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Abstract. A detailed discussion is given of the hadron- 
ic and point-like contributions to the F 2 photon struc- 
ture function (F#) in both the naive parton model 
and QCD. The non-singlet part of the leading order 
solution, first found by Witten, is re-derived using 
the QCD improved parton model, enabling the had- 
ronic and point-like terms to be clearly identified and 
correlated with observed jet structure in the final 
state. When important non leading-log terms are in- 
cluded, the sensitivity of the solution to A is found 
to be weak for all Q2 values, and the all orders solu- 
tion to be well approximated by the O(e 2) solution. 
The approximations made in deriving the leading 
order solution are critically examined, and an ap- 
proach enabling more quantitative tests of QCD to 
be made from measurements of the point-like (pertur- 
bative) component of F I is suggested. 

The existence of hadronic [1-3] and 'point-like' [4] 
parts in the F2 photon structure was theoretically pre- 
dicted many years ago. Both contributions have been 
confirmed by recent experimental measurements [5- 
9]. 

In a recent letter [10] we discussed the distinction 
between F 2  HAD and F pc (HAD = hadronic, PL = point- 
like) in the parton model and QCD noting, following 
Peterson, Walsh and Zerwas [11], that the jet struc- 
ture in the final state gives an experimental signature 
for F2 HAD and F2 PL. Introducing a cutoff on the jet 
PT relative to the yy* axis to separate the hadronic 
(non-perturbative) and point-like (perturbative) con- 
tributions, the calculable value of F PL was found to 
be very insensitive to the QCD scale parameter A. 
This is in contradiction to several claims in the pub- 
lished literature [12-15] but in agreement with the 

conclusions of Glfick and Reya [16]. That QCD cor- 
rections to the naive parton model predictions of F2 PL 
for a real photon target are expected to be small at 
experimentally accessible Q2 values was first pointed 
out by Hill and Ross [17] and by Chase [18]. As 
the crucial point in this continuing controversy [10, 
15, 19] seems to be different definitions of the terms 
'hadronic '  and 'point-like' in relation to the photon 
structure function, this paper examines the question 
in greater detail. 

Further points discussed are the sensitivity of the 
complete leading order solution for F2 PL (to be defined 
below) to A, and the effect of truncating the perturba- 
tion series in this solution at 0(%) or O(~2). Finally 
the approximations necessary to derive the solution 
are critically examined and proposals made for ob- 
taining more quantitative comparisons of theory and 
experiment for F]. 

Defining quark densities q(Q2, x) via the relation: 

F2 ~ = ~ e 2 x [q (Q2, x) + ~(Q2, x)] (1) 
q 

the complete leading order solution for the moments 
of q, defined by 

1 
q(Q2, n)= ~ q(Q2, x) x "- a dx 

0 

is: 

q(Q2, n ) = ~  
i 

ai(n ) 2 
(2) 

Here i=  + ,  - ,  NS labels the components of the one- 
loop anomalous dimension matrix, and d~, given for 
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example in [20], are proportional to the correspond- 
ing anomalous dimensions. Also: 

r = In (#2/A 2)/ln (Q 2/A 2) = ~ (Q 2)/~ (kt2) 

where the one-loop formula for ~s is used and #2 
is an arbitrary renormalisation scale, a~(n) gives the 
moment of the leading-log Born term contribution 
[101. 

This formula has been derived using several differ- 
ent calculational techniques: The Operator Product 
Expansion (OPE) and Renormalisation Group Equa- 
tion (RGE) [21], summing ladder graphs in an axial 
gauge [22, 23] or by seeking a solution of suitably 
modified Altarelli-Parisi [24] Equations [25]. Be- 
cause tt 2 is arbitrary only the leading-log (LL) term: 

ai(n ) Q2 
qLL(Q2, n) = ~  in ( ~ )  (3) 

is predicted by the theory. All other terms (which 
depend on #2) are usually called 'uncalculable'. In 
fact (2) may be rewritten as: 

q(Q2, n)=~i {fiii(l~2, n ) r d.~+l_d~a,(n) in(Q:) } (4) 

where: 
ai(n) A, (U z, n) = A i (12 2, rt) 4- ~ lfl (,tt 2 /A 2). (5) 

Since the first terms in the curly bracket in (2), 
(4) have the same Qz dependence as the proton struc- 
ture function both terms are frequently referred to 
in the literature as 'uncalculable hadronic terms' [12, 
14, 15]. For example in [-12, 14, 15] the Zi(~t 2, n) are 
parametrised by poles with adjustable residues 2 cho- 
sen to cancel singularities that occur in (3) for certain 
values of d~' [-26, 27]. These poles do not occur in 
the complete solution (2) and become a problem only 
if (2) is written in the form (4) and one attempts to 
neglect, say at very high Q2, the 1~(1~2, n) term. 

Below we re-derive (2) using the QCD improved 
patton model, where the Altarelli-Parisi Equations 
are iterated to arbitrary order in ~,. In this case we 
find that for a suitable choice of the scale ~2 (deter- 
mined experimentally by the jet structure of the final 
state) the identification: 

Ai(# 2, n)= qHAD(#Z, n) 

is possible, where qnAO corresponds to the well-known 
phenomenologically determined [11] and experimen- 
tally measured [9] hadronic photon structure func- 
tion : 

k 
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Fig. 1. a Definition of kinematic variables in the parton model de- 
scription of the photon structure function, k(q) are the 4-vectors 
of the target (probe) photons, b Momenta in the Breit frame of 
the probe photon, for massless partons and Pr = 0 

The second term in (5) then gives a calculable 
(since/~2 is now known) non-leading log (NLL) but 
purely point-like contribution. There is then no free- 
dom for an arbitrary parametrisation of the suppo- 
sedly unknown 'hadronic '  term Ai(# 2, n) mainly with 
a view to removing the troublesome singularities 
which occur if the LL term (3) is considered in isola- 
tion [12, 14, 15]. The new element in the argument 
is the experimental knowledge of the phenomenologi- 
cal scale #2 which is specified by the boundary be- 
tween the hadronic and point-like regions as seen [28, 
29, 9] in the final state jet structure. We note in pass- 
ing here that 'sub-leading' corrections to (2) contrib- 
uting additional constant and lnln Q2 terms have been 
calculated [30, 31]. These terms, which originate in 
two-loop corrections to ~ and the anomalous dimen- 
sions, should not be confused with the numerically 
very important NLL terms which are part of the lead- 
ing order solution (2). The sub-leading terms are ines- 
sential to the general arguments presented below, and 
will not be considered further here. Before proceeding 
to the derivation of (2) we briefly review the physics 
of hadronic photon structure [32] to clarify the physi- 
cal distinction between the hadronic and point-like 
contributions to F]. 

It is convenient to work in the Breit frame of the 
probe photon with 4-vector momentum q (Fig. la). 
In this frame the momentum of the probe photon 

is ~ = Q, and its energy is zero. The 3-momentum 
vectors for the target and probe photons and the 
struck and spectator quarks are shown in Fig. l b  for 
a real photon target, massless quarks and PT = 0. 

In this frame the characteristic struck-quark probe 
photon interaction time zi is -~ 1/Q. Because of vacu- 
um polarisation effects the target photon 7* of 
(mass)2 = _ p2 evolves into virtual states: 

Fz~AD = C~0.2(I--X). y*--* q C~, qcTg, Elqqcl . . . . .  



The lifetime z* of such states can be estimated by 
the Uncertainty Principle [32] : 

1 1 2k Q 
AE E*--E~. M Z + p  2 - x ( M 2  + p2) (6) 

where it is assumed that M2+ p 2 ~  k2. E* and M are 
the energy and mass of the virtual state. The parton 
model description of the structure function, with fac- 
torisation between the quark distribution function 
q(Q2, x) and the probe-photon quark hard scattering 
process 7* q ~ q, requires the condition: 

"Ci ~ Z* 

or: 
Q~ 

x (M 2 +n2) >> 1 (7) 

If the virtual state is q ~ then: 

M2~4(p2  2 2 +mq)=4m r 

where pr(mw) are the transverse momentum (mass) 
of the quarks relative to the target photon direction 
and mq their constituent mass. 

If the q ~ are in a bound state: 

M = M~, v= p, co, ~o, p', ... 

(6) leads to the well-known Vector Meson Dominance 
(VMD) form factor. As the PT of the spectator quark 
at the target photon vertex increases the struck quark 
becomes highly virtual with (mass)2 = _p2. Gluon ex- 
change between q and ~ is unfavoured by the small- 
ness of the strong coupling constant (a~(p2)~ 1) and 
z* becomes small. In accordance with asymptotic free- 
dom ideas, a point-like 7* q q coupling then emerges. 
Similarly a point-like coupling becomes dominant 
when p2 is large. Considering now the virtual qci 
state, for small values of Pr multiple gluon exchange 
(bound state) effects are dominant and the PT distribu- 
tion of the spectator quark is exponential, characteris- 
tic of a non-perturbative interaction. For larger values 
of PT the qO lie well outside the wave-functions of 
light hadron systems and a scaling PT distribution 
_~p~4 corresponding to a point-like 7* qq coupling 
is expected. Such a transition between the perturba- 
tive and non-perturbative regions is in fact observed 
in the PT distribution of both final state hadrons [28] 
and jets [9, 29]. 

The hadronic structure of the photon may, alter- 
natively, be probed in real-7 hadron collisions [32] 
or in almost-real virtual 77 collisions. In the first case 
the photon structure is probed by a hadronic collision 
in which the virtual vector meson itself, rather than 
its quark substructure, interacts. In almost real 77 
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collisions a similar interaction occurs with symmetry 
between 'probe' and 'target' photons. The total 77 
cross section for W>2  GeV/c 2 is well described by 
virtual vector meson-vector meson scattering [33]. 

In the above discussion only the lowest order (par- 
ton model) contribution to F] was considered. In per- 
turbative QCD the parton model hard scattering pro- 
cess 7* q--* q is replaced by higher order QCD pro- 
cesses [20]: 

7" q ~ q g ,  qgg, qqgl . . . . .  

The distinction between the hadronic and point-like 
regions of phase space, signed by the PT distribution 
at the target vertex, is however unchanged, enabling 
the separation of pointlike and hadronic terms ac- 
cording to the jet configuration to be maintained in 
the presence of QCD corrections [10]. 

The non-singlet (NS) hadronic and point-like 
quark densities for light (u, d, s) flavours are then giv- 
en by the iterated Altarelli-Parisi equations [10]: 

qHAD(Q2, X)= i dyl 
qHAD (to, yO~_l C,` (8a) 

Y2 
tMAX 

3ee~ ~ dyl ,- dtl 
[ylZ +(1 ~ y l ) 2 ~  _ _  j v - c , ,  qPL(Q2'x)----~yzJ Y~ to ~ 

where: 

C,`=p. (Y2~ b 
qq \Y l] , ~ 2  ~ l n ( ~ )  

[I i d yi tMAX dti 
i~2yi+l ~-i tM~lN ti 

i 

(8 b) 

~ /  MAX 
F fY'+q b at.+, 

" q q t D ? / J l n  t,`+--, " 

2 2 where is the 4-vector momentum Here t i = mq - Pi Pi 
of the i th virtual quark, Yi is the energy splitting frac- 
tion y~= p~ b = 6/25 (corresponding to 4 quark fla- 
yours) and Pqq(Z) is the well-known [24] Altarelli-Par- 
isi splitting function. For simplicity the NS label is 
dropped in (8). 

The factorisation of the QCD correction is mani- 
fested in (8) by the convolution integral C,` which 
occurs in both hadronic and point-like parts and cor- 
responds to the radiation of N real gluons. For N = 1 
the curly bracket in the expression for C,` is replaced 
by unity. The scale parameter to is - (4-momentum 
transfer) 2 of the virtual quark at the target photon 
vertex at the boundary between the 'hadronic' and 
'point-like' regions of phase space. If k 2 (1 - yl) 2 >> p2, 

2 mq, (pO)2 then: 
2 0 2 

to =Y,  p2 § mq +(PT) (9) 
1 --Yl 
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For light quarks to is determined experimentally as 
the jet pr(p ~ at which point-like (pr 4) behaviour be- 
comes evident. For highly virtual target photons t o 
=Yl p2 [34], while for heavy quarks to=mZ/(1-yl )  
[17]. 

Since the hadronic structure function is non-per- 
turbative qnA~ YO in (8a) must be determined ei- 
ther phenomenologically [11] or by direct measure- 
ment [9]. qnAD(to, Yl) implicity contains an integral 
over the Pr of the spectator quark from 0 < p r < ( 1  
- Y 0  to. The corresponding integral over the range 
to < t~ < t~ Ax is given explicitly for the point-like part 
in (8b). For large values of p2, qHAD is suppressed 
by a VMD form factor: 

4 
m~ qnA~ O, X). (i0) qHAD(t0, p2 ,  x ) =  (m 2 + p2)2  

To derive the 'leading order' solution from (8) several 
additional approximations must be made: 
(i) The convolution integrals are restricted to the 'or- 
dered' region of phase space [35]: 

tMAX _ ['12 t/MIN = to ,  t i < t i + l ,  ~N+ 1 - - ' ~  , YN+I = X  

(ii) to is assumed to be constant (independent of t i, y~) 
These approximations result in the dropping of some 
'non-leading' terms in the convolution integral. 

With (i)-(ii) the y convolution in (8) can be decou- 
pled by taking moments giving: 

qHAD(Q2, n)= qHAD(t0, n)/HAD 

q~L (Q2, n)= a(n) I PL 

where" 
Q2 dtN+l 

I 'AO= t! tN + 7 

/3 t~ +, dt N 

l n ( ~ 2  ~) ,! tN 

~ dt2 /3 

to t2 l n ( t )  

Q2 
iaL= [ dtN+l 

to t s+  1 

/3 tN +, dtN 

/tN+,~ t! tN 
ln \  Az ] 

2 dtl 

to t l  

3ae 2 
a(x) = ~  Ix 2 +(1 --x) z] 

ln(  

/3 (tN) 
In A ~  

and 

(11 a) 

( l lb)  

/3 = d~s = 6 5 Pqq(n). 

A recurrence relation exists relating/HAD, I~L: 

I PL =/3I~L_1 --In [~A2]] -N - 

Multiple use of (12) gives: 

The integrals /HAD, IPL are: 

{/3 In [ln(QZ/A2)/ln(to/A2)]} u Iu nap _ 
N! 

/ 
So (11) can be expressed as: 

[-- fl In R] N 
qnnAD(o 2, n ) = q H A D ( t o ,  n) N!  

qPL(Q2, n)=a(n){flN In (Qto) 

-[ln(~--~176 N ~ '--lnR)M'~ 
M=1 M! J 

where: 

R =ln(to/A2)/ln(QZ/A2)= as(QZ)/~s(to) 

Summing up all orders in as gives: 

qHAD(Q2, n) 

= ~ q~AD(QZ, n)=qnAD(to, n) exp(--fl In R) 
N=0 

= qnAV(t0, n)R -a~s 

and 

qPL(Qa, n)=a(n){ln(~o) ~" fin 
N=0 

- In 
M=I M !  J 

ln�9 
=a(n){- 1--fl 

a(n) Q2 

(12) 

(13) 

(14a) 

(14b) 

(15a) 

(15b) 



It can be seen that qHAD has the logarithmic Q2 evolu- 
tion typical of a hadron (e.g. the proton) structure 
function, The origin of the well-known ln(Q2/A 2) term 
in qPL is evident in (15b), At each order in ~ the 
LL term is ~-In(QE/to) (independent of A) [10]. On 
performing the double sum to infinity in the first line 
of (15b) however the sum over the N L L  terms gener- 
ates a constant ln(to/AZ)/(1--fl), which in combina- 
tion with the LL term ln(Q2/to)/(1-fl) gives the 
ln(Q2/AZ)/(1-fl) dependence first found by Witten 
[21]. If the perturbation series is truncated at any 
finite power of ~ however, the leading term in the 
Bjorken limit is -ln(Q2/to),  independent of A. 

Comparing (2) and (15) it can be seen that r=R 
when ].~2 = to , This QCD improved parton model deri- 
vation then shows that ~ 2  should indeed be associated 
with the boundary of the perturbative and non-per- 
turbative regions. If # 2  is chosen (to in (2) then the 
first term will underestimate the true hadronic contri- 
bution, and the second term will incorrectly represent 
as point-like a part of the hadronic contribution. On 
the other hand if ~ 2  ~ to a part of the point-like distri- 
bution will be incorrectly described by the first term 
in (2) as hadronic. The point-like term with lower 
cut off  ~ 2 ~  t o  gives however a valid prediction, pro- 
viding that a corresponding cut (in jet Pr) is made 
in the experimental distribution. 

Simply from the condition that (2), (15) are derived 
perturbatively, the scales #2, to cannot be too small. 
The condition c~< l  implies that actually A 2 ~ #  2 
which is sufficient to establish that the N L L  terms 
-~r~-d7 are never negligible as compared to the LL 
term ai(n) In (Q2/A2)/(1 -d'2) for any experimentally in- 
teresting value of QE In fact the experimental mea- 
surements of jet structure in the final state [9, 28, 
29] indicate that t 0 ~ l  (GeV/c) 2 so the condition 
A2< to for the validity of perturbation theory is well 
satisfied for values of A in the range 50-200 MeV/c. 

The importance of the NLL terms is shown in 
Figs. 2a, b, c where qPL,NS(Q2, n)/a(n) is plotted as a 
function of Q2 in the range 10 < Q2 < 104 (GeV/c)Z for 
n=2 ,  5, 10 and for different A values A = 0 ,  50, 
200 MeV/c, assuming that t o = 1 (GeV/c) z. A = 0 cor- 
responds to the Born term in the LL approximation: 

/ 
which is the correct A ~ 0  limit of (15b). If instead 
(4) is used with an arbitrarily parameterised 'hadron-  
ic' part .3(/~ 2, n) as in [12, 14, 15] the Born term is 
logarithmically divergent. The LL solution (3), with 
i =  NS, is also shown for A = 50, 200 MeV/c (dashed 
lines) in Fig. 2. Even for Q2 as large as 104(GeV/c) 2 
the N L L  terms are important. It can also be seen, 
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PL, NS 
q (Q2 2 ) 

a(2) 

i i i i 1 1 1 1  i i i i q l ~ l  r i i i ~ 1 1 ~ 1 1  i i i [ i i I  

I I E l l l l  I I I I l l l l l  I I I I I I l l l  I I I I I 
10 10  2 10 3 10 ~ 

Q 2  ( G e V / c )  2 

PL, NS 
q (O 2, 5 
a(5) 

i i i l l  I i i i l l i i i  1 l i i l l i i i  1 i 

i i i i t l J  i i i i i l ~ I  [ t f i f ~ l l l  i i i i  
10 1 0  2 10  3 1 ~  4 

Q 2  [ G e V l c }  2 

~'NS I] . . . . .  I . . . . . . . .  ~ . . . . . . . .  I . . . . . .  ]/ 

10 1 0  2 10 3 10  ~' 

r Q 2 (GeV/c) 2 

Fig. 2a-c.  The leading order solution for the non-singlet moments  
of F~ (solid lines) compared with the leading-log approximation 
(dashed lines) for various A values, to = 1 (GeV/c) 2 is assumed, a 
n=2, bn=5, cn=lO 

as pointed out previously [10, 16-18], that the sensi- 
tivity to A is very weak. In fact the sensitivity of the 
leading order solution (2), (15) to A varies very littte 
with Q2. For  example qPL, NS(Q2, 5)/a(5) changes by 
9% if A is increased from 50 to 200 MeV/c when 
QZ=10 (GeV/c) 2. The corresponding change when 
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PL,NS 
q(O22] 
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E 
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a ( 5 )  

e 
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6 
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/ "  . . ' "  
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. 7 . /  7 

i i I J l l l  I i i i i i i 1 [  i i i I I 
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ij  i I I I t l  I I I t I I t l l  I t I t I t t t ~  
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10 10 z 10 a 104 
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/ /  

/ j f  

. /  J / J 

/ . / ,  / ~ . . . . . . . . . . . . . . . . . .  

I I t e l l .  I I I I l t l l [  t I I I I I I l l  I I 1 ~ l l l l  
10 10 2 10 3 10 z' 

c Q 2 (GeV/c) 2 

Fig. 3a-c. The leading order solution for the non-singlet moments 
of F~, summed to all orders in ~s (solid line) compared with solutions 
truncated at O(~s) (fine dashed line) and O(~) (broad dashed line). 
A= 100 MeV/c, to = 1 (GeV/c) 2. The dot-dashed line is the Born 
term(A=0), a n=2, b n=5, c n=10 

Q2= 1012 (GeV/c)Z is even less, 6.6%. So, although 
the LL term becomes a better approximation to the 
teading order solution at such astronomical]y high 
Q2 values, the sensitivity to A actually becomes worse. 

In Fig. 3 ~ c  the all orders QCD prediction (15b) 
is compared with respectively the Born term, O(~s), 

O(~ 2) solutions given by summing up to N = 0, 1, 2 
in the first line of (15b). qPL, NS(Q2 n)/a(n) is plotted 
as a function ofQ 2 for n = 2 ,  5, i0 with A =  100 MeV/c 
and t o = l  (GeV/c) 2. In Fig. 3a (n=2)  only the O(~s) 
curve is shown, as the O(~ 2) curve is essentially identi- 
cal. Figure 3 shows that the O(~s) or O(~ 2) solutions 
give a good approximation to the all orders result 
for Q2 < 100 (GeV/c) 2. 

Although only the non-singlet contribution has 
been discussed above, a similar separation of the had- 
ronic and pointlike parts of the singlet moments can 
also be made. For  the singlet case the convolution 
integral CN in (8) is replaced by CN, M where N is 
the number of real gluons and M the number of real 
q, ?1 ( M  is even) produced in the QCD evolution. Be- 
cause of the complexity of the convolution integrals 
in the singlet case the solution is found more conven- 
iently by OPE and RGE methods, leading to the 
i=  + ,  - terms in (2), which actually have a similar 
Q2 dependence to the i = NS term. Clearly the identifi- 
cation y2 = to on the basis of the final state configura- 
tion holds also for the singlet contribution, as the 
hadronic/point-like separation depends essentially on 
the Pr of the spectator quark at target photon vertex 
(Fig. 1). This will not be affected by the existence (or 
not) of virtual gluons in the subsequent perturbative 
QCD evolution for the singlet (non-singlet) terms. 

A critical discussion is now given of the approxi- 
mations made in the derivation of the leading order 
solution (2). This solution is compared with an 'exact '  
one where, at each order in e~, a gauge invariant set 
of Feynman diagrams is summed, exact kinematics 
is used and c~ s is allowed to run with a scale defined 
by the four-momentum squared of the most off-shell 
parton at the relevant q~g or ggg vertex. This defini- 
tion of the scale of es gives the correct correspondence 
between the arbitrary scale #2 of the OPE, RGE deri- 
vation of (2) and the cut-off to of the QCD improved 
parton model formula (15). It also corresponds to the 
scale conventionally chosen in the perturbative calcu- 
lation of the QCD beta function that gives the one 
or two loop formulae for the running coupling con- 
stant in QCD [20]. In fact from Lorentz invariance, 
a vertex function or coupling constant can depend 
only on this variable, up to an arbitrary multiplicative 
constant. 

The comparison can of course only be made for 
the point-like contribution, and for configurations 
where perturbation theory should be valid. The neces- 
sary Feynman diagram calculation has so far not been 
done for O(e,) and higher order terms in FI,  so a 
precise comparison can only be done at O(~ ~ i.e. for 
the Born term. 

The leading order Born term is given by taking 
the A = 0 limit of (2). The corresponding asymptotic 
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x 

Fig. 4. The ratio of the parton model prediction (including non 
logarithmic terms) for FI, F2 t~ to the asymptotic leading-log parton 
model prediction F2 ~~ to= 1 (GeV/c) 2 is assumed. Curves A, 
B, C, D correspond to Q2 = 10, 100, 104, 1012 (GeV/c) 2 

F2 structure function is: 

F~2~ 2, x, to) 

3a = ~- ~ e4x [x 2 + (1 -- x) 2] ln(O2/to) 
q 

(16) 

where: 

to = #2. 

This may be compared with the result of a Feynman 
diagram calculation [36] where non-leading terms are 
also included. Neglecting terms of order mg/Q 2 and 
mZ/to the point-like structure function corresponding 
to the integration interval: 

t o < t < tMA x 

is: 

F2(~ 2, x, t o ) = 3 e  Z e4x 
q 

{ [x 2 + ( l - x )  2] \~o-o / 

to 
(17) 

Figure 4 shows the ratio F(z~ ~ as a function 
of x taking a fixed to = 1 (GeV/c) 2 and tuAx=Q2/x. 
Curves are shown for Q2 = 10, I00, 10 4, 1012 (GeV/c) 2. 
Equation (17) gives F 2 to good accuracy for light 
quarks, except near the threshold region x-~ 1. It can 
be seen that F(2 ~ is a bad approximation to F~2 ~ 
for experimentally relevant Q2 values < 100 (GeV/c) 2 
and x < 0.7. This is largely due to an important  contri- 
bution of the non-logarithmic terms in (17). 
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If the LL term (3), plus a phenomenological had- 
ronic term [11] is compared with experimental data 
in an attempt to extract a value for A the important  
non-logarithmic corrections to the Born term men- 
tioned above and shown in Fig. 4 are not taken into 
account. It is easy to see why a value of 'A '  of 
~- 200 MeV/c is found in such comparisons. As shown 
in [10] when the N L L  terms and exact kinematics 
are taken into account the QCD correction for the 
P LU TO  F 2 measurement [5] with (Q2) 
= 5.3 (GeV/c) 2 is small, the data being well described 
by F~ ~ added to a phenomenological hadronic contri- 
bution: 

F HAD = 0 . 2  a (1 - x). 

Suppose now that the same data are compared 
to the x-space version of (3): 

FLL(Q2, x)=3a ~ e4 fLL(x) ln ( QT2 ) . (19) 
q 

As shown, for example, in [21] : 

fEE (0.5) =fBORN (0.5) = 0.25 

and since A is determined essentially by the normal- 
isation of the theoretical curve (19) to the data, the 
expected value of 'A '  for the P LU TO  measurement 
is given by solving: 

F~2~ FLZ(x=0.5) 

for Q2 = 5.3 (GeV/c) 2 using F(2 ~ as given in (7) of [10] 
it is found that: 

' A ' = 2 1 0 M e V / c  

which is certainly 'consistent with other experimental 
determinations of A'. This is however clearly a com- 
pletely bogus determination of A and the 'good agree- 
ment '  is purely fortuitous since both the numerically 
important  N L L  terms in (2) and the non-logarithmic 
contributions to the Born term, shown in (17), are 
neglected. The latter give a correction factor - 2  for 
Q2 = 5 (GeV/c) a. 

Non-leading logarithmic and constant terms 
which give the very large corrections to the Born term 
shown in Fig. 4 may also give important  corrections 
at O (as), A (a2), . . . .  Only exact Feynman diagram cal- 
culations as routinely done [37, 38] to estimate QCD 
corrections in the 17 annihilation process e+e - 
--*hadrons can estimate the importance of these 
terms. Since, as shown in Fig. 3, the O(cq), O(c~) cor- 
rections apparently saturate the leading order solu- 
tion for Q2< 100 (GeV/c) z, the number of relevant 
diagrams to be evaluated may not be too large. Six 
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diagrams must be summed for the O(~s) correction. 
This calculation has in fact been done for the case 
of real 77 collisions [39]. 

Another reason why finite order QCD calcula- 
tions may be the only ones that can be meaningfully 
compared with data at non-asymptotic energy scales, 
is that only in such cases can one have confidence 
in the applicability of perturbation theory. The sum 
to infinity which gives (15b) from (14b) involves, for 
the large N terms, many real, soft gluons. The spectra 
of such gluons is cut off by confinement effects (the 
colour singlet nature of the produced hadrons) at en- 
ergy scales of ~- 1-2 GeV. The hadronisation mecha- 
nism which cuts off the soft gluons can only at present 
be described by phenomenological methods. Similarly 
resumming soft gluons as in the calculation of the 
Sudakov form factor of a quark may be a perfectly 
well defined procedure mathematically, but in fact 
have little physical relevance in the presence of strong 
non-perturbative confinement effects [20]. Because of 
this the argument that only the lowest order (O(~)  
N = 1, 2) terms are needed because they essentially 
saturate the solution (15b) is not on very firm ground. 
For  the reasons just mentioned the higher order con- 
tributions to the 'all orders '  solution which are calcu- 
lated perturbatively, ignoring confinement effects, are 
probably unreliable, in consequence so is the conclu- 
sion that their contribution is small compared to the 
O (~s), O (~z) terms. As has always anyway been done 
in QED, the best approach may still be to calculate 
to a given order and compare with experiment, to 
see if higher orders are 'needed'  or not. 

The approximations which are made in going 
from an exact O(c~) Feynman diagram calculation 
to a formula such as (14b) which gives the corre- 
sponding O(c~) 'leading order '  nonsinglet contribu- 
tion are the following: 

a) Purely kinematical approximations such as (i)- 
(ii) above, used to derive (15) starting from (8) 

b) Non-leading terms in the Altarelli-Parisi split- 
ting functions [20] are dropped 

c) 'Sub-leading terms' due to two, three . . . .  loop 
corrections in both ~s and the Altarelli-Parisi func- 
tions are dropped 

d) Certain terms in the full gauge invariant cross 
section are dropped when factorisation is assumed 
in the derivation [20, 24] of the Altarelli-Parisi Equa- 
tions. These terms are unimportant  only if p2, p2 
<~ QZ/x (see (7)). If this condition is not satisfied %-~ z* 
and the parton model description, which is the basis 
of the Altarelli-Parisi Equations, is no longer valid. 
This breakdown of the parton model description is 
bound to happen for some regions of phase space 

for F~ L since PT can extend up to the kinematic limit 
W/2 in this case, violating the inequality (7). 

Finally we should like to remark that the OPE, 
RG E approach may not be the best theoretical tool 
for studying the photon structure function in QCD. 
The rather abstract terminology employed makes it 
difficult to compare the results, on the one hand with 
phenomenological and experimental knowledge of 
non-perturbative contributions, and on the other with 
exact gauge invariant Feynman diagram calculations 
of the point-like part. The QCD improved p a r t o n  
model picture makes these comparisons much more 
straightforward. 

An example of the lack of clarity of the OPE, 
RG E approach is the interpretion of the Ai(p 2) term 
in (4) as a 'hadronic '  or ' long distance' term [12, 
14, 15] because it contains an arbitrary scale /[2 2 and 
shows the same Q2 evolution as a hadronic structure 
function. In fact, as shown above Ai(p 2) contains a 
large purely point-like part which gives important 
contributions at all experimentally interesting Q2 
values. This part cannot be parameterised in a quite 
arbitrary fashion as suggested in [12, 14, 15]. 

The most serious disadvantage of the OPE, R GE 
approach is that many 'non-leading'  terms are 
dropped when asymptotic solutions are derived (see 
for example Fig. 4). No estimate is available of the 
importance of these terms so comparisons of asymp- 
totic predictions with non-asymptotic data are unable 
to quantitatively test the theory. 

In conclusion it may be remarked that the OPE 
was originally proposed to extract asymptotic predic- 
tions when the underlying field theory is not precisely 
known ( 'Non-Lagrangian Models of Current Alge- 
bra '  [40]). QCD has a Lagrangian and Feynman 
rules. Its predictive power in the perturbative domain 
is therefore only limited, in principle, by computation- 
al power. As A is found experimentally to be rather 
small very large scales are not necessary for perturba- 
tion theory to be valid ( 'precocious freedom'). 
Asymptotic or leading log solutions may in any case 
however have little relevance to quantitative experi- 
mental tests of QCD. 
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Note added in proof 

The part of F~ calculated in this paper -~Se~ is more correctly 
called the 'valence' [31] rather than the 'non-singlet' contribution. 
The latter is ~ - S e ~ - f ( e 2 )  2 where f is the number of quark fla- 
v o u r s .  


