r  impor tance ,  as this  m o d e  is essent ial ly  d o m i n a t e d  by  
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Fig. 3 Fxt of the invanant mass squared s = M2,, distnbutton for the decay r + ---, v, + rr-%r+rr-er °. 

the p +. Indeed we have checked that our fit of the data in fig. 1 is in good agreement 
with the o-dominated spectral function obtained from a study of the reaction 
e+e  - ---, *r+vr - [19]. There is, as yet, no experimental information on the multipion 

one-prong channels ~ ± ---, J,,~r ±~r °,r ° and z ± --+ ~,,,r ±,t°rr%r °. However, to the extent 
that  the data  for the channel ~ -±~  1,~vr ±~r%r- shows a very strong d 1 resonance 
dominance [17,20], one may estimate the T ± ~ ~,~,r ±,r°vr ° contribution simply by 
isospin symmetry,  in which case one has 

B ( ,  ± - ,  = B ( , ,  + - ,  ,, 

= (5.6 _+ 0.7)%, (16) 

where the numerical result is that obtained by Argus [17]. Gilman and Rhie [14] 

using e + e -  data and CVC have estimated that the branching ratio for the channel 
z:~---, p~r±3*r ° is about 5 times smaller than that for the three-prong decay 
~- ± ---> p~vr ±,r%r-~r °. Since the branching ratio for this latter mode is not very large 

[161 

B(~" ± ~ l,/r ±*r%r-~r°) = (4.5 + 0.4 + 1.5)% (17) 

and the error is considerable, we shall totally ignore the channel ~- ---> v~r ±3~r ° in 
our analysis. Hence our results will be based on the distributions shown in figs. 1-3,  
augmented by  the isospin relation [16]. 

The curves shown in figs. 1 -3  are our best X 2 fits for these distributions, using 
the numerical  program MINUIT .  For figs. 1 and 2 we have used a Breit-Wigner 
function convoluted with a high order background polynomial. In fig. 3, where there 
is no apparent  sharp resonance behaviour we just used a high order polynomial. On 
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Fig. 5 Fit of the spectral function a,,~+,,- for the decay of fig. 2 as a function of the mvariant mass 
squared s = M2,~. The dashed hne, beginning at s = 2 4 GeV 2, denotes the region where the error bars 

start to be too big for the fit to be trustworthy. 

the  bas i s  of  these numer ica l  results,  we have ex t rac ted  the re levant  spectra l  func-  

t ions  v2,,, a,,±,,+,,- and  v,~,~+~-~0 mak ing  use of  eq. (14). These  are  d i sp layed  in 

figs. 4 - 6  a long  wi th  the  da t a  wi th  the co r respond ing  error  bars.  No te  tha t  as we 

2 it becomes  very diff icul t  to ext rac t  a re l iable  a p p r o a c h  the  k inemat ica l  l imit  s = m~, 

va lue  for  the  spect ra l  functions.  This  is especial ly so for  the 3~r and  pa r t i cu la r ly  so 

for  the  4~r con t r ibu t ion .  Thus  we have ind ica ted  in figs. 5 and  6 b y  a dashed  l ine the  

reg ion  b e y o n d  which we do  not  t rust  our  fit  (which is s >_ 2 GeV 2 for the 4~r case). 

W e  have  col lec ted  our  results  for the spectra l  funct ions  v2,, a3~r = 2a .~=+~-  and  
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Fig. 6. Fit of the spectral function o,,±,~+~,-,~0 for the decay m fig. 3 as a function of the invanant mass 
squared s = M~,~. The dashed line, beginning at about s = 2 GeV 2, denotes the region where the error 

bars start to be too big for the fit to be trustworthy. 
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Fig. 7. The hadromc vector (v = v2,, + v4,~) and axial vector (a = a 3 , r )  spectral functions in the low-energy 
re#on as a function of s In this figure a3, , stands for twice a,~± ~+,,- of fig 5 and the dashed line for v4, 

has the same meamng as in fig 6. 

04,~= o,~,,+,,-,,o i n  fig. 7 a n d  i t  is these  d i s t r i b u t i o n s  wh ich  we shal l  use  in  ou r  

s u b s e q u e n t  ana lys i s .  

2 ( I n  fact  G i v e n  t h a t  o u r  spect ra l  f u n c t i o n s  are o n l y  d e t e r m i n e d  for M 2 <  m~ 

r e l i a b l y  o n l y  for  M2_< 2 G e V  2 a n d  a p p r o x i m a t e l y  re l i ab ly  for M2_< 2.5 G e V  2, as 

fig. 7 shows)  i t  is d e a r l y  n o t  t e r r ib ly  m e a n i n g f u l  to t ry to test  the  W e i n b e r g  s u m  

rules ,  whe re  o n e  m u s t  i n t eg ra t e  over  a n  in f in i t e  range!  However ,  it  is at  least  

i n t e r e s t i n g  to  see h o w well  o n e  does w h e n  one  in tegra tes  the  r e l evan t  spec t ra l  
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function difference up to a maximum limit s o. We show respectively in figs. 8, 9 and 
10 plots of the integrals 

/ :(So) = Jo° dS ( v( s ) - a( s ) ) , (18a) 

I2(so) = foS° d s s ( v ( s )  - a ( s ) ) ,  (18b) 

3a So 
A(~r+--~r°)= 32~r2m,~f f f~o d s s ( a ( s ) - v ( s ) ) l n s .  (18c) 



R.D. Peccet, J. Solh / Wemberg sum rules 11 

5 0 ~  I [ I r J I I I [ t I I I [ 

"~ 3o- 
E 

2 5  

2 0  J I i , l 
10 15 20 25 

so [OeV 2) 

Fig. 10. The electromagnetic pion mass difference, as computed from eq. (18c) using the spectral 
funcUons of fig 7 The dashed area has the same meaning as those of figs 8 and 9 

These integrals, in the limit as s o ~ oo, reduce to the two Weinberg sum rules and 
an expression for the mass difference m , + -  m,,0, valid in the chiral limit where the 

2nd Weinberg sum rule holds. Note  that if we saturate (18c) with the p and m 1 

contributions, and make use of the KSFR relation [12], we recover the famous 
formula  of Das et al. [10] for m,~+ - m,0: 

3amZp In 2 
m , ,+ -  m,~0 = (19) 

4~rm, 

The crosshatched area in figs. 8-10 represents the region in which our determina- 
tion of the spectral function is less certain. Remarkably,  and surely accidentally, if 
we were to stop our integration range at s o = 2 GeV 2 all three quantities in eq. (18) 
approach  the closest to the predicted asymptotic values: 4~rf 2 --- 0.11 GeV 2, 0, and 

4.6 MeV, respectively. What  is perhaps not accidental, however, is that all three 
expressions in (18) approach closest to the predicted asymptotic value (in the chiral 
limit) at the s a m e  s o value. This suggests that the Weinberg sum rules and the plon 
electromagnetic mass difference converge in a "piecewise" fashion. That  is, for 

higher values of M 2 other channels for Pv and PA become important,  but their 
contr ibutions cancel each other out. It  is for this reason that the resonance 

saturation formula (19) works so well. However, note that using the exact form of 
v2, ~ and a3# , extracted from the ~- lepton semileptonic decay results, the contribu- 
tion of v4, ~ is rather important for the ~r + - 7r ° difference. Neglecting this term, for 
example,  at s o = 2 GeV 2 one would obtain A(~r + -- ~r °) --- 7 MeV rather that about 
4.6 MeV. 

In view of the uncertainties inherent in having to cut off the integration range at a 
given s o for the Weinberg sum rules, the advantage of the Laplace transform sum 
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rules of eqs. (9) and (10) is obvious. By choosing K 2 sufficiently small, the 
contribution of the spectral functions much beyond this ~2 are exponentially 
suppressed. On the other hand, if ~2 is large enough, then the perturbative 
contributions on the r.h.s, of the sum rules are also small. For our purposes, values 
of r 2 - (1.0-1.5) GeV 2 seem optimal, for then the perturbative corrections are small 
and we can very well approximate #v and PA by the contributions deduced from 
our ,r-decay analysis. 

We present in figs. 11 and 12 the contributions of the vector and axial-vector 
spectral functions to the, Laplace transform, integrals 

J l ( s0) - -  ~0 '° dse -~ /~2 (v ( s ) -a ( s ) ) ,  (20a) 

J2(So) = f0'°dss e - ' / '2(o(s )  - a ( s ) ) ,  (20b) 

for various values of ~2 as a function of s o. In particular, when x2= oo then 
J,(so) = I,(so) and one reduces to the truncated Weinberg sum rules already studied. 
Two points are clear from these figures: 

(i) The results obtained for moderate K 2 (K 2 -  1-1.5 GeV 2) are essentially 
independent on whether we cut off the integral at s o = 2 GeV 2 or s o = 2.5 GeV 2. 
Hence, as remarked above, these Laplace transform sum rules are very suitable for 
the case one knows the spectral functions only in a limited kinematical range. 

(ii) The Laplace transform integral related to the 1st Weinberg sum rule appears 
to be in good agreement with the asymptotic QCD prediction (i.e. essentially 
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4~rf 2 = 0.11 GeV 2 in fig. 11). There is, however, a larger discrepancy for the case of 
the second sum rule. 
This last point needs some discussion. The integrals J,(so), being over a finite range, 
are not quite equivalent to the Laplace transform sum rules given in eqs. (9) and 
(10). For the 1st Weinberg sum rule, assuming that the longitudinal structure 
functions are well approximated by their values in the chiral limit: 

p(v°)(M 2) - p(A°)(M 2) = - f 2 8  (M2)  (21) 

one has 

= 4¢t{ f2  + r.h.s. (eq. (9 ) ) } .  (22a) 

Similarly, for the second sum rule one deduces that 

fo °° d s  e - s / K 2 s ( v ( s )  -- a ( s ) )  = J 2 ( s o )  + 

= 4~r r.h.s. (22b) 

For •2 = 1.5 GeV 2, the numerical value of the x 2 dependent terms on the r.h.s, of 
eqs. (9) and (10) are rather negligible compared to the values of J,(so) in figs. 11 

) - a ( s ) )  
$0 

(eq. (10)).  
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4~r r.h.s (eq. (9)) = 2 X 10 -4 GeV 2, (23a) 

4~r r.h.s. (eq. (10)) = 4~rf~m 2 =  2 × 10 -3 GeV 4. (23b) 

Therefore, if the tail integrals beyond s o were negligible, one would expect 

Jl(so)  = 41rfff, (24a) 

J2(so) = 0 .  (24b) 

As remarked above only (24a) seems to hold reasonably well. Hox~ ever, one can 
understand the reason for this discrepancy at least qualitatively. 

We note first that there is an unavoidable uncertainty in our re:;ults due to the 
error inherent in extracting the spectral functions from the ,r-decay data, which have 
both  statistical and systematic errors. We estimate, however, that these errors can 
cause an uncertainty, for So--2 GeV 2, of at most __+0.01 GeV 2 and ___0.01 GeV 4, 
for -/1 and J2, respectively. Hence, within our accuracy, Jr(s0) certainly agrees with 
the asymptotic value given in eq. (24a) but J2(s0) does not. However, the tail 
integral for the second sum rule is not negligible, while it is much smaller for the 
first sum rule. To get an order of magnitude estimate of this effect - in the absence 
of data - we note from fig. 7 that, at s = 2.5 GeV 2, v(s )  - a (s )  = 0.05. Clearly this 
difference will decrease as s increases and, as we will comment upon below, it 
should better change sign if one is to recover the expected results from QCD. 
Nevertheless, in magnitude, it seems reasonable to expect 

f 
O0 2 ITll ~0.05 e -s/~ ds =0.05 ~2e-~°/~2 = 0.014 GeV 2 

s0 

(25a) 

oo 2 ( S° le-So/~2 = 0.057 GeV 4, IT21 ~0.05f e -S /~sds=O.O5r  4 1 +  x2 ] 
SO 

(25b) 

where the numerical results in eq. (25) are those appropriate for the case x2=  
1.5 GeV 2 and s o = 2.5 GeV 2. We see from these equations that while the uncer- 
tainty of the tail integral for the first sum rule is of the order of the experimental 
uncertainty, for the second sum rule the tail integral is much more important. 
However, note that to recover the expected QCD prediction it is necessary that 
eventually, for some region of s, a (s )  > v(s),  since the tail integrals add to J,. The 
absence of any clear signal for the "r ~ p~51r modes [14,15] is in this sense rather 
perturbing. However, since asymptotically a(s)  = v(s) = 1/2~r, it is clear from fig. 7 
that large variations in both v(s)  and a(s )  are still to be expected. 

There is perhaps a bit more reliable way to gauge the effect of our lack of 
knowledge of the spectral functions beyond s o ---2.5 GeV 2. This is to consider 
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Fig. 13. Laplace transform behawour of the vector spectral functmn The shaded area defines the 
uncertainty between the strict asymptotac prediction, (upper straight hne) and the predxction umng our 

tail apprommation (lower stratght line) 

directly the Laplace transform integrals of the vector and axial spectral functions 
separately. In this case, since the spectral functions are positive, the tail integrals are 
well under control. For the vector case, for instance, in the chiral limit, one has 

e~ K 2 

fo dM2e-M2/~2v(M:) = "2-~ + O(l fK') '  (26a) 

fo ° dM2 M2e-M2/K2v( M2 ) 
i¢ 4 

= - -  + O(1/K2) .  (26b) 
2~r 

We show in figs. 13 and 14 the above integrals with the integration being performed 
over a finite range, up to So = 2.5 GeV 2, for the c a s e  K 2 = 1.5 GeV 2. It is clear that 
the zeroth moment  of the vector Laplace transform approaches much nearer to its 
asymptotic value than the first moment. The crosshatched area in the figures is just 
our estimate of the tail integral in which, for v(s) above s > 2.5 GeV 2, we have just 
used its asymptotic value: v = 1/2~r. Thus 

K 2 

T v =  ~ (°°dMEe-M2/~2= - - e  -~°/~2 (27a) 
2~r g~o 2~r ' 

K 2 
T v =  lfOOdM2M2e_M2/~2 = ~__~(s2 + xO)e_S0/~: 

2~r Js0 
(27b) 

As can be seen from the figures, these estimates for the tails are quite reliable. So 
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Fig. 14. As in fig 13 but now for the Laplace transform of the first moment of the vector spectral 
function Here the uncertainty regmn is much bigger than in fig 13. 

really, the principal problem in the second Weinberg sum rule is that the lack of 
positivity of v(s ) -a(s )  does not allow for an accurate estimate of the tail 
remainder. 

On balance, it appears that the spectral functions obtained from an analysis of 
the ~" semileptonic decays display all of the qualitative features awaited in QCD. 
However, the narrow kinematical range available makes a direct quantitative 
comparison with detailed QCD predictions rather difficult. This is particularly so 
for the Weinberg sum rules since we are dealing with differences between spectral 
functions. For the Laplace transform version of the 1st Weinberg sum rule, within 
the uncertainties of the analysis, things seem to work rather well. The situation with 
the second Laplace transform sum rule is less clear, although qualitatively one has at 
least an understanding of why the discrepancy might be bigger here. Similar 
comments apply for ~r + - rr ° difference. Although a quantitative prediction is not 
possible, one understands qualitatively why a low-energy saturation of the formula 
of Das et al. [10] might well work, since there are piecewise cancellations between 
v(s) and a(s). In this respect, it would have been much nicer if the r-lepton had 
had a mass of 5 GeV! 
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