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We present a model with continuous or discrete abdian generation group G, which predicts 
all orders of magnitude for fermion masses and mixings correctly as a function of only one small 
parameter ~ s /M ~- -~. Here ~s is the scale of G symmetry breaking and M the fundamental 
mass scale of the theory. No small Yukawa couplings or special choices of the scalar potential are 
needed. 

We perform a systematic computerized scan for similar models with abelian generation group 
and we find a few other examples. However, for a wide range of charges we find no anomaly free 
continuous symmetry and also none without mixed SU(3)×SU(2)×U(1),U(1)o anomalies 
consistent with realistic fermion masses if G is broken by one field with definite charge. We also 
scan a class of models with generation symmetry derived from a higher dimensional framework. 

1. Introduction 

M o s t  of  the  free pa ramete r s  of  the s t anda rd  mode l  [1] arise f rom fermion  masses  

a n d  thei r  mix ings  appear ing  in the form of  Yukawa  coupl ings  of  the scalar  doub le t  

q~ r e spons ib l e  for  weak symmet ry  break ing  and  the scale q5 L ~- 174 GeV. I t  is h o p e d  

s ince  a long  t ime tha t  add i t iona l  symmetr ies  could  restr ict  these coupl ings  and  

exp la in  the  obse rved  mass  and  mixing  pa t t e rn  for the  fermions.  In  SU(5) gauge  

theor ies  i t  was  real ized tha t  masses  of  down  type  quarks  and  charged  lep tons  are  

equa l  (m b = m , ,  m s = m~,, m d = me) if  q~ be longs  to a 5-plet  of  SU(5). F o r  the 

heav ies t  gene ra t ion  this mass  re la t ion  proved  successful  once scaled down f rom a 

scale  nea r  the  Planck mass  to present  energies.  However ,  the re la t ions  m s = m~ and  

m d = rn~ are  no t  obeyed  and  add i t iona l  mul t ip le ts  (45) had  to be in t roduced ,  which 

in  tu rn  a lso  m a d e  the re la t ion  m b = rn~ depend  on special  assumpt ions .  In  paral le l ,  

the re  have  been  var ious  a t t empts  to use discrete  symmetr ies  [3] for  an  unde r s t and ing  

of  some  pa r t i cu l a r  features  of  the  fe rmion  mass  matr ices .  In  general ,  one considers  a 
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Fig. 1. A graphical representation of the generation of a mass of order (~s//M)2~bL . 

restricted set of Higgs fields and forbids some Yukawa couplings by suitable 
discrete symmetries. Such a procedure can reproduce certain mass relations, but it 
gives no explanation about the whole structure of fermion mass matrices and leaves 
the question unanswered why certain fermion masses are much smaller than others. 

There is a mechanism relating small fermion masses to a small scale of symmetry 
breaking for some symmetry G beyond SU(3)× SU(2)× U(1). If the Yukawa 
couplings of the low-energy weak doublet ff to certain fermions vanish for reasons 
of G symmetry, these fermions would remain massless in the limit of unbroken G. 
For G spontaneously broken at a scale ~s, the masses of such fermions must be 
proportional to some power of ~s. Thus, for ~s smaller than the overall mass scale 
M of the model, these fermions obtain masses suppressed by powers (~s /M)  p 
compared to the "natural scale" of fermion masses which is of the order of the 
W-boson mass. 

There are different ways to describe this situation. For example, we can represent 
an expansion in ePs/M graphically: Assume that the fermions f ,  fc and the scalar 
doublet ~ transform under G so that the Yukawa coupling fcfep is forbidden. 
Assume further another doublet f with (positive) mass - M 2 (which belongs to a 
different G representation than ~), so that the Yukawa coupling fc f~  is allowed. 
Consider a quartic coupling ~ 2 ~ s ,  where ~s is the field whose vacuum expectation 
value (VEV) is responsible for spontaneous breaking of G. Exchange of ~ gives then 
a tree contribution to the mass of f in order (ffs /M) 2 (~) as depicted in fig. 1. 
Alternatively, we could construct the full scalar potential for ~, ~ and ~s and find 
that the low-energy doublet acquires a small admixture of ~ in order (qSs/M) 2. This 
leads in turn to a small mass for f.  Still another way of saying this states that 
acquires a VEV of order (~s /M)  2 (~). (We describe this in detail in the next 
section.) 

This mechanism for small fermion masses has first been considered [4] to show 
that VEV's of all SU(2)L triplets are very small of order ep2/M - thus proving that 

2 the relation [5] for left-handed neutrino masses m~ - ¢PL/M is obtained naturally 
and independent of the field content and specific couplings used in a model. The 
idea was subsequently applied [6] to understand in a general setting with scalars in 
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various representations why m b = my is valid up to small corrections (eps/M) e 
whereas a similar relation breaks down for the lower generation*. Early attempts to 
understand the generation pattern by this mechanism failed at this time, since no 
suitable symmetry G could be identified. In a similar spirit, small fermion masses 
due to a broken flavour symmetry were discussed in ref. [8] in models with heavy 
fermions**. 

As a consequence of these developments, the philosophy with respect to scalars 
has shifted: instead of a special choice of scalar multiplets one rather works with 
many scalar fields in arbitrary representations and tries to understand specific 
properties in terms of symmetries and scales of their spontaneous breaking. 

In this paper we take the more radical approach that all small fermion masses 
and mixings should be explained by a symmetry G and a small ratio q~s/M 
involving the scale of its spontaneous breaking. We will not allow for small Yukawa 
couplings nor consider a particular selection of scalar multiplets and particular 
conditions on their interactions and masses, except those needed to obtain the 
required scales of spontaneous symmetry breaking. 

This approach has first been advocated [9] in the context of higher dimensional 
unification. Indeed, dimensional reduction predicts (in the generic case) that all 
Yukawa couplings are of the order of the gauge coupling g or they vanish due to 
reasons of symmetry or topology [9,10]. Higher dimensional theories give also 
motivation for the existence of (infinitely) many scalar fields in various represen- 
tations. They are obtained as modes of an expansion on internal space. A crucial 
ingredient in our understanding of fermion masses is the existence of an (approxi- 
mate) symmetry G beyond SU(3) × SU(2) × U(1). This may be a local generation 
gauge symmetry, a global Peccei-Quinn-type symmetry [11] or a discrete symmetry. 
There are examples for all these different types of symmetries originating in higher 
dimensions [9,10,12] from properties of internal space (including other bosonic field 
configurations if necessary). It was shown that in the context of higher dimensional 
theories the existence of several chiral fermion generations is related to a chirality 
index [13] which depends on topology and symmetry of internal space. It is then 
natural that the differentiation between the fermion generations should also be 
related to properties of internal space. 

The absence of small Yukawa couplings and the existence of many scalar fields 
imply that our approach to fermion masses is probably necessary in the context of 
all higher dimensional theories (including string theories). In four-dimensional 
theories other options remain open, but our approach seems nevertheless appealing. 

* For an  account  of  attempts to obtain naturally the top quark mass  relation ( m t / m c )  = (mb/ /ms)  see 
ref. [7] and references therein. 

**  Our  approach differs from [8] in several aspects: We are not  committed a priori to a Fritzsch texture 
and  we want  to explain all small quantities (including rob~mr) by symmetries rather than small 
Yukawa couplings. We do not  select certain representations for the Higgs fields and consider instead 
the most  general Higgs sector consistent with the symmetries. 
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Since it relies entirely on symmetry concepts, we can always formulate it in a 
four-dimensional language, which we will use throughout this paper. 

Our scenario is roughly as follows: The generation symmetry G is spontaneously 
broken at a scale ~s somewhat smaller than the characteristic scale M of the model. 
(For the purpose of this paper the choice of M is arbitrary. It could be a very high 
unification sca le -  the compactification scale in higher dimensional theories, the 
string tension for superstrings or the GUT scale for some extended version of grand 
unification/family unification. In this case the structure of fermion mass matrices is 
related to a fine structure of scales around the unification scale [9]. Only one Higgs 
doublet ~ survives at low energies. The other extreme case is a "low-energy" 
(--TeV) scale M only somewhat above the weak scale ¢Ps "~ ~L" This scenario 
requires several doublets in the range below a few TeV. It may be realized in 
supersymmetric theories with M the gravitino mass. Between these extreme scenarios 
one can of course consider possible combinations or a scale M in some intermediate 
range. We note, however, that the existence of several scalars at a low scale M has 
to be discussed carefully in view of possible problems with baryon number viola- 
tion, strangeness violating neutral currents etc., as typical in models with low-energy 
supersymmetry. Also the general discussion of the next section has to be modified in 
the case of ~s - ~L-) The small scale ratio ~s/M will appear with various powers in 
the fermion mass matrices. We try to find models where in leading order only the 
top quark acquires a mass, whereas m b, my and m c are suppressed by ~s/M. The 
masses for muon and strange quark should be generated by terms of order 
( ~ s / M )  2, whereas the first generation masses should be - ( f f s / M )  3-4. The same 
ratio ~s/M has also to account for the observed size of all mixings. It is obviously 
not an easy task to find a symmetry G predicting all small fermion masses and 
mixings in terms of a single small parameter ¢~s/M. On the other hand the observed 
structure in fermion mass matrices [14] suggests that this may indeed be possible. 

This paper is organized as follows: In sect. 2 we describe the general pattern of 
weak symmetry breaking in presence of many scalar doublets in different represen- 
tations of G and its consequences for fermion masses. In sect. 3 we present a model 
with abelian G which predicts correctly the observed order of magnitude of all 
fermion masses and mixings in terms of a single small parameter ~s/M. In sect. 4 
we describe a systematic search for such models by a computerized scanning 
procedure. In sect. 5 we give the results of such a scan for G an abelian U(1) 
symmetry and in sect. 6 we describe a scan of a six-dimensional SO(12) model. 

2. Weak symmetry breaking with many scalar doublets 

Let us now discuss systematically spontaneous symmetry breaking of weak 
interactions in presence of many scalar doublets and its consequences for fermion 
mass matrices. We assume N G generations of standard quarks and leptons (u, d)i, 
up, d~, (v, e)i and e~. (We consider only left-handed fermions.) These fermions 
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couple to various scalar doublets @m in the usual way: 

_ (U) c h(D)d?d  d> "~Yttk -- h ijm u i Uj~m "J~ " "  ijm --i o.j rm 

+~<L) ,,cp ,~. (2.1) "" ijm ~ i ~j'rm "Jr- h.c.. 

Here we have only listed the Yukawa couplings to the electrically neutral compo- 
nents of the scalar doublets. We note that because of weak hypercharge conserva- 
tion down-type quarks and charged leptons couple to @* whereas up-type quarks 
couple to +. If one or several doublets acquire VEV's, the fermion mass matrices 
are: 

( Mu) ij -- h ~O2 ( dpm) , 

( MD),/= h~?~( @m), 

( ML)ij= h(b):,~ '~ (2.2) t i m \  r m  / " 

Let us assume that the scalar doublets are all distinguished by quantum numbers of 
some symmetry G. In the limit of unbroken G, the most general scalar potential up 
to quartic order is 

2 +f ~ranpq( t~mtl}p ) (  ~n~t~q ) ,  v ( + ) :  + (2.3) 

with 

2 2 , 
, 

~kmnpq = Xnmqp = ( ~kpqm, ) * (2 .4)  

The symmetry G imposes constraints on the quartic couplings X. For example, a 
continuous abelian symmetry U(1)o with m, n etc. labeling integer charges requires 

Xmnpq = Xmnp~m+n,p+q" (2.5) 

We now add a scalar X which is a singlet with respect to SU(3)c × SU(2)L × U(1)v 
but transforms nontrivially with respect to G. The additional piece for the scalar 
potential is 

V(X)+ V(X,dP)=m2x*x + 12(X) + (amn(~bL~n)X + h.c.) 

+ ( flm,( ~ , ) x 2  + h.c.) + pm( ep~ePm)X*X . (2.6) 

Again, the couplings fi, fl and p are restricted by G symmetry. There is a range of 
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parameters where G symmetry is broken by 

(X) = @s (2.7) 

and SU(2)L x U(1)y is broken by some linear combination of ep= 

(7"@=) = q'L (2.8) 

which is chosen so that all orthogonal linear combinations of q5= do not acquire a 
VEV. This defines the coefficients 7= by 

(q~=) = 3'=@L • (2.9) 

We are interested in a situation where 

[dpLI 2 << [q~sl 2 (2.10) 

and furthermore @L consists mostly of one qS=0 with small contributions from other 
4,= 

~=o-- 1, 

IY,,[ << 1 for m 4= m o . (2.11) 

The first condition (2.10) usually requires fine tuning of one parameter (which we 
hope can be understood within a more fundamental theory) whereas the conditions 
for (2.11) will become clear in a moment. We use ~L and @s instead of #~o and m 2 

to parametrize the potential. We further assume that all remaining parameters with 
dimension of mass are of the order of only one mass scale M (which we may 
identify with the fundamental mass scale of the theory - but this is not necessary): 

#2 = v = M  2 for m4=mo, 

fftmn = OtmnM. (2.12) 

In addition, we take all v= positive. 
We remain with dimensionless parameters v, X, a, 13 and 0 all assumed to be of 

order g2 with g the gauge coupling of SU(2)L. Similarly, all Yukawa couplings are 
assumed of order g. Is it possible to reproduce realistic fermion masses as a 
consequence of G symmetry, without any small dimensionless couplings (except the 

scale ratios I@LI/M and I@sl/M)? 
In presence of @s and (@mo) "~ ~L the static field equations for q~=, m 4= m o, read 

VmM2dpm + (Olmn x -1- * * Oln= X ) Mq~. 

+ ( & . x  2 +/3.*=x'2)*. + o x*xq,= 

+ ~kmnpq(1 -Jr ~mn)( (PtndPq)~p" (2.13)  
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For q~. << q~, M the last term is completely negligible. Assuming real 
simplicity one finds 

a, , ,  + a*,, Cs 
~m = -  ~,. 

~m + 0 . ( * ~ / M )  2 

243 

q~s for 

v,, + O,,(eOs,/M) 2 - -  e~,. (2.14) 

We are interested in a situation where the scale of G symmetry breaking q~s is 
small compared to M 

~ << M E, (2.15) 

so that approximate G symmetry can be exploited. In this case we can solve (2.14) 
stepwise. In first order eps /M only fields ~,, with non-vanishing a,,,,,0 or a,,,o,m 
couplings acquire a VEV - ~,Lq, s / M .  We denote them by if-,1 

Olmomt ~S 
( 4 , , . 1 )  = _ ~ " i " o  + * ,, ~ ( ~',.o) . 

This is easily generalized to contributions with higher powers of q~s/M. One has the 
recursive relation at level N 

( ~ , , . , , )  = _ 
a"~"u-1 + a*~-am~, q~S 

],ltrl,iN -M (~mN 1 ) 

The solution is 

tim,raN_2 + fl*N-2"N (q~mN-2) (2.16) 

lt,..n ,,¢ 

rips P <%> 

~b S P 

with ~mp a ratio of dimensionless coupling constants which by assumption is of 
order one. As a consequence of G symmetry, the contribution of certain doublets 4~,, 
to q~L can be small. Weak symmetry breaking comes mainly from q~,-o, with small 
admixtures of ff,,p suppressed by ( ~ s / M )  e. The same small quantities will appear 
in the fermion mass matrices. 
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Obviously, the suppression factors ( ~ s / M )  p are a pure group theoretical conse- 
quence of G symmetry. Their general structure has been discussed extensively in ref. 
[9]. Here we only note that the graphical representation with tree exchange of heavy 
(~2 _ M 2) doublets (see fig. 1) can be extended to exchange of arbitrary particles 
with mass M. Also, terms higher than quartic can easily be included in the effective 
scalar potential, with coefficients scaled by inverse powers of M. The generalization 
to several scales Xi for G symmetry breaking with associate factors I - L ( x J M )  e, is 
straightforward. Finally, the same scenario could be obtained in models with only 
one scalar doublet ~-,0' where the other q>m can be identified with effective scalar 
operators generated by a loop expansion (radiative mass generation [20]). 

3. A model for fermion mass matrices without small couplings 

In this section we realize the ideas discussed previously in an example with 
abelian symmetry. A field with charge n transforms 

4',, --* exp( ian  ) q~n, (3.1) 

where a may be continuous 0 ~< a < 2~r (G = U(1)) or discrete a k = 2 ~ r k / N  with 
k, N integers (G = Z~). We assume one scalar singlet X with charge n = 1. The 
fermion content of our model is consistent with SU(5) and we consider a three-gen- 
eration case. The three 10-plets (u, d, u c, e c) have charges n = 0,1,2 whereas the 
three 5 (d c, p, e) have charges n -- 1,1, 2. The continuous U(1) symmetry would be 
anomalous for this fermion content. We could either add SU(3)c x SU(2)L X U(1)r 
non-chiral fermions to cancel the anomalies and consider U(1)a as a local genera- 
tion group, or we could treat U(1)c as an anomalous global Peccei-Quinn-type 
symmetry. Alternatively, we can consider a discrete symmetry Z N with N >~ 8. 

We allow for all possible scalar doublets q,~, but only those with I n [ ~< 4 can have 
Yukawa couplings to chiral fermions and are of interest for us. We arrange the 
potential so that the leading doublet is q'0 

and 

(~0) --- q~L = 174 GeV (3.2) 

(X)  = ~s = 1 M .  (3.3) 

These two relations, together with the G quantum numbers, are the essential 
ingredients of our model. As described before, all remaining dimensionless parame- 
ters in the scalar potential are of order g2 and all Yukawa couplings of order g. The 
scalar couplings obey (2.5) and 

Olmn ~ Otm~m, n + l ,  

B,,n = B,,~,,, n+2, (3.4) 
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and similar for Yukawa couplings. In case of Z, symmetry all Kronecker S,, are 
modulo N. Neglecting for a moment differences between Yukawa couplings, the 
fermion mass matrices have the form 

By a suitable redefinition of the last two lines in M, and the last two rows in ML 
we obtain (M,),, = 0, (ML)32 = 0. (There are two d’ and two e with identical G 
quantum numbers.) 

The leading doublet (p, only couples to one element in M,. Therefore only the 
top quark mass is predicted of order M, (the mass of the weak vector boson). For 
definiteness, we take m, - 40 GeV. All other VEV’s of doublets are suppressed and 
one finds from (3.4), (2.16) 

(3.6) 

At the level In 1 = 1 we obtain from +r the mass for bottom and tau in M,, and 
M,. A value mb = 4.5 GeV is well consistent with (3.3). Since we assume here M 

near the Planck scale (M = 10 17-18 GeV) we account for the different normalization 
of quarks and leptons by multiplying measured lepton masses with a correction 
factor = 2.5-3. As is well known, the relation m7 = mb is valid in this case. Also, 

+-i couples to tMU)32 ad cMU)23. For suitable Yukawa couplings one may 

obtain CM,)32 = 5 GeV, CM”)23 = 8 GeV again consistent with (3.3). This gives a 
contribution to the charm quark mass of about 1 GeV. A second contribution to m, 
of a few hundred MeV comes from CP_~. Also, values m, = 150 MeV, m, = 300 
MeV from (p$ are consistent with a suppression (c#I~/M)~ = 10e2. Both (Mu)32 and 
(M,),, give a mixing of order 10% between the second and third generation. A 
resulting mixing angle 0,, = 5% appears rather naturally as the difference of mixing 
in M, and MD. The contribution to t9i3 from +_2 in (MU)31 is of order +2dM2 
and a value of 0.5% is again within the orders of magnitude. The VEV rpT gives a 
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similar contribution to 013 in M D. With a relative minus sign between both 
contributions the measured smallness of 013 can well be explained. At the level 
]nl = 3 the VEV q~" gives a typical contribution of about 30 MeV to (MD)21 and 
(MD)12. This both accounts for the Cabibbo angle 012 and the successful relation 
m d = sin2(012)ms. Similarly, a value (ML)2t =(ML)12 ~ 20 MeV would give a 
contribution of about 1.5 MeV to m e. On the other hand, the off-diagonal 
contributions to (MtJ)21 and (Mu)12 from dp_ 3 are also expected of a few ten MeV. 
They are too small to give a sizeable contribution to 012 and m u. The up quark mass 
is finally generated by q,_ 4 which contributes a typical order of magnitude of a few 
MeV as it should be. Contributions = 1 MeV from q,~' to m d and m e would again 
be consistent with observation, especially if the diagonal (from q~f) and off-diagonal 
(from q~') contributions to m e have a relative minus sign. 

We conclude that our assignment of abelian quantum numbers together with the 
scale ratio (3.3) is sufficient to account for the structure of all fermion mass matrices 
including the mixing angles. This scenario is consistent with all Yukawa couplings 
given by the weak gauge coupling within factors of three. Such factors could well be 
explained by group theoretical Clebsch-Gordan coefficients or other dynamical 
details of a fundamental theory. No need for small Yukawa couplings or additional 
fine tuning of parameters in the scalar potential arises. 

What about the predictive power of our model? The fermion mass matrices 
involve nine different scalar VEV's q~,, which can be considered as parameters whose 
order of magnitude is known. This predicts the order of magnitude of all fermion 
masses and mixings correctly. More quantitative predictions, however, depend in 
addition on the various Yukawa couplings of the model and there are uncertainties 
up to a factor five or so. Nevertheless, the model has some particular features going 
beyond the most general possible form of mass matrices. For example, the Cabibbo 
mixing is essentially generated in M D with very little contribution from Mtj and the 
model explains qualitatively why m d > mu, m e. 

We could also enlarge the symmetry and consider a model based on SU(5) × G 
where X belongs to a 24 (or 75) of SU(5) and breaks simultaneously SU(5) and G. 
The scalars 4~n coupling to quarks and leptons belong to 5 or 45 of SU(5). This 
imposes additional relations between Yukawa couplings. We note that a scale ratio 
q~s/M ~ ~ is in the right order of magnitude to account for corrections to the gauge 
couplings making their renormalization group evolution consistent [15] with proton 
stability (at the present level) and the observed value of the Weinberg angle. 

4. Symmetry scanning 

Are there other symmetries G equally successful as the particular abelian symme- 
try of the last section, or perhaps even more predictive? Since orders of magnitude 
for fermion masses and mixings only depend on G and one (or several) scale ratio 
ePs/M, a systematic scan of acceptable symmetries G should be possible. In this 
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section we describe a computerized scan [16] for three generations and G abelian. 
For simplicity, we will consider only continuous abelian symmetries. The discrete 
case Z N can be obtained by requiring additivity of charges only modulo N and will 
yield results identical to the continuous case for sufficiently high N. 

Conceptionally, a scan for realistic models can be performed at different stages 
with increasingly restrictive requirements. At the first stage we only need to know 
which scalar q~,, couples to which elements in the fermion mass matrices. We impose 
as a necessary criterion that there must be at least one possible assignment of scales 
to the different q~,, which reproduces correctly all orders of magnitude for fermion 
masses and mixings. (For example, a symmetry G allowing that the doublet 
responsible for m b also couples to the up quark would predict m b ---- m u and will be 
discarded.) At this first stage we do not yet attempt to calculate the different scales 
in powers of q~s/M. 

Consider G = U(1) n. We denote by Qk(qi) (k = 1.. .  n) the charges for the ith 
d c quark doublet and similarly by Qk (uC), Qk ( i ), the charges for u~, d~ etc. The 

leading Higgs doublet, responsible for the top quark mass, must have charge 

Qk( q~:,) = - Q k (  t c) - Qk( t).  (4.1) 

More generally, doublets with charges 

Qk = -Qk(u~.) - Qk(qj) (4.2) 

couple to the (/j)-element in the up quark mass matrices M v and doublets with 

o r  

Qk = Qk(d~) + Qk(qj), 

Qk=Qk(e~)+Q~(L j )  (4.3) 

couple to the (/j)-element in M D or M L. Note the difference in sign between (4.2) 
and (4.3) due to the opposite hypercharge of the corresponding fermion bilinears. 

For the systematics of our scanning we require that all small quantities below an 
order of magnitude in the fermion mass matrices should be explained by a 
symmetry G and different scales (~m)- This concerns small ratios of mass eigenval- 
ues as well as the small mixing angles. We allow for the possibility that factors up to 
5 are attributed to group theoretical Clebsch-Gordan coefficients or other details of 
dynamics. There is of course some arbitrariness in the choice of a boundary for 
small quantities not explained by G. Given the fact that quantities as small as 10-5 
(me/mr) appear, this does not change the overall scheme. 

Our scanning program is based on the observation that for the three-generation 
case the structure of fermion mass matrices is well described by four (or five) scales. 
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These scales themselves are separated by about an order of magnitude. The highest 
scale is the top quark mass, which we assume to be several ten GeV. The second 
scale is a few GeV. At this level we have the masses for b-quark, r-lepton and 
c-quark, with the latter a factor three smaller than the others. The masses for 
strange quark and muon constitute the third level of a few hundred MeV. The 
fourth scale is a few ten MeV or below and may be responsible for Cabibbo mixing 
in M D and for the lowest generation masses. If we are more severe we require a 
separate fifth scale of a few MeV or below for the electron mass and possibly also 
for m u. The only other information about the mass matrices comes from measured 
mixing angles. The Cabibbo angle is fairly large ( - 2 0 % )  whereas the mixing 
between the second and third generation is about 4%. The limit on mixing between 
the first and third generation is somewhat less than 1% [17]. Nothing is known 
about lepton mixing angles. 

We will denote the different scales by n s, every scale being a few times 10 ns MeV. 

For  the example of sect. 3 the scales n s are 

(°1i) (°1i) (i 1 i) M u =  1 2 , M D =  1 2 , ME---- 2 . (4.4) 
2 3 1 2 3 

Consistency with observation requires the following upper bounds on elements in 

M u, M D and ME: 

M u ~< 3 4 , 
3 4 

M D ~  2 3 , 
2 3 

1(0) 2 3)  
M E  ~< 2 2 3 or  M E ~< 

2 2 3 

1(°)21) 2 2 • 
3 3 

(4.5) 

The mass matrices (4.5) have been ordered here in the standard way. The bounds 
on the 3,/33 dements  come from the maximal size of mass eigenvalues. This entry is 
always required to generate the largest mass. The bounds on 3432 and M31 come 
from the observed small values of the mixing with the third generation. This does 
not provide a bound on these dements in M L though. The bounds on M23 and Mx3 
come from the size of the largest mass since these elements can always be removed 
by a left multiplication of a unitary matrix which is unobservable. The bound on 
M22 and M12 is from the 2nd eigenvalue and the one on M21 comes from the 
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smallness of the Cabibbo angle*. In the lepton matrix limits only come from 

the eigenvalues. Hence, whenever M E is acceptable, ML r (transposed) is too. Finally 
the bounds on M n reflect the smallness of first generation masses. The lower 
masses could also be generated by paired off-diagonal elements [18] and we have to 

impose additional "quadratic" constraints. In terms of n s they read 

(Mu)13 + (Mu)31 ~< 5(4),  

( M u ) 2 1  + ( M u ) 1 2  ~< 4 ( 3 ) ,  

( M D ) 2 1  "1- ( M D ) 1 2  ~.< 3, 

( M L ) 1 3  -I- ( M L ) 3 1  ~ 4 ( 3 ) ,  

(ML)12 + (ML)2X ~< 3(2).  (4.6) 

The sizes in brackets are those where we require a fifth scale for the electron mass or 

the up quark mass**. 
We now can describe our scanning procedure: The fermion masses are generated 

level by  level. At each step we try all possible assignments of the required scales n s 
to suitable entries*** in the corresponding mass matrix. If  the same doublet if,, is 

allowed to couple to more than one entry in Mo,  M D or M L we assign the same 
scale n s. Consistency is then checked by comparing the scale pattern with the 

bounds (4.5)-(4.6). A model is rejected if at some level no consistent assignment is 
found. We note that we arbitrarily can permute all rows in fermion mass matrices as 
well as columns in M L in order to bring them to the standard form. For the quark 
mass matrices, permutations of columns have to be done simultaneously in Mtj and 
M D in order to keep track of mixing angles. 

At  the first level we look for an entry only appearing in one column of M u and 
not  in M o or M L. This defines the top mass with n s = 4. At level two we first assign 
a candidate for m b with n s = 3. We veto if the level n s --- 3 appears in more than one 
column in M D or M L or if it appears in more than one column outside the top 

column in M u. If  m~ is not generated by the m b entry, we try additional n s = 3 
entries in M L. The same procedure then applies to m e which can be generated either 
by  diagonal or paired off-diagonal n s = 3 entries. The combined set of all n s = 3 

* This is however a limiting case. If we would allow the Cabibbo angle to be of order 1 these elements 
could be an order of magnitude higher. 

**As  a limiting case we could allow (ME)33 ----- (ME)32 ~- (ME)E3 = 3 in the lepton mass matrix. This 
would require 3 factors of O(1) to conspire to produce a difference in order of magnitude. A similar 
argument would increase all the bounds in eq. (4.6) by 1. In this case no new information (assuming 
the Cabibbo angle O(10-1)) is contained in the quadratic constraints. This, however, requires a set of 
O(1) factors to go all in the fight direction. We discard this possibility in our scanning. 

*** In the remainder of this paper we use the word element to refer to a specific fermion bilinear. We use 
entry for all fermion bilinears coupling to a specific vacuum expectation value. 
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entries is subject to the consistency veto described for m b. Here the last column and 

row has been determined for MU, D, L. At the third level we first generate m s by an 
n s = 2 entry. We again allow for diagonal or paired off-diagonal entries. We veto if 

this entry appears in the first column of M D or in (Mo)11 or (ML)l l  or if one of the 
quadratic bounds (4.6) is violated. If m s is not yet generated, we assign additional 
n s = 2 entries in M D with the same veto. At the end of level three all generation 
numbers  u, c, t etc. are assigned to the various rows and columns. It  is now easy to 
check by inspection of the various levels 4, 3 and 2 in the mass matrices if sufficient 

mixings 023 and 012 are already generated. If  not, we have to assign for 023 all 
appropriate  n s = 2 or 3 entry in M u or an n s = 1 or 2 entry in M D. The same holds 

for 012 with n~ = 2 or 1 for M u and MD, respectively. Of course, possible n s = 3 or 
2 entries are subject to the appropriate consistency vetos of level two or three, 
respectively. Finally, we check if all first-generation masses can be generated by 

n s = 1 entries. This will always be the case unless "topological reasons" enforce the 
absence of certain doublets coupling to the first generation bilinears. We can 

account for such topological restrictions by setting appropriate entries to zero 

(n s = -- 10). 
The scanning just described uses rather mild consistency criteria. In particular, it 

does not differentiate between entries below a few ten MeV, thus accounting for the 
theoretical uncertainty for the lowest masses, which involve a high order of G 
symmetry breaking and therefore products of many dimensionless couplings. We 
will refer to this criterion as (a). We also have implemented two additional stronger 
criteria: Criterion (b) requires that the mixing angle 023 is of the same order as 

m s / m  b. This requires either an n s =  3,2 entry in (Mu)32 or an n~= 2 entry in 

(MD)32. Indeed, a generation of 023 by (MD)32 = 1 for case (a) is at the borderline 
where mixing between the second and third generation becomes unacceptably small. 
For  criterion (c) we require in addition that the electron mass is at a fifth level 

n~ = 0. Consistency then requires the values in the brackets for M E in (4.5) and 
(4.6). A similar n s = 0 requirement for the up quark mass can be advocated, but we 
did not implement this additional restriction yet. It  is easy to add other restrictions 
in this scanning process motivated by certain observed mass relations. For example, 
we can require that m b and mr are generated by the same n~---3 entry so that 
suitable symmetries for Yukawa couplings could predict m b = m,.  Another possibil- 
ity motivated by the successful relation m d / m  s ---- sin2012 would require that rn d is 
generated by  paired off diagonal n~ = 1 elements in (MD)21 and (MD)12 and that 
(Mu)21 is at a level n~< 1. This concludes our discussion of the first stage of 
scanning which will be referred to as I. 

Stage two of our scanning process (II) accounts for the various powers ( ~ s / M )  p 
appearing in doublet VEV's as described in sect. 2. In leading order e P s / M  * the 

* Actually, the leading order could also be (~s/M) 2 if cubic couplings play no role. This replacement 
does not change our argument. 
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doublet  eObO b coupling to m b should mix with the leading doublet ~tor The charges 
Qk(X) for the scalar X breaking G must therefore be 

+ Qk(X) = ak(*,¢,)  - ak(e~b~b) 

= - -ak ( t  c) -- Ok(/c) - 2Ok(t  ) . (4.7) 

Here the same overall sign must hold for all k (note Qk(t) =- Qk(b)). The charges 
Q~(X) of the G symmetry breaking operator being known, we are now able to 
determine the "chain" of doublet VEV's produced by this operator. This is particu- 
larly easy in the case of U(1)':  Any doublet with charges 

Qk( eOm) = Qg( eotot) + ?Oh(x )  (4.8) 

will be suppressed by a factor (COs~M) e. (Again, (4.8) must hold with the same sign 
for all k. Doublets not obeying (4.8) for some P do not get VEV's within the chain 
of X.) 

The chains of operators are easily implemented in our scanning procedure. After 
the assignment of epbO b we calculate Qk(X). Whenever a scalar doublet ~,, appears in 
the chain of X in order P (suppressed by ( ~ s / M )  t') we assign a value n s = 4 - P 
to the corresponding elements in the fermion mass matrices. Values assigned via a 
chain have then to be taken into account for checks of consistency with (4.5)-(4.6). 

If the tau lepton does not acquire a mass at n s = 3 in the chain of X, we assign an 
independent n s =  3 element from ~,¢~. Charges of additional operators X' are 
calculated and the combined chain of X and X' will be determined as above. (For 
example, an n~ -- 2 element can be generated by one step in the chain of X and one 
step in the chain of X'-) This procedure can be repeated for arbitrary n s =  3 
elements. We also could assign chains for operators essentially needed to generate 
additional n~ = 2 elements not appearing in the chains of previous operators. So far 
we did not yet implement this in our program. 

So far we have allowed for an arbitrary number of G symmetry breaking scalar 
VEV's Xi. At the third stage of scanning (III) we only consider a limited number of 
symmetry breaking operators. For the most extreme case III 1 we will allow only one 
X and require that all elements in fermion mass matrices are generated by the chain 
of X- This is perhaps the most interesting case, since fermion mass matrices are 
described in terms of only one small scale ratio generated by one symmetry breaking 
operator. Especially for the case of G having several U(1) factors, this requirement 
may be too restrictive. A single X will not completely break G and certain fermions 
may not be allowed to acquire masses unless G is completely broken. We therefore 
consider also the cases I I I :  and III 3 where G is broken by two or three operators Xi 
inducing n~-- 3 elements in lowest order in their chains. Finally we consider cases 
III~ and III~' where only one chain is allowed which generates n~ = 3 elements in 
lowest order, but arbitrary doublets not in the chain of X can acquire VEV's at level 
n~ ~< 2 or n s ~< 1, respectively. This accounts for the case of two symmetry breaking 
operators with different scales. 
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5. Scanning for G = U(1) 

In this section we discuss the case G = U(1). (The same patterns can also always 
be produced by choosing an abelian discrete symmetry ZN, with high enough N.) 
We first consider arbitrary U(1) charges for the fermions and start with a short 
description of the sample we want to scan. We only include the fermions present in 
the standard model with three generations. We assign arbitrary integer charges to all 
fermions and we denote here the quantum number by the same symbol as the 
fermion, i.e. up instead of Q(u~). There are 15 independent SU(3) × SU(2) × U(1) 
representations and a corresponding number of charges to be assigned- 
u c, d~, qi, e~, L, (i = 1, 2, 3). 

If we consider a sample with all quantum numbers smaller in absolute value than 
n, there are (2n + 1) i5 possible assignments of the quantum numbers. It is, however, 
impossible to distinguish the three uCi, the three d c, etc. so that the real number of 
distinct assignments per particle type is not (2n + 1) 3 but rather all possible ways to 
have three numbers of absolute value less than n. This is 

N = ( 2 n ;  1 ) +  2 ( 2 n ;  1 ) + ( 2 n ( 1 ) ,  (5.1) 

where (b) = a ! / ( b ! ( a -  b)!). The number of charge assignments is now given by 

nu(i) = N 5 . (5.2) 

Both N and N 5 are listed in table 1 for n = 1, 3. The overall sign of charges is also 
irrelevant, this almost halves the number of distinct charge assignments. The 
number left is slightly more than half the previous one because assignments of the 
type 

a), 

(qi, q2, q s )=( -q ,O ,q ) ,  (e~,e~,e~)=(-e ,O,e) ,  

( q ,  = ( -L ,o ,  t )  (5.3) 

TABLE i 
The number  of  distinct U(1) charge assignments for a given maximum size of the quantum numbers  

n N N 5 

1 10 100 000 49 984 10 816 1 808 
2 35 52 521 875 26 260 816 2 067 309 826 956 
3 84 4 182 119 424 2 091 059 200 77 447 168 41 489 664 

For  an  explanation of the columns see the text. 



3". Bijnens, C. Wetterich / Fermion masses from symmetry 253 

were not double counted. So the number of distinct charge assignments is 

N u o ) =  ½[ N 5 + (n + 1)5]. (5.4) 

This is listed in the 3rd column of table 1. This number is still quite large and a scan 
as described in sect. 4 would still be very time consuming for the case n = 2. Let us 
try to diminish this number further by eliminating equivalent assignments and 
assignments which obviously do not lead to acceptable mass patterns. What matters 
is whether couplings epiu~qk, ep*d~qk, ep~e~L k are non-zero or not. They only depend 
on the relative charges of the fermion bilinears. The charges of these bilinears are 

( Q t j ) i j = u ~  + qj ,  

( a D ) i j  = dc + qg, 

( Q L ) i j  = ec + L j .  (5.5) 

We can now change the quantum numbers without changing the structure of the 
fermion bilinears if 

( o o ) , j )  = o, 

~((Qu)33 + (QD)i])  = 0, 

~((Qu)33 + ( Q L ) i j )  = 0. (5.6) 

The changes in quantum numbers obviously have to be generation symmetric, i.e. 

8u~ = / } u ~  = 6u~ = 6 u ,  6d~  = 6d~. = 6d~  = 6 d  ¢, . . . .  ( 5 . 7 )  

The relations (5.6) are then satisfied if 

8uC= -81  + 83, 

8q = ~ 1 ,  

8e~ = - ~2 - ~ 3 ,  

8L = ~ 2 -  (5.8) 
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From (5.8) it is obvious that we can always choose 

c m  u l -  ql =L1 = 0. (5.9) 

We then still have 12 free charges (instead of the 15 earlier ones). Requiting these 
charges to be integer and of absolute value smaller than or equal to n leaves a 
significantly lower set of distinct assignments. This number can be determined using 
similar reasoning as before and is listed in the 4th column of table 1. 

One last easy requirement can be made on the quantum numbers. From the 
discussion in sect. 4 it is obvious that all generations of the left-handed quark 
doublets need to have different quantum numbers. This reduces the numbers further 
to those mentioned in the last column of table 1. We have performed a scan for 
n = 2 for the ease with only one SU(3) X SU(2) x U(1) scalar singlet X, i.e. for the 
case where all masses are generated by a single chain. 

Each scan (IIIx) of this sample required on the order of 40 minutes CPU time on 
an IBM mainframe. Scans under I, III 2 or III 3 conditions are more CPU time 
consuming. There were 301 different charge assignments possible using the (a) 
requirement on the sizes of mass matrix elements. Using the (b) requirement this 
number was unchanged and using the (c) requirement, the most natural ones, there 
were 133 different charge assignments giving an acceptable mass pattern. A com- 
plete description of these solutions is given in appendix A. These are the only charge 
assignments reproducing the observed mass pattern with a single small scale 
difference eps/M within this range of quantum numbers. 

In the case of continuous symmetries we can impose stronger restrictions on the 
allowed U(1) charge assignments. A local U(1)o symmetry requires for consistency 
that there are no mixed anomalies with SU(3) × SU(2) x U(1) and no pure U(1)6 
anomalies or mixed gravitational anomalies. The pure U(1)G anomalies and mixed 
gravitational anomalies could be cancelled by adding SU(3) x SU(2) x U(1) singlet 
fermions which are chiral with respect to U(1)6. These would acquire a mass at the 
scale 0s at which U(1)6 is broken and not change the physics at the weak scale. 
Similarly, mixed anomalies could be cancelled by adding fermions that are chiral 
with respect to U(1)6 and belong to non-trivial vector-like reducible representations 
of SU(3) x SU(2) × U(1). After U(1)o breaking they can also require a heavy mass. 
This leads us back to the general case already discussed earlier, If we only allow for 
additional heavy SU(3) x SU(2) x U(1) singlet fermions (as the right-handed neu- 
trino), we still have to require the absence of all mixed anomalies. 

For a global U(1) it is also often undesirable to have mixed anomalies with the 
SU(3) x SU(2)x U(1) gauge interactions. These would lead upon spontaneous 
breakdown of the global symmetry to an almost Goldstone boson. When mixed 
anomalies with respect to SU(3) are present (a Peccei-Quinn U(1) symmetry) there 
are (very) strong bounds for the existence of such a particle (the axion) [19]. 
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The absence of mixed anomalies leads to the following requirements on the 
fermion quantum numbers: 

3 

SU(3) 2 X U(1)a: ~., up + d~ + 2qi = O, 
i ~ l  

3 

SU(2)2 x U(1)a: Y'. 3q, + Li= O, 
i ~ l  

U(1)2r X U(1)o: 
3 

~_, 8u~ + 2d~ + q, + 6e~ + 3L i = O, 
i s l  

3 

U ( 1 ) r x  U(1)G :2 Y'. -- 2(u~)2+ (d~)2+ (qi )2+ (e~) 2 -  (L i )2=0 .  (5.10) 
i s l  

In the case of one generation there are two solutions, U(1)r and U(1)a_ L. The 
latter doesn't satisfy the pure U(1)~ anomalies without adding SU(3) x SU(2) x U(1) 
singlet fermions (i.e. right-handed neutrinos). The extra conditions for completely 
anomaly free U(1)G symmetries are 

3 

U(1)3: • 3(u~) 3 + 3(de) 3 + 6(q,) 3 + (e~) 3 + 2(Li) 3 = 0, 
i = 1  

3 

U(1)o: E 3u~ + 3d c + 6q, + e~ + 2L  i = 0. (5.11) 
i = 1  

Eq. (5.11b) is the requirement that the anomalous U(1)G-graviton-graviton coupling 
vanishes since that would spoil local gauge invariance. 

Removing anomalies by shifts of charges without changing the mass pattern is in 
general not possible. The change of the U(1)~ and U(1) 2 x U(1)r anomaly under 
the 3~, 3 2 and 6 3 transformation described earlier (5.8) will in general only make 
them vanish using non-integer 3 i. The change of the anomalies linear in U(1)G is 
given by: 

3 (SU(3) 2 X U(1)o) = O, 

3 ( s u ( 2 )  x u ( 1 ) o )  = + 

3(U(1) 2 X U(1)G ) = --3(331 + 32), 

3(U(1)G ) = 32 -- 33 . (5.12) 
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We performed an additional scan for (mixed) anomaly free U(1) symmetries with 
higher allowed charges for the fermions. The different samples of U(1) charge 
assignments we used were: 

Sample  1. The absolute value of all charges for quarks was less than or equal to 
4 and for leptons less than or equal to 6. We require absence of all anomalies. 

u c Sample  2. Here we have [ i I, IdOl, Iqil ~< 2 and le?l, ILA ~< 4 and no mixed 
anomalies. 
Sample 1 contained 1006 different U(1) charge assignments while sample 2 con- 
tained 4504. Our strongest result concerning these two samples is that there were no 
solutions for the scanning at stage 1111, i.e. with one chain producing all entries in 
the mass matrices. To extend this result we have also done searches for solutions of 
this type using samples containing larger values of the quantum numbers but more 
restrictive in some other sense. These are: 

Sample 31 No mixed SU(3) × SU(2) × U(1), U(1)~ anomalies but with an SU(5) 
type symmetry; 

UC = qi = eC, d~ = Li ,  

with all quantum numbers less than or equal to 4. 
Sample  4. The same as above, but with all quantum numbers less than or equal 

to 6. 
Sample  5. No mixed SU(3) x SU(2) × U(1), U(1)G anomalies with SO(10) sym- 

metry. There is only one generation quantum number of size less than or equal to 
20. 
In table 2 we have listed the size of these various samples and the size of the subset 
that is totally anomaly free. The 3rd column in the size of the sample after removing 
the sign ambiguity, those charges that are pure multiples of previous ones and those 
where all qi are not different. It is this last number that is relevant when comparing 
the number of U(1) charge assignments that have acceptable solutions given in 

TABLE 2 
Size of the different U(1) samples used 

No. No. After 
Sample mixed anomalies anomalies first reduction 

1 1623 517 
2 4504* 44* 2235 
3 687 27 318 
4 3659 51 1252 
5 221 21 65 

* This already requires the q, to be all different. 
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TABLE 3 
The number  of distinct U(1) charge assignments with acceptable mass patterns 

257 

Sample I(a) I(b) I(c) III~'(a) III~'(b) III~'(c) III~(a) III{(b) III{(c) 

1 294 266 258 139 110 100 3 2 2 
2 706 428 399 335 161 135 1 1 0 
3 160 135 135 85 56 55 4 2 0 
4 
5 63 63 63 2 2 2 2 1 1 

Sample III3(a ) III3(b ) III3(c ) III2(a ) III2(b ) III2(c ) III~(a) 

1 37 25 5 3 1 0 0 
2 29 28 1 17 16 1 0 
3 36 35 12 15 15 4 0 
4 0 
5 4 4 4 4 4 4 0 

*Obviously, also all zero for III l (b ) and III1(c ). 
We use the different scanning conditions described in sect. 4 and the different (mixed) anomaly free 

U(1) samples described in sect. 5. 

table 3. All of these numbers only quote the relevant number for sets of indis- 
tinguishable quantum numbers as described earlier for the general case. 

An overview of the results is given in table 3. Our most significant result is that 
none of the samples described allows for a solution with only one SU(3) × SU(2) x 
U(1) singlet scalar being responsible for all the different scales in the observed 
pattern of masses and mixing angles. 

At level I (columns 1-3) the number of charge assignments consistent with 
sufficient differentiation in the fermion mass matrices is a drastic reduction of the 
number  of all possible U(1) with a given set of constraints on the quantum numbers. 
The requirement (b) of a fairly large mixing between the 2nd and 3rd generation 
provides a strong supplementary constraint on the number of solutions. Requiting 
the stronger criterion (c) on the electron mass essentially halves the number of 
possible charge assignments at this level of scanning. 

At level III{' where we allow for one chain (starting at n s = 3) and for additional 
entries of size n s = 2,1 for those elements of the mass matrices that did not already 
receive a nonzero value within the chain there is still a fairly large number of 
possible charge assignments. Increasing the strength of the procedure to the case 
where only new values of ns = 1 are allowed to be assigned, case III[, we see that the 
number  of solutions becomes very limited. In the strongest case, where all entries 
are generated by chains, starting at ns = 3, the number of solutions decreases quite 
dramatically. There are no solutions for only one chain, case 1111 and only a few for 
cases 1112 and I l l  3. As an example we list the solutions found for the III~(a) scan of 
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sample 2. The quantum numbers are 

(u~,u~,u~)=(-2,-2,2), 

(d~, d~, d~) = (0 ,0 ,0) ,  

(ql, q2, q3)=(-1,0,2), 

(e~, e~, e~) = ( - 4 , 4 , 4 ) ,  

(Lx, L2, L3)=(-4,-2,3).  (5.13) 

The quantum numbers (QtJ, D) and sizes of the mass matrix (in ns) elements are 

( i) 
- 3  0 

Q u =  - 3  0 - , M u =  
1 4 

03 i) 0 3 , 
1 3 

(12 ) QD = 1 2 , 
1 2 

MD (12i) = 1 2 , 
1 2 

- 1  - 6  - i )  QL = 7 2 , 
7 2 

M L 
(12i) 

* 2 , 

* 2 
(5.14) 

and there is another possibility allowed for the leptons by rearranging rows. 

(7 2 
QL= - 1  - 6  - , M L =  1 2 • 

7 2 * 2 
(5.15) 

In (5.14) * means a corresponding dement  of size - 1 or smaller. In conclusion, we 
described in this section the samples of U(1) assignments we have searched for 
allowed mass patterns and we found that using the most "natural"  mechanism with 
only one U(1) breaking operator there are no solutions without mixed anomalies 
with the standard model. For unconstrained U(1)'s we found a limited set of 
solutions described in appendix A. Using a slight extension of our mechanism, i.e. 
allowing for several SU(3)× SU(2)× U(1) singlet scalar fields we found possible 
U(1) quantum numbers compatible with the observed mass pattern and having no 
mixed anomalies. In the next section we describe a similar search for a particular 
higher dimensional model. 
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6. Scan of a higher dimensional model 

The six-dimensional SO(12) model studied here was described in detail in ref. [9] 
and a short description together with some partial results of our scanning procedure 
can be found in ref. [16]. The relevant features of the model here are that it has a 
symmetry group 

SU(3) ~ × SU(2)L × U(1)v × SU(2)/× U(I) q, (6.1) 

where SU(2)I × U(1)q is interpreted as a local generation group. The fermions in 
this model have quantum numbers (using the usual names for given SU(3)c × 
SU(2) L × U(1)v transformation properties): 

q: [½(n+P)]l/2+[½(n-P)]_l/2 

uC: [ l ( n - p  + 2m)]x/2+ [½(n + p -  2m)]_1/2 

de: [ ½ ( n - p -  2m)]x/2+ [½(n +p  + 2m)]_1/2 

L: [½(n - 3p)]1/2 + [½(n + 3p)] _1/2 

eC: [½(n+3p-2m)]l/z+[½(n-3p+2m)]_l/2. (6.2) 

The number in brackets is the SU(2)I representation and the subscript is the 
corresponding q quantum number. If the number in a bracket is negative it means 
that it is a mirror particle ~, tic, etc. with charge q opposite to the indicated 
properties and the SU(2)t representation given by the absolute value of the bracket. 
The symmetry group G used in our analysis is the subgroup 

G = U(1)~,× U(1)q, (6.3) 

where U(1)I is the third component of the/-spin SU(2)I. The U(1)I charge for q is 
given by (n + p > 0, n - p  >t 0) 

1 1 3 X ( n + P ) - ~ , ~ ( n + P )  2 . . . . .  

a'(q)= ¼(n-p) 7,1 ~(nl _p) 2,...,3 
~(n+p)+½ (q=½)  

- 1 (  n - p ) + ½  ( q = - 3 ) '  (6.4) 

and correspondingly for the mirrors and other fermions. The mirrors and standard 
fermions have the same U(1)q quantum number. Therefore, the mirrors can only 
acquire mass if U(1)q  is spontaneously broken. 

Mirror masses are generated by SU(3)c × SU(2)L × U(1)r singlet VEV's. It would 
be most natural if the VEV's responsible for the mirror masses were also those 



260 J. Bijnens, C Wetterich / Fermion masses from symmetry 

responsible for the different scales in the standard mass matrices [9]. We have not 
yet imposed this restriction and only assumed that the mirrors become heavy by an 
unspecified mechanism. If for a given particle type there were n standard fermions 
and n -  3 mirror fermions we pick arbitrarily three of the n as the standard 
fermions and assume that the remaining n - 3 combine with the mirrors to become 
heavy. 

We have considered this model for the three-generation case with "monopole 
numbers" n, m, p: 

t / ~ 3 ,  

p = 1 , 3 ,  

m : - 3 ,  - 2 , . . . , 3 .  (6.5) 

In table 4 we have listed the set of mirrors for each particle type and the number of 
distinct G quantum assignments corresponding to an arbitrary choice of the 
"surviving" chiral fermions. Given the size of the ( m , p ) = ( - 2 , 3 )  and ( -3 ,3 )  
samples (because of the large numbers of mirrors) we have not performed a 
complete scan for all our different scanning requirements. 

The results of the scanning are listed in table 5. First, we again have the result 
that there are no solutions with only one SU(3)× SU(2)× U(1) singlet VEV but 
there are also no solutions for the case where there are two scalar singlet VEV's. 
Even with 3 singlet VEV's the number of solutions is very limited. The number of 
solutions listed in table 5 is not only the number of distinct G quantum numbers 

TABLE 4 
The number of mirrors of each type for a given n = 3, m, p and the total number of distinct 

G quantum number assignment for the standard fermions for each case 

+ 3 1 1 2 0 0 0 40 
+ 2  1 0 1 0 0 0 4 
+1 1 0 0 0 0 0 1 

0 1 0 0 0 0 0 1 
- 1  1 0 0 0 1 0 4 
- 2 1 1 0 0 2 0 10 
- 3 1 2 1 0 3 0 800 

3 3 0 3 0 0 3 40O 
2 3 0 2 0 1 3 4O 
1 3 0 1 0 2 3 80 
0 3 0 0 0 3 3 400 

- 1 3 1 0 0 4 3 2800 
- 2 3 2 0 0 5 3 11200 
- 3  3 3 0 0 6 3 33600 
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TABLE 5 
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m P I(a) I(b) I(c) III;'(a) III;'(b) III;'(c) III;(a)* III3(a)* III2(a)* IIIl(a)* 

3 1 116 72 16 102 72 16 0 0 0 0 
2 1 0 0 0 0 0 0 0 0 0 0 
1 1 4 0 0 4 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 

- 1  1 0 0 0 0 0 0 0 0 0 0 
- 2  1 8 0 0 0 0 0 0 0 0 0 
- 3  1 7034 4330 3652 624 400 356 0 0 0 0 

3 3 15744 12440 10836 0 0 0 0 92 0 0 
2 3 26414 25410 21002 1344 1036 628 0 0 0 0 
1 3 3162 3162 2252 1684 1684 1224 0 0 0 0 
0 3 0 0 0 0 0 0 0 0 0 0 

- 1  3 38 356 26 776 23 556 2112 0 0 0 0 0 0 
- 2  3 >:150000 NC** NC** 22327 19196 15987 0 95 0 0 
- 3  3 >:150000 NC**NC** 0 0 0 0 NC 0 0 

* Whenever (a) has no solutions, so of course (b) and (c). The number solutions for III3(b ) was 92 for 
( re ,p)  =(3,3) and 95 for (-2,3).  The number solutions for III3(c ) was for (re,p)=(3,3) 8 and for 
( -2 ,3)  32. 

**Not computed. 

a l lowing  a solut ion,  bu t  for each ass ignment  of  G q u a n t u m  numbers  we have also 

c o u n t e d  as d i f ferent  solut ions the di f ferent  ways of  choos ing  the top  quark,  tau  

l ep ton ,  b o t t o m  quark  and  cha rm quark,  s t range quark  and  muon.  Inc luded  also are  

the  two d i f fe ren t  ways  for  the three la t te r  fe rmions  for  their  mass  to be  generated,  

v ia  a d i a g o n a l  e lement  or  two pa i r ed  of f -d iagonal  elements.  W e  have no t  coun ted  as 

d i f fe ren t  the  d i f ferent  ways in which the f i rs t -genera t ion masses  can  be  genera ted  or  

in  which  suff ic ient  mixing  be tween the genera t ions  can be  induced.  

W e  can  es t imate  the number  of  solut ions for  one given charge ass ignment  when 

all  e l ements  of  the mass  matr ices  are independent .  There  are 6 ways to o rder  the 

rows acco rd ing  to genera t ions  for  the up, down  quarks  and  leptons.  A n d  s imi lar ly  

for  the  co lumns ,  however,  the up  and  down quark  co lumns  are no t  i ndependen t  

because  of  the  mixing  angles. This  gives a factor  6 5. In  add i t i on  for  the 2nd 

gene ra t i on  there  are 2 ways to genera te  each mass  and  whenever  M L is accep tab le  

so is ML r. T h e  n u m b e r  of  solut ions for  the case of  ma x ima l  d i f fe rent ia t ion  is 

nso , = g~(65 • 24) = g~(105). (6.6) 

T h a t  this  n u m b e r  is heavi ly  reduced  by  even some q u a n t u m  numbers  of  ferrnion 

b i l inea r s  be ing  the same can be  seen easi ly in table  5. 

A s  m e n t i o n e d  before  our  s t rongest  result  here  is that  there  are  no  solut ions  wi th  

one  chain ,  even if  we al low for a rb i t r a ry  add i t iona l  n s ~< 1 entries.  There  are  also no  

so lu t ions  for  two chains  and  only  a very l imi ted  set of  those with 3 chains.  A few of  
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TABLE 6 
Solutions for a III3(c ) scan for n = m =p  = 3 

2Qu 2QD 2QL Mu MD ML 

) 0 !)(0 0 
2;2 2; 0 2; 0;5 0;3 0; 0" 5 0; 3 0; 2 2 3 1 1 
2;0 2 ; - 2  2; 0;3 0;1 0 ; -  0; 3 0; 1 0; 2 3 4 2 2 

(2 ;4  2; 2 2 ; _ i ) ( 0 ; 7  0;5 0; 3) ( 0;7 0; 5 0; i ) ( 1  2 i ) ( i  1 ! ) ( 0  1 
2;4 2; 0 2; 0;5 0;3 0; 1 0; 5 0; 3 0; 2 2 1 1 1 
2;0 2; - 2  2; 0;3 0;1 0 ; -1  0 ; - 3  0 ; - 5  0 ; -  2 3 2 1 2 

(2 ;4  2; 2 2 ; _ _ ! ) ( 0 ; 7  0;5 0; ! ) ( 0 ;  7 0; 5 0 ; _ _ ! ) ( 1  2 ! ) ( !  1 ! ) ( !  1 
2;2 2; 0 2; 0;5 0;3 0; 0; 3 0; 1 0; 2 2 1 2 
2;0 2; - 2  2; 0;3 0;1 0 ; -  0 ; -3  0 ; -5  0; 2 3 2 2 

The last solution is counted twice since the muon mass is generated by both diagonal and paired off-diagoI 
elements in M L. The other four solutions are the ones with U(1)t quantum number opposite to the ones listed here. "[ 
columns 2 QU,D,L list twice the charges of the corresponding fermion bilinears. The first number is the U(l)q and t 
second the U(1)I quantum number. The columns labelled MU, D, L list the sizes in n s (see sect. 4) of the correspondi 
elements in the mass matrices. Note the relatively large value for m u which is a limiting case still allowed 
requirements (c). 

the solutions in the case III3(c ) are given in table 6 for m = p  = 3. This particular 
solution has SU(5) symmetry. Even for much looser constraints on how masses are 
generated there are no solutions for a fairly wide range of m and p. 

Appendix A 

In this appendix we exhibit all solutions found by our scanning program for the 
case G = U(1) with charge assignments up= ql = L x  = 0 and all other charges 
smaller than or equal to 2. First we discuss the case where the charge of the top 
bilinear is zero and then those where the charge of the top bilinear is + 1. There 
were no solutions where the charge of the top bilinear was + 2. We only treat the 
case for one S U ( 3 ) x  S U ( 2 ) ×  U(1) scalar singlet that breaks G symmetry. In all 
cases the charge of the singlet scalar is Q ( x )  = + 1. 

A.1. Q(tt c) = 0 

All matrices here are ordered in order of increasing mass. We list first the fermion 
charges, then the quantum numbers of fermion bilinears and the size of the 
corresponding elements in M L using the n s notation of sect. 4. There are 10 possible 
charge assignments for the leptons. We list in table 7a only 5. The remaining 5 are 
those with opposite signs for the quantum numbers. Our example of sect. 3 is the 
last in this list. There are 10 possibilities for the assignments of the quark quantum 
numbers. They all have (ql, q2, q3 )=  ( - 2 ,  - 1 ,  0). 
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The last one of (A.l) has a too small contribution to the mixing of the first and 
second generation to be responsible for its observed value. Hence, it is only a 
solution for the last two of the following possibilities for the up-quark mixing 
matrix. 

( u;,u;,u;)=(-2,-&O), Q,= 

So far we have accounted for 100 of the acceptable assignments found. The model 
discussed in sect. 3 is the only solution consistent with SU(5) symmetry in this class 
of solutions. 

A.2. Q( ttc) = + 1 

In this case there are eleven solutions for the lepton charges. The results (using 
the same notation as before) are given in table 7b. In some cases (all those where 
one of the e,C was zero) a valid solution is with e: and Li interchanged. Some 
quantum numbers in table 7b therefore correspond to two solutions by making 
these changes. These quantum numbers have a superscript * . 

The possibilities for leptonic charges go together with only one solution for the 
quark charges: 

( &&a;)=(-l,O,l), 

@X,4)=(-2,-2,-2), 

(q&&73) = (-23 -14. (‘44 
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TABLE 7b 
The solutions for the leptons when Q(t t  c) = 1 
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(L1, L2, L3) (e~, e~, e~) QL ML 

(2, O, - 1) (1,1,1) 1 2 
1 2 

(2,0,-1) (1,2,1) 2 -1 1 
1 0 2 

(1, O, - 1) (2,1,1) 1 2 
1 2 

(1,0,-1) (2,2,1) 3 2 1 
2 1 2 

(2,0,2) (1,1, -2) 1 2 
-2 3 

(3 2 i )  ( !  1 (2,1,0) (1,0,0)* 2 1 2 
2 1 2 

(1,1,0) (2,0,0)* 1 1 2 
1 1 2 

(2,1,0) (1,1,0)* 3 2 1 
2 1 2 

3) 
3 
3 

3 t 2 
3 

3 
3 

2 
3 

This leads to 

- 3  - 2  - 1 )  
Q u =  2 - 1  0 , 

1 0 1 

QD = 4 - 3  - 2  , 
4 - 3  - 2  

This accounts over all for 11 solutions. 

Mu = 2 , 
3 

(12i) MD---- 1 2 • 
1 2 

(A.5) 

A,3. Q(ttc)  = - 1  

The solutions for the lepton charges are those of the previous section with 
opposite sign while there is one possible assignment for the charges of down quarks 
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and the lef t -handed quark doublet. 

(ql ,  q2, q3) = ( 2 , 1 , 0 ) ,  

(d~, d~., d~) = (2, 2, 2) ,  

QD = 3 , MD = 1 2 • 
3 1 2 

(A.6) 

There  are two possible assignments for the up quark charges: 

(u l ,  u z , u 3 ) - -  (0, - 1 , - 1 ) ,  Q u  = 0 - , 

0 

1 
M u =  2 

2 

23) 
3 4 , 
3 4 

(u l ,  u 2, u3) = (0,0,  - 1 ) ,  Qu  = 1 , 
0 - 

M U = 
12,) 
1 2 3 . 

2 3 4 

(A.7) 

This adds another  22 possible assignments completing the 133 possible assignments 
of  U(1) quan tum numbers. These (and those with all charges sign reversed) are the 

on ly  possible assignments within the stated limits on the sizes of quan tum numbers  

and  the constraints  on the order of  magni tude of the elements of  the mass matrices 

as stated in sect. 4. 
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