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We use recent data on r-lepton hadronic decays to extract the g?> dependent vector and
axial-vector spectral functions Even though our results are necessanly restncted kinematically, we
make use of these experimentally determined spectral functions to check to what extent the
Weinberg sum rules are satisfied and to compute the pion electromagnetic mass difference.
Although the results we obtain are satisfactory, the agreement with theoretical expectations
appears to be somewhat fortuitous. A much more relevant and reliable theoretical comparison is
provided by a Laplace transform version of the sum rules, which 1s more convergent and for which
the QCD corrections are under better control

A very important early step in the theory of the weak interactions was the
realization that the currents which enter in weak decays are also the (approximate)
symmetry currents of the strong interactions [1]. This deep interconnection is now
simply understood in the standard model of the strong and electroweak interactions
in terms of invariances related to the quark degrees of freedom. QCD, in the limit in
which one neglects the mass for the u and d quarks, has a global SU(2), X SU(2),
symmetry in which the quark doublets are transformed as:

u 10y T, u
qLE(d)L—)e L‘“’/2(d)L’

o= (8), (), m

The symmetry currents for these transformations are conventionally written in
terms of the vector and axial currents:

Ta
AZ‘_"TY”Ys?‘I- (2)
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Because the left-handed u and d quarks transform as a doublet under the electro-
weak SU(2) group, it is clear that, as far as the u and d quarks go, the weak SU(2)
current is simply related to V* and A%. One has

Ta

JE=g. y*
a LY 2

qu=3(Vi-45). (3)

This interrelationship has been used in the past to predict certain features of weak
decays (for example weak magnetism [2]) from properties of the strong currents.
Here we would like to do the reverse and use weak decay results to infer structural
properties related to the strong symmetry currents. More specifically, we shall
analyze recent data on the semileptonic decays of the 7 lepton to extract informa-
tion on the g2 dependence of the spectral functions connected with the vector and
axial currents of eq. (2). Having these results in hand, we shall then examine how
well do certain sum rules, based on the global symmetries of QCD, work and
attempt to compute the 7+ — 79 electromagnetic mass difference.

It is convenient to write down a spectral decomposition for the two-point
correlation functions associated with the currents ¥* and A4%. One has:

i0|T(V2(x)V;(0))i0)

d*p dMm?
~ouf (27)° e [ LV (M (M + pp?)

+p%(M?)p*p*} +S.T., (4a)

i{0|T(44(x) 43(0))|0)

d*p dM?
~tu (27)4elprp2+M2—i£{PA(MZ)(MZW'”_"PMPV)

+p3(M?) pp*} +S.T.. (4b)

In the above S.T. stands for possible Schwinger terms [3] which, however, will play
no role in our considerations. In what follows, we shall be mostly interested in the
chiral limit, where m ,=m4=0. In this case the longitudinal vector spectral
function p% vanishes, while the corresponding axial spectral function has only a
contribution from the Goldstone pions:

% (M?) =0,

pQ(M?) =£28(M?)  (chiral limit). (s)



R.D. Pecces, J. Sola / Wenberg sum rules 3

Here f, =93.3 MeV, is the pion decay constant. In principle the vector and axial
spectral functions are calculable in QCD, but in practice we are still very far away
from being able to do that in the low-energy region. However, because of the
connection of V! and A% with the weak current (eq. (3)) it is possible to infer
experimentally some information about py and p, by studying the semileptonic
decays of the r-lepton. Of course, in these decays the accessible M2 range is
restricted to be below m2. However, as we shall see, one already obtains important
information, even within this narrow kinematical range.

Almost twenty years ago, Weinberg [4] derived two sum rules for py and p,,
using some general arguments related to the expected asymptotic behaviour of
strong interaction processes. Weinberg’s sum rules read

[ a2 (o (M?) = pa(M7)) =12, ©)

[aM>M*(py(M?) = pu(M2)) =0. (7)

One can show that these sum rules, obtained before the development of QCD as a
theory of the strong interactions, are actually valid in QCD in the chiral limit [5].
However, when quark masses are included only the first Weinberg sum rule, when
appropriately reinterpreted, remains valid. The second sum rule breaks down since,
in perturbation theory, the spectral function difference receives contributions of
order m?l/M 2, which lead to a quadratic divergence. One can, nevertheless, con-
struct appropriately weighted combinations of the transverse and longitudinal
spectral functions which lead to convergent Weinberg sum rules of the second kind
[5]. In QCD, the first Weinberg sum rule is replaced by:

J 4 [(py(M?) =~ a(MD)) + (pP(M?) ~ pX(MD))] =0.  (8)

Recalling eq. (5), one sees that in the chiral limit the second term above precisely
reproduces the f,? factor of eq. (6). Note also that although in QCD the transverse
and longitudinal spectral functions contain terms of order mfl/M % these terms
cancel each other in eq. (8) [5].

Rather than giving a modified second Weinberg sum rule in QCD, it is more
useful to consider, following the original suggestion of Shifman, Vainshtein and
Zakharov [6], a Laplace transformed version of these sum rules. For these Laplace
transform sum rules one introduces an extra scale k2 and, in effect, one is then
dealing with an infinite set of relations, one for each value of k2 Because the
Laplace transform sum rules contain a weight e~ ™°/%* their convergence in QCD is
controlled by a series of operator expectation values of increasing dimensionality
each weighted by an appropriate «? factor.



4 R D. Pecces, J. Sola / Wenberg sum rules

Corresponding to the first Weinberg sum rule, one has [5,7, 8]:

[ ame A (py (37) - pp (M) + (9 (37) = 59 (107)))

(<) {_ (%) g (K2)

27 a?

N E (mu+md)<0|ﬁu|0> _ %WM':IJL»? + .. }, (9)

3 K2

where a (k%) and m(k?) are the QCD running coupling and mass, respectively.
Since the r.h.s. of eq. (9) vanishes as k2 — o0, one recovers immediately in this limit
the first Weinberg sum rule, eq. (8). More importantly, already for moderate values
of k2, of O(GeV?), one sees that the corrections on the r.h.s. of eq. (9) are small
compared to f2. Hence, using these Laplace transform sum rules, one may well be
able to test the expectations of QCD, using values of py and p, obtained for
moderate values of M2

The Laplace transform version of the second Weinberg sum rule (7) reads [5,7, 8]:

fszMze_Mz/xz(Pv(Mz) - PA(MZ))

3k?
= mmu(xz)'ﬁd("z) ~ (my +my){0|au|0) + 0(1/"2)- (10)

It is now no longer possible to take the limit of k2 — oo, and therefore recover the
second Weinberg sum rule, except in the chiral limit. Note that the badly divergent
term is of second order in the quark masses. To first order in the quark masses the
second Weinberg sum rule eq. (7) receives a finite contribution

Lh.s = —(m, + m4){0|uu|0) = f2m?, (11)

where we have used the usual current algebra expression for the pion mass [9]. The
7t — w0 electromagnetic mass difference can be calculated in principle using the
vector and axial-vector spectral functions. Using current algebra techniques Das,
Guralnik, Mathur, Low and Young [10] derived the classic formula

127 o d% 1 (e [ov(M?) = pa(M?)]
o= —_—— dM?2M? . 12
m e T E /(2w)4 quo 2+ M?—ie (12)

If the second Weinberg sum rule holds ~ as is the case in the chiral limit — eq. (12)
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yields a finite result. This result is expected in QCD from an analysis of the
short-distance expansion of the product of two electromagnetic currents [11].
However, if one retains terms of first order in the quark masses, one can show that
the pion electromagnetic mass difference will then exhibit a logarithmic divergence,
proportional to (m, + m4){0|uu{0) [11]. This result follows directly also from eq.
(12), using eq. (11) as the Lh.s. of the second Weinberg sum rule. The presence of
this divergence should not be troubling since it can be absorbed by a redefinition of
the quark mass terms. Indeed, since in QCD one is near the chiral limit, it is sensible
to attempt to evaluate (12) using whatever information is available on the spectral
functions. In fact, this is precisely what Das et al. [10] did. They assumed that p
and p, are saturated by the p and A; mesons respectively and, using the Weinberg
sum rules and the KSFR relation [12], obtained m +«— m_o=15 MeV, in amazing
agreement with the experimental value of 4.6 MeV. We will repeat this analysis
using the spectral functions that we will determine from r decay, to which we now
turn.

The amplitude for the semileptonic decay of the r lepton into non-strange
hadrons (S = 0) in the 4-Fermi approximation, reads:

A(7% - v, + hadrons(S =0))

= ‘/2_GF €os 0cl_‘(Py,)Y,‘(1 —vs)u(p,)
X (hadrons(S = 0)|J{, ,,|0). (13)

If the S = 0 hadrons are an even number of pions then only V', , contributes in eq.
(13), while for an odd number of pions only 4{, ,, contributes. Thus the differential
transition probabilities per invariant mass squared, for the process T — »_.na will be
a measure of py and p,, respectively, depending on whether » is even or odd. Using
eq.- (13) and the definition of the spectral functions in egs. (4), neglecting the
longitudinal pieces, one arrives at the general formula [13]

dI'(r>v,+nm) GZcos?f.
d M? T R2eimd

)»

n

M2
(m2+2M2)(m? - M2)2{ v(M°) } , (14)
a(M
where the upper line applies for n even and the lower line for » odd (n > 1). Here v
and a are simply related to the spectral functions p, and p, by
v(M?) =4mp,(M?),
a(M?)=4np,(M?). (15)

Apart from the single pion decay r — »,7, the most important decay channels for
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Fig 1. Fut of the mnvanant mass ys = M,_, distribution for the decay 7+ — », + 7 £ 70
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Fig. 2 Fit of the invaniant mass squared s = M7, distribution for the decay 7% — v, + n2a* 7™~

the 7 involve two, three and four pions, for which we have detailed experimental
information. There exist no precise data on higher multiplicity final states like
T— v 57 or 7— v 6w, but these contributions are thought to be negligible [14,15].
As far as the dominant decays go, we will base our analysis mostly on recent data
obtained by the Argus collaboration at DORIS [16,17]. The relevant distributions
for the one-prong channel 7*— 7 *#® and for the three prong channels 7* —
voiata” and 7 > paTrta 70 are shown, respectively, in figs. 1, 2 and 3. The
one-prong distribution of fig. 1 is not acceptance corrected (and it is plotted for
convenience against Vs not s). However, this distribution is quite comparable to the
data published by the Mark II collaboration [18], and so we believe that these
corrections are not of major importance, as this mode is essentially dominated by
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Fig. 3 Fut of the invanant mass squared s = M2, distribution for the decay 7+ — v, + w o+ q 20,

the p*. Indeed we have checked that our fit of the data in fig. 1 is in good agreement
with the p-dominated spectral function obtained from a study of the reaction
eTe” > a7~ [19). There is, as yet, no experimental information on the multipion
one-prong channels 7* — y 7 7% and 7* - y7 27 % %7°, However, to the extent
that the data for the channel 7+ — p 7 *7*#~ shows a very strong A, resonance
dominance [17,20], one may estimate the 7* — ».7 *7% 9 contribution simply by
isospin symmetry, in which case one has

B(*r:t > 7 tqn) = B('ri A i7r+7r_)
=(56+07)%, (16)

where the numerical result is that obtained by Argus [17]. Gilman and Rhie [14]
using e*e” data and CVC have estimated that the branching ratio for the channel
7>y a*37% is about 5 times smaller than that for the three-prong decay

1+ > v *x 7 70 Since the branching ratio for this latter mode is not very large
[16]

B(r*—yrirta n®)=(45+04+1.5)% (17)

and the error is considerable, we shall totally ignore the channel 7 — »7*37° in
our analysis. Hence our results will be based on the distributions shown in figs. 1-3,
augmented by the isospin relation [16].

The curves shown in figs. 1-3 are our best x? fits for these distributions, using
the numerical program MINUIT. For figs. 1 and 2 we have used a Breit-Wigner
function convoluted with a high order background polynomial. In fig. 3, where there
is no apparent sharp resonance behaviour we just used a high order polynomial. On
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Fig. 5 Fit of the spectral function a,,+,+,- for the decay of fig. 2 as a function of the invariant mass
squared s= M7, . The dashed line, beginning at s =24 GeV?, denotes the region where the error bars
start to be too big for the fit to be trustworthy.

the basis of these numerical results, we have extracted the relevant spectral func-
tions v,,, a,+,+,- and v s +,-,0 making use of eq. (14). These are displayed in
figs. 4-6 along with the data with the corresponding error bars. Note that as we
approach the kinematical limit s = m?2, it becomes very difficult to extract a reliable
value for the spectral functions. This is especially so for the 3= and particularly so
for the 44 contribution. Thus we have indicated in figs. 5 and 6 by a dashed line the
region beyond which we do not trust our fit (which is s > 2 GeV? for the 47 case).
We have collected our results for the spectral functions v,,, a;,=2a,s_+,.- and

L A
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Fig. 6. Fit of the spectral function v, +,+,-,0 for the decay 1n fig. 3 as a function of the invariant mass
squared s = MZ,. The dashed line, beginning at about s =2 GeVZ, denotes the region where the error
bars start to be too big for the fit to be trustworthy.
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Fig. 7. The hadronic vector (v = v,, + v,,) and axial vector (a = a,,,) spectral functions in the low-energy
region as a function of s In this figure a,, stands for twice a,,+: ,+,- of fig 5 and the dashed line for v,
has the same meamng as in fig 6.

Upp = Upt prp-0 0t fig. 7 and it is these distributions which we shall use in our
subsequent analysis.

Given that our spectral functions are only determined for M?<m? (In fact
reliably only for M? <2 GeV? and approximately reliably for M? < 2.5 GeV?, as
fig. 7 shows) it is clearly not terribly meaningful to try to test the Weinberg sum
rules, where one must integrate over an infinite range! However, it is at least
interesting to see how well one does when one integrates the relevant spectral
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function difference up to a maximum limit s,. We show respectively in figs. 8, 9 and

10 plots of the integrals

11(s0)=f:°ds(v(s)—a(s)),

L(s,) = fjdss(v(s) —a(s)),

A(r*t—7%) =

2o fzf dss(a(s) —v(s))ns.

(18a)

(18b)

(18¢)
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Fig. 10. The electromagnetic pion mass difference, as computed from eq. (18c) using the spectral
functions of fig 7 The dashed area has the same meaning as those of figs 8 and 9

These integrals, in the limit as s, — oo, reduce to the two Weinberg sum rules and
an expression for the mass difference m,+ — m o, valid in the chiral limit where the
Znd Weinberg sum rule holds. Note that if we saturate (18c) with the p and A,
contributions, and make use of the KSFR relation [12], we recover the famous
formula of Das et al. [10] for m .+ — m o

3am,2,1n2
m+— mo=——"——

4mm (19)

m

The crosshatched area in figs. 8-10 represents the region in which our determina-
tion of the spectral function is less certain. Remarkably, and surely accidentally, if
we were to stop our integration range at s, =2 GeV? all three quantities in eq. (18)
approach the closest to the predicted asymptotic values: 47f? = 0.11 GeV?, 0, and
4.6 MeV, respectively. What is perhaps not accidental, however, is that all three
expressions in (18) approach closest to the predicted asymptotic value (in the chiral
limit) at the same s, value. This suggests that the Weinberg sum rules and the pion
electromagnetic mass difference converge in a “piecewise” fashion. That is, for
higher values of M? other channels for p, and p, become important, but their
contributions cancel each other out. It is for this reason that the resonance
saturation formula (19) works so well. However, note that using the exact form of
vy, and a,,, extracted from the r lepton semileptonic decay results, the contribu-
tion of v,,, is rather important for the #* — # ¢ difference. Neglecting this term, for
example, at s, =2 GeV? one would obtain A(7* — 7°) =7 MeV rather that about
4.6 MeV.

In view of the uncertainties inherent in having to cut off the integration range at a
given s, for the Weinberg sum rules, the advantage of the Laplace transform sum
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and the corresponding Laplace transform sum rule for k2=15 GeV? (curve (b)) and «2=1 GeV?
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rules of egs. (9) and (10) is obvious. By choosing k2 sufficiently small, the
contribution of the spectral functions much beyond this k2 are exponentially
suppressed. On the other hand, if k2 is large enough, then the perturbative
contributions on the r.h.s. of the sum rules are also small. For our purposes, values
of k% ~ (1.0-1.5) GeV? seem optimal, for then the perturbative corrections are small
and we can very well approximate py and p, by the contributions deduced from
our 7-decay analysis.

We present in figs. 11 and 12 the contributions of the vector and axial-vector
spectral functions to the, Laplace transform, integrals

T, (sy) = jo “dse=(v(s) — a(s)), (20a)

Jy(s0) = fosodsse‘s/"z(v(s) —a(s)), (20b)

2 2

for various values of k* as a function of s,. In particular, when k“= oo then
J.(so) = I,(s,) and one reduces to the truncated Weinberg sum rules already studied.
Two points are clear from these figures:

(i) The results obtained for moderate k? (k*~1-1.5 GeV?) are essentially
independent on whether we cut off the integral at s,=2 GeV? or s5=2.5 GeV2%
Hence, as remarked above, these Laplace transform sum rules are very suitable for
the case one knows the spectral functions only in a limited kinematical range.

(ii) The Laplace transform integral related to the 1st Weinberg sum rule appears
to be in good agreement with the asymptotic QCD prediction (i.e. essentially
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47f?=0.11 GeV? in fig. 11). There is, however, a larger discrepancy for the case of
the second sum rule.

This last point needs some discussion. The integrals J,(s,), being over a finite range,
are not quite equivalent to the Laplace transform sum rules given in egs. (9) and
(10). For the 1st Weinberg sum rule, assuming that the longitudinal structure
functions are well approximated by their values in the chiral limit:

pO(M?) — p0(M?) = —f28(M?) (21)

one has

j(;wdse"/"z(v(s) —a(s)) =Jy(sy) + /°° dse=*""(v(s) — a(s))

=4n{ f?+rhs. (eq. (9))} . (222)

Similarly, for the second sum rule one deduces that

Lw dse " s(v(s) —a(s)) =J,(5,) + lwds e/ s(v(s) —a(s))
=47 r.hs. (eq. (10)). (22b)

For k2 =1.5 GeV?, the numerical value of the k> dependent terms on the r.h.s. of
eqs. (9) and (10) are rather negligible compared to the values of J(s,) in figs. 11
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and 12
47 r.hs (eq. (9)) =2x 107 GeV?, (23a)

47 rhs. (eq. (10)) = d47f2m2 =2 % 1077 GeV*. (23b)

Therefore, if the tail integrals beyond s, were negligible, one would expect
Ji(so) = 4af}, (24a)
J5(5,) =0. (24b)

As remarked above only (24a) seems to hold reasonably well. Howcver, one can
understand the reason for this discrepancy at least qualitatively.

We note first that there is an unavoidable uncertainty in our results due to the
error inherent in extracting the spectral functions from the r-decay data, which have
both statistical and systematic errors. We estimate, however, that these errors can
cause an uncertainty, for s,=2 GeV?, of at most +0.01 GeV? and +0.01 GeV*,
for J, and J,, respectively. Hence, within our accuracy, J(s,) certainly agrees with
the asymptotic value given in eq. (24a) but J,(s,) does not. However, the tail
integral for the second sum rule is not negligible, while it is much smaller for the
first sum rule. To get an order of magnitude estimate of this effect — in the absence
of data — we note from fig. 7 that, at s = 2.5 GeV?, v(s) — a(s) = 0.05. Clearly this
difference will decrease as s increases and, as we will comment upon below, it
should better change sign if one is to recover the expected results from QCD.
Nevertheless, in magnitude, it seems reasonable to expect

1Tyl < 0.05f°°e“s/~2ds =0.05 k% ~*0/%" = 0.014 GeV?, (252)
So

M
T, < 0.05f°°e-s/~’s ds= 0.05x4(1 + —-‘;—)eﬂo/xz =0.057 GeV*4,  (25b)
So K

where the numerical results in eq. (25) are those appropriate for the case kl=

1.5 GeV? and s,=2.5 GeV2 We see from these equations that while the uncer-
tainty of the tail integral for the first sum rule is of the order of the experimental
uncertainty, for the second sum rule the tail integral is much more important.
However, note that to recover the expected QCD prediction it is necessary that
eventually, for some region of s, a(s) > v(s), since the tail integrals add 1o J,. The
absence of any clear signal for the 7 — »,57 modes [14,15] is in this sense rather
perturbing. However, since asymptotically a(s) = v(s) =1/27, it is clear from fig. 7
that large variations in both v(s) and a(s) are still to be expected.

There is perhaps a bit more reliable way to gauge the effect of our lack of
knowledge of the spectral functions beyond so=2.5 GeV?2. This is to consider
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directly the Laplace transform integrals of the vector and axial spectral functions
separately. In this case, since the spectral functions are positive, the tail integrals are
well under control. For the vector case, for instance, in the chiral limit, one has

2
) K
f AM2e~ M/ (M?) = 5o +0(1/x%), (26a)
0 T
] 2,9 K4
[~ amMPmre M (M) = 2= +O(1/x%). (26b)
0 T

We show in figs. 13 and 14 the above integrals with the integration being performed
over a finite range, up to s,= 2.5 GeV?, for the case k?>= 1.5 GeV?2 It is clear that
the zeroth moment of the vector Laplace transform approaches much nearer to its
asymptotic value than the first moment. The crosshatched area in the figures is just
our estimate of the tail integral in which, for v(s) above s > 2.5 GeV?, we have just
used its asymptotic value: v=1/2#. Thus

1 00 K2
TV =— [ dM2e M/¢= —e50/¥
1 j;o © 27 © ’ (272)
v 1 ®© 2 42 te? 2
T =5 [ dM2MPem M/ = 77 (s34t )emsors, (27b)

As can be seen from the figures, these estimates for the tails are quite reliable. So
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Fig. 14. As in fig 13 but now for the Laplace transform of the first moment of the vector spectral
function Here the uncertainty region is much bigger than in fig 13.

really, the principal problem in the second Weinberg sum rule is that the lack of
positivity of v(s)—a(s) does not allow for an accurate estimate of the tail
remainder.

On balance, it appears that the spectral functions obtained from an analysis of
the 7 semileptonic decays display all of the qualitative features awaited in QCD.
However, the narrow kinematical range available makes a direct quantitative
comparison with detailed QCD predictions rather difficult. This is particularly so
for the Weinberg sum rules since we are dealing with differences between spectral
functions. For the Laplace transform version of the 1st Weinberg sum rule, within
the uncertainties of the analysis, things seem to work rather well. The situation with
the second Laplace transform sum rule is less clear, although qualitatively one has at
least an understanding of why the discrepancy might be bigger here. Similar
comments apply for 7+ — «° difference. Although a quantitative prediction is not
possible, one understands qualitatively why a low-energy saturation of the formula
of Das et al. [10] might well work, since there are piecewise cancellations between
v(s) and a(s). In this respect, it would have been much nicer if the r-lepton had
had a mass of 5 GeV!
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