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Quantum theories of gravity (e.g. string theories ) lead to higher derivative terms in the 
effective gravitational action. We present a general discussion of classical stability for compactifi- 
cation solutions of higher derivative gravity (also applicable for other bosonic fields and in four 
dimensions). In general there is no need for higher derivative terms to appear as generalized Euler 
forms. 

As a specific example we discuss solutions ~¢4X S D for the most general four-derivative 
approximation of pure higher dimensional gravity. For a certain range of parameters, instabilities 
for low momentum fluctuations may be absent. For the allowed parameter range, however, higher 
poles of propagators appear at momenta only slightly larger than the compactification scale, 
indicating insufficiency of the four-derivative approximation at this scale. 

1. Introduction 

Since the possible existence of  more than four spacetime dimensions has been 

taken seriously, questions about  the ground state of  gravitational theories have 

gained new importance:  One has to explain why we live in a world where we can 

only  "see"  the existence of  three space dimensions, whereas all other space dimen- 
sions have a very small characteristic length scale making them inaccessible for 

direct  observation.  In  our  context we mean by  "g round  state" a state of  the universe 

where the relevant local physics can be described successfully by excitations a round 

this g round  state. This state may  be a unique property of  the underlying theory or 
on ly  a (part ly  accidental) product  of previous evolution - i n  any case a realistic 
g round  state must  fulfil a requirement of  stability: It should be static in time (or at 
least evolve with a time scale much longer than the time scale of  our  experiments 

and  observat ion)  and this must  also hold in presence of  arbitrary small excitations. 

The  appropr ia te  tool for studying the ground state in gravitational theories is the 

effective act ion as functional of  a background metric field, S [g~ ] ,  which is obtained 
as usual  by  evaluating a functional integral in the presence of  external sources and 
per forming  a Legendre transformation.  The effective action includes all quan tum 
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effects and the ground state metric ~ obeys 

8S 
~goo[g~d = o .  (1.1) 

Other background fields beyond the metric will often be needed for a characteriza- 
tion of the ground state and (1.1) has to be generalized appropriately. 

Solutions of (1.1) with four-dimensional Poincar6 symmetry P4* (or a correspond- 
ing approximate symmetry as for the Friedmann universe) have the necessary static 
property. However, they are not unique solutions. Nearby solutions - interpreted as 
excitations - may lead to destabilization. Any small excitation which becomes large 
at time scales smaller than the scale of evolution of the ground state indicates that 
this "ground state" lacks the required stability. It is therefore a necessary condition 
that the ground state is classically stable with respect to small fluctuations in the 
above sense. Beyond (1.1), this imposes conditions on the behaviour of the second 
functional derivative 82S/Sg~vSgpo evaluated at the ground state metric. 

The effective action for gravity will contain terms with more than two derivatives 
of gt~v, like R E, R~,R ~v, R~,oxR~"°x and terms with even more derivatives. Such 
terms appear in any quantum theory of gravity and are present even at the tree level 
in string theories. The appropriate gravitational equations of motion are those 
derived from the effective action (eq. (1.1)) and we expect in general a modified 
version of gravity - more complicated than Einstein gravity. 

In four-dimensional gravity the contribution of higher derivative terms to classical 
field equations can be neglected for most purposes - they are suppressed by powers 
E2/M 2 or Ro//M 2 where Eo(Ro) is a characteristic energy (curvature) of the 
process considered and M E a very high mass scale (of the order of the Planck mass 
M 2) appearing in the ratio of the coefficients of terms with a different number of 
derivatives. (We note, however, that higher derivative contributions play a crucial 
role near black hole singularities or in very early cosmology where R 0 is of the same 
order as ME.) 

In higher dimensional theories spontaneous compactification involves a character- 
istic length scale L 0 not necessarily large compared to M -1 and the higher 
derivative terms of the effective action cannot be neglected a priori. They may even 
play an important role [1]: There are several known cases of spontaneous compacti- 
fication where the presence of higher derivative terms is necessary. No solutions of 
the type ¢¢t'4 × compact space are possible in pure Einstein gravity (including a 
cosmological constant) but they exist [1,2] taking R2-type terms in the effective 
action into account. For the heterotic string, terms with four derivatives [3] are 
needed for a possible realization of Calabi-Yau spaces as an approximate ground 

* Note that this does not mean that spacetime is flat since we consider more than four dimensions. 
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state*. In conclusion, higher derivative terms seem not only unavoidable, but may 

even prove to be useful. This includes their possible important role for the 

realization of an inflationary universe in higher dimensional theories [5]. 
On the other hand there is a widespread prejudice that higher derivatives 

necessarily lead to classical instabilities (often referred to as tachyons and ghosts). 
As we will see, this is by no means always the case. So far, the discussion of higher 
derivative theories has mainly concentrated on problems defining consistently a 
quan tum field theory in perturbation theory for actions with four or more deriva- 
tives [6-8]. The problems appearing in this context are related to the classical 
instability of  the "ba re"  action**. 

We can learn from previous discussions of four-derivative bare actions which 
general type of instabilities can appear in the higher derivative effective action. 

However,  we should emphasize at this place one important difference between the 
bare action and the effective action: For reasons of locality the bare action usually 
involves a finite power of derivatives, whereas the full effective action is not 
expected to have a simple polynomial form. 

Furthermore,  all discussions of classical stability for higher derivative actions 
were restricted so far to flat space. These results cannot be easily generalized to the 
curved background of spontaneous compactification. Stability properties for small 

fluctuations around flat space may be very different from stability properties 

around some compactification solution. Concerning classical stability, no general 

conclusions can be drawn independent of the ground state - the question is always 
about  stability of a given ground state and not about "stabili ty of a theory". (There 
is only one sort of fluctuations for which the stability discussion becomes indepen- 

dent of specific details of the ground state: fluctuations with characteristic momen-  
tum much larger than all inverse characteristic length scales ( L o  1) of the ground 
state will not "feel"  L 0. Unfortunately, these high momentum fluctuations are very 
often outside the range where the effective action can be calculated or estimated 
reliably.) 

The purpose of this paper is twofold. First we want to give a general discussion of 
the stability problem for ground states of higher dimensional theories exhibiting 

* Terms of order R 4 indicate that these spaces are indeed not exact solutions [4]. We suspect the 
existence of many classical solutions with various topologies, and higher derivative terms will play a 
role unless the compactification radius is very large. 

** The connection between "bare" action and effective action is not immediate and even a bare action 
with instabilities from higher derivatives could lead to an acceptable effective action guaranteeing 
classical stability for the ground state [9]. Properties of the bare action S o are relevant for stability 
only if there exists some well behaved expansion series (e.g. perturbation theory) where the zeroth 
order effective action is given by S o and higher order terms lead to small quantitative corrections of 
the ground state without changing its qualitative features. Typically, convergence properties of such 
an expansion series are momentum dependent and the expansion breaks down above the scale M. 
Instabilities from the bare action for momenta larger than M should therefore not be taken 
seriously. 
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spontaneous compactification. Then we demonstrate these ideas by an explicit 
calculation of the linearized fluctuations around a ground state ,g(4 x S D and an 
investigation of their stability properties. We use the most general approximation up 
to four derivatives for the effective action of pure gravity. Specific features of the 
model under consideration are put in step by step, so that the results of the first 
steps can be used in a very general context. 

2. Classical stability for small fluctuations 

In this section we assume that the full effective action is known and admits a 
solution of the classical field equations with four-dimensional Poincar6 symmetry*. 
To perform a stability analysis for small fluctuations, one first expands the effective 
action around this assumed ground state up to terms quadratic in the excitations. 
Next we have to eliminate all unphysical degrees of freedom by imposing suitable 
gauge conditions or considering physical sources to implement Bianchi's identities. 
We remain with a quadratic action for the physical degrees of freedom ~ ,  which, by 
Poincar6 invariance, has the following form in momentum space: 

. d4k 
'-'physC(2) _-- j~_~q,,(_k)Fij(ka)Os(k) 

. d4k 
= + B , j k 2 +  C i j k ' +  . . .  (2.1) 

(Here we have assumed that the inverse propagator Fij(k 2) can be expanded in a 
power series of the four-dimensional momentum squared k 2= krk r .  ) The physical 
fields ~i carry different helicities and internal quantum numbers. There may be a 
finite number of ~i, as in four-dimensional field theory, or infinitely many as 
obtained by dimensional reduction of higher dimensional field theories or in string 
theories. (Any higher dimensional theory has first to be expanded on internal space 
and to be integrated over internal coordinates. This is necessary since we consider 
fluctuations which are local in four-dimensional spacetime, but not in internal 
space.) One chooses a basis for the qsi reflecting the symmetries of the ground state 
so that A i j  , B~j etc. become block diagonal for different representations. 

We first concentrate on a single mode q~ decoupled from all other modes at the 
linearized level. The field equations are 

F ( k 2 ) e o ( k  ) -- ( A + Bk  2 + C k  4 + " ' "  )Co(k) = O, 

(A  - BO r 0 r +  CO r 0 r O~ 0 . . . . .  ) ¢ ~ ( x ) = O .  (2.2) 

Solutions for propagating excitations ~k(x) correspond to zeros of F(k2) .  Possible 

* Generalization to more than four flat dimensions is straightforward. 
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classical instabilities of (2.2) have been discussed extensively by Pais and Uhlenbeck 
[6] and we recall here the main features: 

(i) If F (k  2) vanishes for some real negative k 2 one has an unbounded solution 

= ~0 exp(~:t) ' k 2 = _~:2, ~: > 0. (2.3) 

This instability is usually called a tachyon. Similar unbounded solutions exist for 
excitations localized in space. 

(ii) Zeros of F(k  2) in the complex k2-plane outside the real axis appear in 
complex conjugate pairs. Neglecting spatial variations, such zeros correspond to 
k o = k0R + ikoi with unstable excitations of the form 

= oh0 exp(I k0~ I t)cos(k0Rt + X).  (2.4) 

(iii) Double zeros (or multiple zeros) of F(k  2) lead to unstable solutions (for 
positive real k 2) 

= epotCOS(kot + X).  (2.5) 

So far we are still left with the possibility of several distinct zeros of F for real 
positive k 2= ~2. They do not lead to classical instabilities at the linearized level. 
Indeed, at the linearized level excitations with different lc 2 are decoupled and can 
be regarded as independent particles. Without interactions, the residue of poles of 
F - l ( k  2) has no importance since a separate conserved energy can be associated 
with every excitation and the sign can be freely chosen so that it is bounded from 
below. This situation changes drastically for the interacting system beyond the 
linear approximation. Total energy is still conserved, but it is bounded from below 
only if the residues of all poles of F - l ( k  2) for all excitations ~ have the same sign. 
(Kinetic energy must be positive for all particles.) Any conserved quantity which is 
bounded from below and takes its minimum value only for the ground state is 
sufficient to guarantee classical stability*. For generic interacting systems, the 
absence of such a quantity usually leads to classical instability. Although other 
conserved quantities than energy could in principle assure stability, we will require 
in this paper that energy is bounded from below. This implies additional require- 
ments** of the form of F(k2): 

(iv) For any zero of F at real k 2 ~ 0 the positivity of kinetic energy requires (for 
all ~) 

d F  
Ok 2 (~:2) > 0. (2.6) 

* For small fluctuations, a relative minimum in configuration space of all local excitations is sufficient. 
** Failure of these requirements is not a proof of classical instability, but it indicates the possibility thal 

unstable solutions can be found for the nonlinear field equations. 
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Excitations violating (2.6) are often called ghosts - in our classical context this 
means negative kinetic energy particles. We note that the sign of d F / d k  2 cannot be 
found from the field equations (2.2) since they are insensitive to a change of sign. 
We can determine this quantity either from the effective action (2.1) or alternatively 
from field equations coupled to sources (compare ref. [10]). The requirement (2.6) 
immediately excludes the existence of more than one zero of F(k  2) if F is 
continuous for all positive k 2. (For several distinct zeros, d F / d k  2 necessarily alters 
its sign.) 

(v) Finally F(k  2) should not have essential singularities for Ik12~ oo. Such 
singularities can be viewed as degenerate zeros which could appear at finite I k 21 for 
the interacting system and then lead to instabilities [6]. 

We can now state our stability criterion as follows: For all physical excitations q, 
the inverse propagator F(k 2) should have only one zero for real k2>~ 0 with 
d F / d k  2 > 0 and no essential singularity at Ik21 ~ oo. (The only entire function 
fulfilling this criterion is F =  A + Bk 2 with A ~< 0, B > 0. However, the inverse 
propagator derived from the effective action of a realistic theory is not expected to 
be analytic in the whole k 2 plane. It typically has branch cuts - for example a 
logarithmic behaviour [11].) Especially, the constant term in F must always be 
negative or zero: 

A = r ( k  2= 0) ~< 0. (2.7) 

This is equivalent to the boundedness of potential energy. Indeed, for k 2-- 0 the 
quantity - Sphy s = V is the effective potential which should be (locally) positive 
semidefinite with minimum for the ground state at V= 0. For massless modes 
(A = 0) one needs 

d F  
B = 5-25,.2 (k 2 = 0) > 0. (2.8) 

dE 

To complete our general discussion we still have to consider the case where the 
inverse propagator F~j in (2.1) involves several modes ffj. The propagating excita- 
tions are now determined by a matrix equation 

F~j (kZ),/,j(~:) = 0. (2.9) 

For any given zero eigenvalue of F at lc 2 we can diagonalize the system in the 
vicinity k 2 = ~ 2, so that the propagating mode is decoupled from the other compo- 
nents in ~bj, and then apply condition (2.6). By similar arguments as before one finds 
that zeros should only exist for real ~: 2 >~ 0. The appearance of more zeros of F than 
components ~bj again indicates instability (as in (iv) above). Also, the effective 
potential has to be bounded from below requiring Aij to be a negative semidefinite 
matrix. A proof of these statements uses continuity arguments which are preserved 
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by k2 dependent rotations and rescalings of ffj by which F/j (kZ=lc  2) and 
dF,7/dk2 ( k 2 =  ~2) can be simultaneously diagonalized. At this point we mention 
that a discussion of classical stability is not affected by arbitrary k 2 dependent field 
redefinitions of q~j, as long as these transformations are invertible and contain no 
additional zeroes or poles in the complex k 2 plane. 

In conclusion, higher derivative effective actions do not necessarily lead to 
classical instabilities [12]. First of all, not all higher derivative terms really induce 
higher powers of k 2 in the inverse propagator F(k 2) for physical modes. A well 
known example are dimensionally continued Euler forms in gravity [13]. However, a 
restriction to such terms for the effective action is by no means necessary. In 
general, we expect F(k  2) to deviate from the simple form A + B k  2. This does not 
necessarily lead to additional poles. In contrast, higher poles appear if an expansion 
in powers of k z or in powers of derivatives in the effective action is cut after a finite 
number of terms. This happens even for well behaved propagators and should then 
be considered as an artefact of these expansions, to which we turn in the next 
section. 

3. Expansions in powers of k 2 and in the number of derivatives in the 
effective action 

For realistic models it will be impossible to calculate the full effective action and 
to perform the stability analysis outlined above. One will have to use approxima- 
tions and typically consider only a finite number of derivatives in the effective 
action a n d / o r  a finite power of k 2 in the inverse propagator. What can one 
conclude from such expansions for the stability problem? 

We first describe the expansion in powers of momentum. For this discussion, let 
us assume that the full effective action for physical small fluctuations Sp(2)y s is given 
and can be expanded in powers of k 2 around k 2= O. It is obvious that any 
approximation by a finite number of terms in this expansion series breaks down for 
sufficiently high k 2. A restriction of the power series to a finite number of terms up 
to (k2) u will always lead to N zeros of F(k2). If such zeros occur outside the k 2 
range where the approximation can be trusted, they should be interpreted as 
artefacts of an insufficient approximation rather than as an indication of classical 
instability. 

In principle, the range of validity for a finite number of terms can be estimated 
roughly to be the overall mass scale ~ 2  appearing in ratios of coefficients for 
various powers of k z in the series. The scale ~ 2  may be related to a fundamental 
mass scale M z of the theory, like the string tension in string theories. The expansion 
parameter is k2//)~ 2. In practice, however, a quantitative estimate of the range of 
validity in k z requires the knowledge of several terms in the power series expansion 
which are often difficult to obtain. This means that it is often impossible to decide if 
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"higher poles" appearing in F-l(k 2) are indications of instability or artefacts of the 
approximation. 

There are special cases where the first zero of F(k 2) appears for Ik2l << ~t2. This 

is the case for massless fields like graviton and gauge fields. It also can happen for 
the lowest massive modes from the harmonic expansion around a compactification 
solution, if the compactification "radius" L 0 fulfils 

Lo 2 << Er2. (3.a) 

For  such "lowest zeros" we can approximate F(k 2) by the first two terms F =  A + 
Bk 2. Positive values for A or negative values for B imply classical instability. We 
call possible instabilities from zeros of F at L k21 << ~ 2  "low momentum instabili- 

ties". Any ground state with low momentum instabilities has to be discarded, 
whereas apparent "high momentum instabilities" from zeros at Ik21 >_ ~t2 have a 
very questionable status and should not be taken too seriously. 

We next turn to expansions in the number of derivatives in the effective action. 
Although related to the k 2 expansion, the latter approximation is of a different 
nature. In higher dimensional theories with spontaneous compactification, a term 
with p derivatives in the effective action does not only give contributions of order 
k p to F (k  2) in c(2) but also all sorts of terms - ZoRk p-it since derivatives can ~phys' 
act on internal coordinates. In particular it contributes to the coefficients A and B 
in the k 2 expansion. As a consequence, the inclusion of higher derivative terms 
could in principle modify conclusions about low momentum (in)stability. For 
example, they could switch the sign of the kinetic term for the graviton. In theories 
with a fundamental mass scale M 2 the expansion of the effective action in the 
number of derivatives generates a double expansion of F(k 2) in powers of (LoM)  -1 
and in k 2 / M  2. The contributions to A and B (relevant for low momentum stability 
analysis) only converge if 

LZM 2 >> 1. (3.2) 

If LZM 2 is too small, no reliable stability analysis can be based on the first few 
derivatives in the effective action. 

The scale M appearing in the k 2 expansion and the scale M from the expansion 
in the number of derivatives are both related to the fundamental mass scale of the 
theory. However, the k 2 expansion and the (LoM) -1 expansion may have very 
different coefficients. For example, if all higher derivative terms would be dimen- 
sionally continued Euler forms [3], no higher powers of k 2 would be generated and 
the range of validity of the k 2 expansion would extend to infinity. Nevertheless, the 
higher derivative terms would induce a nontrivial expansion of F = A  + Bk 2 in 
powers of (LoM) -1. Similarly, if all higher derivative terms are "near"  dimen- 
sionally continued Euler forms, all kU(N > 2) coefficients in F (k  2) are small and 
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~f2 is therefore large. Approaching Euler forms, the apparent higher poles move to 
very high values of k 2. If the effective action is sufficiently "near" the Euler forms, 
a stability analysis for low momenta is valid whereas the higher poles can be 
neglected as artefacts of the k2 expansion. 

Unfortunately, it is not so easy to give to these statements a more quantitative 
character. An order of magnitude analysis becomes often rather involved due to the 
existence of small parameters inherent in spontaneous compactification, like 1/D or 
1/N with D the number of internal dimensions and N a typical topological number 
like monopole number. 

Let us finally briefly discuss the two lowest approximations based on two or four 
derivatives in the effective action. If the second derivative approximation leads to a 
ground state solution with Lo 2 << M 2, low momentum classical stability can be 
investigated reliably for all massless and massive particles. (Such an analysis was 
done for the six-dimensional Einstein-Maxwell system in ref. [10].) As long as M E is 
not known (its determination requires the knowledge of higher derivative correc- 
tions) classical stability analysis can be considered as self-consistent. 

This changes for the fourth derivative approximation (which is sometimes neces- 
sary to obtain compactification). Unless the fourth derivative term is a pure 
dimensionally continued Euler form (in which case the status of stability analysis is 
similar to the second derivative approximation) we now have terms of order k 4 

which necessarily lead to unwanted higher poles in all propagators. Let us denote by 
[kc2[ the location of the lowest higher pole of the system. I f  Lo 2 << ]kc2[ it is still 
possible to make a low momentum stability analysis for particles with mass 2 << I kc21 . 
The neglected terms with more than four derivatives can modify the effective action 
strongly at k 2= Ik21 without altering qualitatively the coefficients A and B. 
(Contributions with [kc2l/M 2 of order one correspond to a small parameter 
( L o M ) - I . )  This argument breaks down if [k~[ is of the same order as Lo 2. 

A possible strategy for stability analysis, which we will follow in this paper, 
investigates first the parameter range for which low momentum stability is realized. 
Then the location of higher poles is established for this parameter range and one can 
check if Lo 2 << Ik~l is fulfilled. If not, one would conclude that either the system is 
unstable or the fourth derivative approximation is unreliable. 

However, even this conclusion may be too strong. First of all, possible contribu- 
tions from neglected higher derivative terms could appear quite differently for 
various propagators such that a criterion based on a single I kc2[ may be questioned. 
A weaker criterion would only require that for any given propagator F - l ( k  2) the 
(physical) lowest pole is sufficiently below the (unphysical) higher poles. Second, the 
use of some other function system gN (k 2) instead of (k 2)U to describe a systematic 
expansion will in general lead to a different location of ]k21. (This is similar to the 
use of Pad4 approximants instead of a simple power expansion in statistical 
mechanics.) One could even imagine the existence of a system of functions for which 
no unphysical poles appear at any finite order. Certainly, a better check ot 
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consis tency for a description of the ground state by a four-derivative approximat ion 

would  include the next (six derivative) terms and verify if changes for the ground 

state solution as well as for location and residues of  the lowest poles are small. This 

is, however, outside the scope of  our paper. 

4. Four-derivative approximation for gravity 

To give a specific example for the points discussed above, we consider the most  

general pure-gravity effective action in d = 4 + D dimensions with no more than 4 
derivatives and vanishing torsion*: 

1 fddx i ~ ] _ ( a R 2  ~ R R ~ 8R + e) (4.1) S = - - ~  + f l R ; , ~ R  + y _ ~ _  + . 

Here  N is a normalization constant  which is chosen to be the volume of the 

D-dimensional  compact  manifold. The parameters a, fl and 7 are dimensionless, 8 
has d imension (mass) 2 and the d-dimensional cosmological constant  e has (mass) 4. 

The  classical equations of mot ion derived f rom (4.1) have solutions which are a 

direct  p roduc t  of  the form ,¢t '4 x S o with the curvature tensor given by 

for/29~3~t being S ° indices, 

R # ~  = 0,  otherwise. 

For  the g round  state, the radius L 0 of  the hypersphere S ° obeys 

Lo  2 ~--- y = 8 / 2 ~ ,  

where 

= D ( D -  1 )a  + ( D -  1)fl + 2y .  

(4.2) 

(4.3) 

(4.4) 

Obviously,  3~'-1 must be positive; in order to exclude that the potential of  the scalar 
associated with the variation of L 0 is unbounded  f rom below, which immediately 
would  give rise to an instability, one even has to assume 8 > 0 and ~ > 0 separately 

[1]. Fur thermore,  to obtain a vanishing 4-dimensional cosmological constant,  e has 
to fulfill the " f ine  tuning" condition 

e =  1 8 2 D ( D -  1)~ -1.  (4.5) 

* Our conventions are as follows: the signature of the metric is (+ ... ). Indices/2, ~ .... run 
from 0 to d - 1, whereas/x, v .... are Minkowski space indices running from 0 to 3 and a, fl .... are 
internal indices running from 4 to d - 1. The Riemann tensor is R ~  x = 8~F~ '~ + • • • and the Ricci 
tensor R~ = R~'~. Furthermore, we use a 2 = 3~3 ~, b 2 = D~D ~, D 2 = D;,D ~ and h = h~. 



M. Reuter, C. Wetterich / Classical stability 767 

Hence the number of free dimensionless parameters in (4.1) is reduced to three. For 
later reference, we also note the 4-dimensional Planck mass Mp obtained by 
expanding around J t  '4 × S D, which sets the overall mass scale: 

M g = 161r8 [fl(D - 1) + 2y] f - '  = (1019 GeV) 2. (4.6) 

Note that for a, r ,  ~/ of order unity, the Planck mass squared is larger than the 
typical mass scale of the action, viz. & 

The first step in the stability analysis of (4.1) with respect to ,//~¢4X S D is to 
expand the metric as 

g~ = ~ + h~ ,  (4.7) 

where h~ describes small fluctuations around the background metric ~ given by 

0) 
g~ = ~ ¢ ( x ' )  ' (4 .8 )  

with ~/~,, the metric of Minkowski space and ~B(x  v) the metric of the hypersphere 
with radius L 0. Inserting (4.7) into (4.1), the terms linear in h~ vanish due to the 
equations of motion. The bilinear terms describe the small fluctuations we are 
interested in. Higher terms, which we will ignore, would describe interactions 
between them. So we have to consider the quadratic action 

S (2) 1 f ddx {.( R2)'2' + a(v4FFRa Ra )(2' 2N 

+'l,(I1/~R~nR~i~°~) (2) + 8 ( I ~ R )  (2) + e(1/~)(2)+ 21/~hf,~Q~), (4.9) 

where (...)(2) denotes the second variation of ( . . .) .  The explicit expressions for 
these second variations of the various invariants are listed in appendix A for a 
general background. 

In (4.9) we have also included a coupling of the field h~ to an external source 
Q~. In order for the (linear) equations of motion derived from S (2) to be consistent, 
one must require this source to be covariantly conserved: 

D~Q ;'~= O. (4.10) 

Instead of the fluctuations h~ one can use the sources Q~ to extract the propagat- 
ing degrees of freedom. This is particularly useful if the gauge choice does not 
eliminate all unphysical degrees of freedom. Indeed, the fields h~ are related by 
Bianchi identities which have a rather complicated form, whereas the corresponding 
relation in terms of the sources takes the simple form (4.10). To extract the 
propagating degrees of freedom from the sources [8], one has to ~solve the equations 
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of motion for h ~  as a functional of Q~ and insert the result back in S(2): 

1 
°physK'(2) = -- 2N f dax [~h~(Q)Qf*~ (4.11) 

After dimensional reduction, eq. (4.11) will define the propagators for all physical 
states of the theory, so that one can read off their masses and residues. 

To proceed from (4.9), one chooses a gauge (or coordinate condition) which in the 
case at hand is most conveniently taken to be* 

/2b D~h = 0 .  (4.12) 

If one inserts the background metric (4.8) into (4.9) with the variations given in 
appendix A, it is possible to cast all terms containing covariant derivatives D~ with 
respect to internal coordinates into the form of the Laplace-Beltrami operator 
b 2 = D,~D '~ on the sphere S D or its square b 4 ~ D,~D'~DBD ~. To do so, one has to 
make extensive use of the commutation relations of the D,'s; these contain the 
Riemann curvature tensor and its contractions, which is explicitly given by the first 
line of (4.2). Since y has dimension (mass) a, several types of terms can appear: pure 
derivatives as 0 4 b 20 2 or b 4 mixed terms like fi0 2 or yD 2 and finally non-deriva- 
tive terms proportional to y2. After a lengthy calculation one finds 

1 
S (2, ~-- - - -  f d"x d N  

2N 

X { ha'8[Al( 04 --}- 202b  2 + b 4 ) --}- A202 -.}- A3 b2  -{- A4]ha, 8 

_.1_ h~ [Bl(Oq 4 q_ 20q262 ..}_/~4) + B232 + B3b2 + B4 ] h/~ 

+h".[G( O 4 + 202b 2 + b 4) + C202 + C,D 2 + C4] h~ 

+h~U[Fx( O 4 + 202b  2 + b 4) + F202 + F3D 2 + F4] h , ,  

+h~'"[al(o 4 + 202D 2 + b 4) "~ G202 q- G3 b 2  + G4] h, ,  

q,-h~ [Hi( 04 + 20292 -]- b 4) + H202 +//3 b2  + Ha] h; 

. . . .  ~-h~O~,O~h ~,~) +L(h,~O~O h~+ho~O~O~h°~ h,~O~,O~h 

+ 2 ( h ~ e  ~ + 2 h , O "  + ho~e°~)}.  (4.13) 

* Another choice one could think of is the light-cone gauge, which is known to greatly simplify the 
stability analysis of 11-dimensional supergravity [14]. However, it turns out that because of the rathel 
complex form of (4.9), the derivation of the constraint equations is prohibitively complicated. 
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The coefficients Ai, Bi . . . .  are defined in appendix B; they are polynomials in D of 
2 maximal degree 4 for R 2, 3 for R2~, and 2 for R a ~ .  These expressions are the same 

for any number n of flat dimensions, i.e. for any of the spaces .,¢1,n × S D. This can 
be exploited for a simple check: since for n + D = 4 and the Euler form coefficients 

-- 1, fl = - 4 ,  y = 1 the 4th order lagrangian is a total derivative, its contribution 
f o r ( D = 0 ,  n = 4 ) , ( D = l , n = 3 ) , ( D = 2 ,  n = 2 ) , ( D = 3 ,  n = l )  a n d ( D = 4 ,  n = 0 )  
should drop out; moreover, for (D = 1, n = 3) the terms containing f and 3 2 have 
to vanish for all values of a, fl and 3' since for D = 1 we have zero internal 
curvature. One can verify that the polynomials given in the appendix indeed have 

these properties. In writing them down we have not yet employed the "mass shell" 
condition (4.3), i.e. they can be used for the expansion around ~ ' " ×  S D for an 
arbitrary radius L = y - z / 2  of the hypersphere. 

5. Harmonic analysis and dimensional reduction 

The fields appearing in (4.13) are functions of both the Minkowski space 
coordinates x ~ and the internal coordinates xV; to evaluate the action of /~2 on the 
latter, we now expand these functions in terms of the S ° tensor harmonics. Their 
/)2 eigenvalues and the corresponding degeneracies have been given by Rubin and 
Ord6~aez [15] (cf. also ref. [16]). The results we will need in the following are 
summarized in table 1 : any vector field on S D*, for instance, can be expanded in 
terms of the transverse vector harmonics TI~ ,, where l denotes a particular b 2 

TABLE 1 

Eigenvalues of /~2 acting on the tensor harmonics defined in the text 

Eigenfunction Eigenvalue Degeneracy 

symmetr ic  tensors 
Tt'~,#. •=2,3  . . . .  [ l ( l+D-1)-2]~=-*l l~ DI(D,2)* 

LT~, / = 2 , 3  . . . .  [l( l+D-1)-(D+2)]~=-Ti2~ DI(D,1 ) 

L ~ ,  •=2,3  . . . .  [I(I+D-1)-2D]~=-*13~ Dr(D,0  ) 

~'~/~To., 1 = 0 , 1  . . . .  1(1+D-1)~=-~4~ DI(D,O ) 
vectors 

Tt~,, l = 1 , 2  . . . .  [ l ( l+D-1)- l ]y=-*ls~  Dr(D,1 ) 
L%, l = 1 , 2  . . . .  [ l ( l + O - 1 ) - ( D - 1 ) ] y = - n 6 ~  Dt(O,O ) 

scalars 
Tt,,,, / = 0 , 1  . . . .  l ( l+D-1)~=-n4~ DI(D,O ) 

Explicit formulas for the degeneracies Dr(D,0),  etc. can be found in ref. [10]. 
*There is no transverse-traceless tensor for D = 2. 

* F rom now on we always will assume D >/2. 
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eigenvalue and m is a degeneracy index, and the longitudinal vector harmonics 

Lt~.. - D'~TI,. (5.1) 

formed from the scalar harmonics T/m. Similarly, the expansion of a symmetric, 
rank-2 tensor field requires four types of harmonics: a transverse-traceless part Tzm ,~B 
a longitudinal-transversal part 

LT, m - D~'Tfm + DZTI~. (5.2) 

a longitudinal-longitudinal part 

2 
L'o~ - D'~Lt~m + D#L'~ - --°D g"/3D~ L~m (5.3) 

and a trace part ~a~Tt, ~. All harmonics are assumed to be normalized to unity. Their 
eigenvalues are shown in the table; for explicit expressions for the degeneracies 
DI(D,O ), etc. we refer to Rubin and Ord6fiez [15]. 

Now one can expand the fluctuations as* 

f d ' k  ik xP[ oc DI(D.2) 
ha#(x)  = 7-d----~ne ' ~ E E S l l m ( k ) T / f ( x Y )  

(2rr) ~1=2 rn=l 

+ 
o¢ Dr(D,1) oo Dt(D,O) 
E E Z E S,,Ak)L:m(X ) 

1=2 m = l  1=2 m = l  

o¢ Dt(D,O) )} 
+ff~a#(x~') E ~, S4,,n(k)Tlm(X" , 

I = 0  m = l  

f d ' k  ikx~f o~ h ~ ( x )  = ,-7----~,~e ~ ~ ~_, 
(27r) ~ ,=1 

Dr(D,1) 
Z V~m(k)Ttam( xv ) 

m=l 

oo Dt(D,O) a y)} 
+ E E V~lm(k)Llm(X , 

1=1 m = l  

dnk p oo DI(D,O) 
h ~ ' ( x )  = f ,k x 7-Z---~ e "  1_, ~_. H]*~(k)T, , . (xr)  • 

(2~r) t=o ,~=I 
(5.4) 

With respect to the Minkowski space coordinates we performed the usual Fourier 

* To be  s l ight ly  more  general,  we assume here and in the fol lowing n f lat  d imensions .  
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transform to momentum space. The fluctuations are now parametrized by an 
infinite set of scalar functions (in the sense of J/C") Sitm, i =  1 . . . .  ,4, vector 
functions V~'m, i = 1, 2, and tensor functions HrS. Taking the harmonics to be real, 
the reality of the fields implies Si~'m(k ) = S ,m( -k ) ,  etc. In the same way we expand 
the external sources with coefficient functions Qilm, q~m and qr,~ replacing Sit,,, V/~m 
and H]~. Inserting (5.4) into (4.13) and performing the integration over the internal 
coordinates x ~ by using the orthonormality relations of the tensor harmonics, one 
arrives at the following purely n-dimensional action for the various towers of fields: 

S (2) ~_. _ _ _  
, 

2N J (2~r)" ~" [a[k4+a2k2+a~]lSil2 
i=1 

2 

+ 2 ( -  [e ,e  +/j]l v/,I + 
i=1 

q - [ a l  k4  q- g2 k2  q- g3]ln~VlZ 

+ [Hi k4 + h2k 2 + h3]lnffl 2 

-t- S :  [ C 1 D k  4 .-I- C2 k2  "k ¢ 3 ] H ;  

+ L ( D S Z k , k , H  ~'" + H ; * k , k , H " -  Hf,*kok,H'" ) 

+ source terms / . (5.5) 

(The indices l, m have been omitted for brevity.) The coefficients i i a j ,  f j  , . . .  contain 
the quantities ~k, which are essentially the eigenvalues of b 2. They are defined in 
appendix C. 

6. Irreduc ib le  d e c o m p o s i t i o n  and  e q u a t i o n s  o f  m o t i o n  

To obtain the linearized equations of motion in a simple form it is advantageous 
to decompose the fields and sources appearing in (5.5) into irreducible parts with 
respect to the Lorentz group. For the vector and tensor fields one writes 

Vi~ m. = VT~ m "F ik~dPitm , i = 1 , 2 ,  

~'~ • t' ~ ~ . ( 6 . 1 )  H; =H q,m)+ TT Im "film "F --  g#VO ' 

where one requires 

k~V/~m = k~H~m = k ~ H ~  = T.r~tmH ~ ----0. (6.2) 
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Similar expansions are introduced for the sources. The functions corresponding to 
ffi.~, H}'m, ~t.~ and ol, ~ are denoted by q0.m, l, Vt~, wl. , and q~... The continuity 
equation (4.10) now reads 

k2q0x,,= 1, ,, = 0, (6.3a) 

k2~xt,,, = (½y)1/2[l(l + D - 1) - D] 1/2Q2lm , l >/2, (6.3b) 

2 _ (6.3c) k ~ 2 , l - l , m -  ( Y D ) I / 2 Q 4 , ~ = I , m ,  

k2q921m = fil/2 [(1 -- 1 / D ) I ( I  + D - 1) - (D - 1)] t/2Q31m 

+~1/2[l ( l+ D - 1)] a/2Q4,,~, l>/2,  (6.3d) 

k2W/~-0, m = 0, (6.3e) 

(El -- 1 ) k 2 W  l=o, m "~ qt~l=O,/Z m = 0, (6.3f) 

k z W ~  =y~/2[ l ( l+ D - 1)] ~/2q~',,, l>/1,  (6.3g) 
T 

yl/z[l(z+ D - 1 ) ] 1 / % 2 ,  m = - 1 - k 2 w t ~ -  -n q,,m, ~ l >/1. (6.3h) 

Correspondingly, the gauge condition (4.12), when expressed in terms of the fields 
appearing in the decomposition (6.1), leads to a similar set of equations. Because the 
gauge condition was used in deriving the action (5.5), the equations of motion for 
the various fields have to be determined by a constrained variation taking this 
condition into account. The fields H "~, ~ and S a do not couple to others and we 
can vary them independently. For the coupled sets (V~',[H~];I>~ 1}, ($2,[q~11; T T 
l>~2}, (S4, o, D1]; 1=0}, {$4, o, D1,~2]; l = 1 }  and ($3,$4, o, D1,~2]; 1>~2) we 
eliminate the fields in the square brackets together with their sources using (4.12) 
and (6.3). We then perform an independent variation with respect to the others. The 
solution of the equations of motion has to be inserted into (4.11), which now reads 

1 d"k ( 3 2 
= - - -  ~ E E Si*Qi + DS~'Q4-  2 E TV~i*qi. + k2~*% 

~'phy~ 2N (2~r) t,~ i=1 i=1 

( 1 )  1 ,q ;}  (6.4) + H ~q* ~'~+ 2 k 2 q ~ W ~ +  1 - k 4 ~ * w + - o  . 
TTtZ TT ~ n 

After a lengthy calculation one obtains the following action for the physical modes 

1 d~k [ ] 
Ophys--qU(2) -- f 2 N  (21r)" [ E{tm L T +  L v l  + L v 2 +  Lsl + Ls2 + L34q} + LOq+ L14q ] 

(6.5) 
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where 

-1 2 
~'" l>~0, LT=[Glk4+g2k2+g3] q l m ,  

Lvl=_4[F1k4+f21kZ+f]l_Xq ~ 2, l>~1 Tllm 

4 
Lv2 = - k S [ k 2 - l ( l + D -  1)y] 2 

x ( - k 2 [ F 1  k4 +f2k2 +f?] + 2l(l+ D -  1)fi 

X[GI k4 + (g2-1L)  kz + g3]) -1 ~lm 2 

Lsl = [alk4+a~k2+al]-llam,,12, l>~2, 

1 
Ls2 = ~5[k 2- { l ( l + D -  1) -  D}y]2 

X( k2[a?k 4 + a2k 2 + a 2 ] -- ½y{ l(l  + 19-- 1) - D } 

X [ r l k  4+  (f21-L)k 2-'}-fl])-llQ2lm[2 , 

I ~ + L34q=7(Q,,Q4,q¢)t,,,pl~-lo(Q3,Q4,ql,)tm , l>2, 

eOq= 4XO(D2(,o+ _ _  

l>_-2, 

1) 
n ( n -  1) ~o IQ412 + ( n -  1) -2e°''z'2~3,~z, 

l>11, 

-D(n - 1)-l~°QZq~ } ,=o' 

L14q = ~-~1( [(091)2~ + (¢a)2)2~ 1- £01(.d2~]1Q4] 2 

+[(  2 ,  1 1  °°2) ~1+4(n-1)-2~1-2a~2(n- l )  ~3]lq~l 

n t- [2~01002~ 1 q'- 4002(//-  1)--1~ 1 

This 

773 

(6.6a) 

(6.6b) 

(6.6c) 

(6.6d) 

(6.6e) 

°(6.60 

(6.6g) 

-I 1 , /L -((o~2)2 + 2ah(n-  1 ) )~3]  Q4q,} ,_x. (6.6h) 

is our main result. It corresponds to the effective action (2.1) in sect. 2 
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expressed in terms of sources. The complicated k 2-dependent coefficients appearing 
in (6.6f)-(6.6h), in particular the matrices to and M, are tabulated in appendix D. 
Eqs. (6.6a)-(6.6e) are already of the general form (source)*. F - l ( k 2 )  • (source), so 
that the propagator F - l ( k  2) for the various types of fields and hence the masses 
and residues we are interested in can be read off easily• For (6.6f)-(6.6h), however, a 
diagonalization with respect to the sources still has to be done. Fortunately, it turns 
out that for the stability discussion it is not necessary to explicitly perform this 
diagonalization (see below). 

Looking at the Lorentz transformation properties of the sources, eq. (6.5) with 
(6.6) shows that the physical fluctuation (or particle) spectrum contains one tower of 
spin-2 particles, generated by q"~, two towers of spin-1 particles associated with ~t ~ 

TT 
and q~', as well as 5 towers of spinless excitations coupled to Q1 . . . . .  Q4 and q~. 

• T . . . . . . .  

Their stabxhty properties wdl be discussed in the next section. Here we only add a 
brief comment on the apparent k 2 = 0 poles of propagators like that in (6.6c), which 
contains contributions of q~' and of the dependent source W ~, which has been 

• . T . 

eliminated via (6.3g). Obviously, if ~2~ would be nonzero for k 2 ~ 0, W ~ diverges in 

that limit. This should be interpreted that there is no massless excitation with the 
quantum numbers of W ~ or ~ ' * ,  but rather that for k 2 ~ 0 the function q~'T is an 

inadequate choice for a physically meaningful source• (We deal with a "coordinate 
singularity" in the space of source functions•) Since the definition of W ~ in terms of 
q~ breaks down for k 2 ~ 0, we should use W" as the correct independent source in 

that region; this results in a propagator without a pole at k 2 = 0 and hence there is 
no massless particle associated with this spurious pole. It is clear from (6.6c) that 
the propagator for W" would not 
expected since curvature effects are 
large momenta. For any choice, the 
locations and the residues of the true 

We also checked that the residual 

fall off as l / k  4 for k 2--) oc, as is naively 
not assumed to play any role at sufficiently 
physical content of the propagators, viz. the 
poles, is the same. 

gauge invariance, which is still present after 
imposing (4.12), is not sufficient to gauge away any of the massive states, as it 
should be. However, at the massless level of the S T tower, say, it is possible to 
eliminate 3 of the 5 degrees of freedom contained in H "~ , so that one ends up with 

XT 
the two degrees of freedom of the graviton. 

7. Masses and residues 

In this section we investigate the pole structure of the propagators of (6.6) and its 
implications for the classical stability of our model**• Since the general form of the 
equations derived so far is quite difficult to survey, we now will restrict ourselves to 

* Similar spurious massless states also appear in the procedure of Randjbar-Daemi, Salam and 
Strathdee [10]. 

** It is only at this point that we use (4.3) and (4.5). 
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two particular examples for the value of D, viz. D = 2 and D = 9, giving rise to a 
SU(2) and SO(10) Yang-Mills gauge group, respectively. Our aim is to find those 
domains in (a, r ,  y) space, if any, where the stability criteria discussed in sects. 2 
and 3 are fulfilled. It turns out that the masses and residues of the lowest lying poles 
depend on the ratio of a, fl and y only, but not on their absolute magnitude. 
Therefore it is convenient to introduce 

8~ = a / 2 ~ ,  fi = fl/2~', "~ = y/2~" (7.1) 

as new parameters. Exploiting (4.4), we express ~7 as 

= ¼11- 2 a D ( D -  1) - 2 f i ( D -  1)] (7.2) 

and use (& fi, ~) as the new set of independent parameters. We discuss the lowest 
excitations (of the expansion in k 2) for the various towers separately: 

(a) The  tensor  tower T. The action is given by (6.6a). We first look at the term 
for l =  0 which admits only a single m-value since D o ( D , O  ) = 1 according to ref. 
[15]. Taking the polynomials from appendices B and C with y = y  given by (4.3) 
and e given by (4.5), one can show that g3(l  = 0) = 0 for all values of D and n, i.e. 

L T ( I  = 0) = (7.3) 
g2(0) f2 k : + g 2 ( O ) / a l  

Here we recover the massless graviton pole together with a massive excitation with 
(mass) 2 = -g2(O)/G> The first pole has the correct residue if one requires g2(0) < 0 
since this leads to a positive euclidean action for the massless excitation and 
therefore to positive kinetic energy. From the appendices, one has 

g2(O) = - l [ f l (  D - 1) + 23'] 3~,-1 (7.4) 

and since 8~-1 is positive, it follows that one must require 

f l ( D -  1) + 2y > 0. (7.5) 

In view of (4.6), this is precisely the condition which guarantees the positivity of 
M 2. Numerically, (7.5) means 

a < 1 for D = 2, 

t~ < ~ for D = 9. (7.6) 

For the massive excitations we only investigate the lowest pole in the small 
momentum approximation discussed in sect. 3. For l > 1 and to the first order in 
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k 2, the action reads 
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1 1 ] 2 
L T ( t  > /1)  -- - -  

g2(l)  k 2 + g3 ( t ) /g2 ( t )  TT 

so that we must require g2(l) < 0 and g3(l) > 0 to ensure the correct residue and a 
positive (mass) 2 at the higher levels of the tower. Evaluating these rather com- 
plicated inequalities using appendices B and C with (4.3), eqs. (4.5) and (7.1) with 
(7.2) one finds several remarkably simple conditions. 

(i) D = 2. From g2(l = 1) < 0 it follows that 

< ¼ - ½/ft. (7 .7)  

For higher values of l, the magnitude of the coefficient of/3 monotonically increases 
to ¼: 

1 1 ~ < ~ - ~/3. (7.8) 

The second inequality, g3(/) > 0, turns out to be independent of l; it leads to the 
constraint (7.8), too. Note that, as advertised, (7.7) or (7.8) is indeed independent of 
the absolute value of a, /3 and ~,, i.e. independent of ~. 

(ii) D = 9. In both inequalities the /-dependence is negligibly small and one 
obtains for any of them 

1 < i-~ - 4~/3. (7.9) 

(b) The vector tower V1. The situation is similar to (a). One finds f¢(l = 1) = 0 
for all D and n, so that there are again massless particles at the lowest level of the 
tower. Since their degeneracy is [15] 

DI(D,1 ) -- ½D(D + 1) = dim SO(D + 1), 

and because we will discover no further massless excitations, these must be the 
gauge bosons. The Yang-Mills pole has the correct residue for 

( D -  1)/3 + ( 3 D -  2)~ > 0. (7.10) 

At those points of the parameter space where in (7.10) the equality sign holds, the 
kinetic term of the gauge bosons vanishes or, equivalently, the gauge coupling 
becomes infinite. Similar to the graviton in (7.3), the gauge fields have massive 
companions with the wrong residue and (mass) 2= - f ) ( 1 ) / F  v 

Considering the levels with l >/2 and neglecting the k 4 term, stability requires 

f~( l )  < O, f31(l) > 0. (7.11) 
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The numerical results for our examples are: 

(i) D = 2. Condition (7.10) for the Yang-Mills residue again leads to (7.8); the 
same is true for the inequalities (7.11), which turn out to be/-independent.  

(ii) D = 9. Condition (7.10) reads 

a < 1 23 h ,  (7.12) 144 25~ 

which numerically is almost the same as (7.9). The second inequality of (7.11) is 
exactly independent of l, the first to a very high degree of accuracy. They both lead 
to (7.9). 

(c) The vector tower V2. The propagator (6.6c) has no true massless poles, i.e. 
there are no singularities if one uses W" as the independent source. Expanding to 
order k 2, one finds the stability criteria g3(l) > 0 and 

f3 2 -  2•(•+ D -  1 ) f i ( g 2 - ½ L ) - g 3 > O .  

The first condition already had appeared in (a), and after some lengthy calculations 
the second one is seen to imply the following constraints on the parameters: 

(i) D = 2. For 1 = 1 the inequality reads 

1 0.350~. (7.13) H < ~ -  

For  / becoming large, the coefficient of/3 monotonically increases to -0 .25,  so that 
the bounds become less restrictive. 

(ii) D = 9 .  For l =  l one has 

1 0.172/~ (7.14) ~ < ~ -  

as the most restrictive bound; for large values of l, the inequality approaches (7.9). 
(d) The scalar tower $1. There are no massless particles. Stability of the lowest 

massive excitations requires 

a~(l) < 0 ,  a~(l) > 0 .  (7.15) 

The S 1 tower does not exist for D = 2 (cf. table 1). For D = 9 the first inequality is 
/-independent and leads to (7.9); the second one reads 

1 8 < - O.106B $ 

for 1 = 2 and monotonically approaches (7.9) for l large. (In particular for D = 9, 
" large" already means the second or third/-value.) 

(e) The scalar tower $2. Proceeding as in (c), one finds no massless poles; the 
stability of the lowest massive ones requires f¢(l)  > 0, which already appeared in (b) 
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a) 

" ' •  1/4 O./T ii/ii!i!iiiii~il;ii!~i~i!iiii~i2 
V2 

uler form ] -0.172/V2 

D 111l./. O./T ¼ 

Fig. 1. In the shaded part of the 4, fi-plane all stability requirements coming from the lowest poles of 
the T, V1, V2, S1 and $2 tower are fulfilled. (a) For D = 2, (b) for D = 9. The slope of the boundary lines 
and the respective towers as well as the location of the Euler form point (a  = 1, fl = - 4 ,  3' = 1) for D = 9 

are indicated. 

for l >/2, as well as 

a 2 -  ½ y ( l ( l +  D -  1 ) -  D } ( f ~ -  L)  - f ~  > 0. (7.16) 

This inequality is independent of l and is equivalent to (7.8) and (7.9) for D = 2 and 
9, respectively. 

All pairs (& fi) fulfilling the stability criteria derived so far form an extended 
region in the 6, fl plane, which has been sketched in fig. 1. If one also would take 
the coupled scalar equations (6.6f, g, h) into account, its area could become smaller 
or even shrink to zero size*. However, already from the restrictions shown in the 
figure it can be seen that it is not possible to choose the parameters in a way so that 
the mass of the dangerous graviton-ghost at the l = 0 level of the tensor tower 
becomes much larger than the compactification scale y l /2  = L o  1. The (mass) 2 of the 
second pole in the propagator of (7.3) is given by 

f l ( D  - 1) + 2), 
M 2 =  (fl + 4 y ) [ D ( D -  1)a + ( D -  1)fl + 2y] 3. (7.17) 

* The stability analysis for the lowest excitation contained in L°q has been performed in the second 
paper of ref. [5] by different methods. For special values of the parameters we checked that the 
masses obtained there coincide with ours. 
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In terms of 37 this reads 

M d =  [1 - 4 5 -  f i ] - l ( 1 - 4 5 ) f i  for D = 2 ,  

M d =  [ 1 -  1 4 4 5 -  15f i ] -1 (1-  1445)37 for D = 9. (7.18) 

Both expressions are positive in the allowed region, i.e. we have a ghost, but not a 
tachyon. For D = 2, the main obstruction against making M f  large is (7.13); it can 
easily be seen that the highest value of M~ 2 compatible with this inequality, is 3.537, a 
value which can not be considered "far  beyond" the compactification scale. Simi- 
larly, for D = 9 the strongest restriction comes from (7.14); the maximum value of 
M 2 turns out to be 2.5337. 

The conditions coming from the Yang-Mills ghost at the l = 1 level of the V1 
tower are slightly less restrictive than those of the graviton. For D = 2 its (mass) 2 is 
exactly, and for D = 9 approximately independent of 5 and /~; the values are 437 
and 2537, respectively. 

We conclude that the two requirements of low momentum stability and location 
of all higher poles far beyond Lo 2 are conflicting in our case. It seems not unlikely 
that low momentum stability is realized for a range of parameters. It is also well 
conceivable that the higher poles can be considered as artefacts of an insufficient 
expansion. However, the addition of terms with six and more derivatives, needed to 
remove all higher poles far beyond the inverse compactification radius, could easily 
modify drastically the quantitative low momentum stability analysis of this paper. 
Unfortunately, a reliable assessment of stability - or instability - is not possible in 
this context. This conclusion is independent of the number of flat dimensions and it 
is very likely that it remains unaltered for D ¢ 2, 9. Better prospects will arise when 
the dimensionally continued Euler forms are not outside the parameter range of low 
momentum stability as it is the case in our example. (Cf. fig. 2b for D = 9. For 
D = 2, the Euler form does not admit solutions of the type d / n ×  S °, since, 
according to (4.3) and (4.4), 37 would be divergent.) 

We hope we have demonstrated that classical instability of effective actions with 
higher derivative terms is by no means obvious, but that a rather involved analysis is 
necessary for every given ground state solution. As a general rule, the location of the 
higher poles, which indicates the scale of breakdown of an approximation with few 
derivatives, will be far beyond the compactification scale whenever the higher 
derivative terms are "near" a generalized Euler form or when the two derivative 
approximation leads to classically stable compactification and the higher derivative 
terms are "sufficiently" small. (As an example, the d = 6 Einstein-Maxwell theory 
with monopole compactification on S 2 is expected to remain classically stable when 
sufficiently small higher derivative terms different from the generalized Euler forms 
are added.) A quantitative assessment of the meaning of "near" and "sufficiently 
small", however, will always require a detailed calculation. 
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Appendix A 

Here we list the second variations needed in eq. (4.9) for an arbitrary background 
metric. We present the expressions without having performed any integration by 
parts. For the sake of simplicity, the hat over the indices has been omitted 
throughout. 

( R ) <2) = RB~,h/JVh ~ - R,~#v, ht~Vh,~. - 3hl~VDvD,~h~ + 2h~"D~,D.h 

3- r~t~l,, 1~ b, afl + 2h~'"D2h~,~- h#VD,~Dt~h~ - D,~h~D~, h'~# + 2~  ",~B~. '' 

,~ ~, I~ 2D,~h~D~h ½D~,hDt, h ,  - 2 D  h,~Dah~. + 

( I ~ R ) ( 2 ) = ~ { ½ ( ½ h 2 - h f ' " h . ~ ) R  

- h R . ~ h  ~'~ + hD~,D.h ~'"- hD2h + ( R )(2)) , 

( I ~ R 2 )  (2)= ~lgT{½(½h 2 -  h~'"h. .)R 2 + 2hR[D~.D~h " ~ -  R.~h ~'"- D2h] 

+2(R,,h"")2 + 2 ( D , D . h " " ) 2 +  2(DZh)  z 

- 4R,,hU"D~DBh~B + 4Ru.h~"DZh 

- 4D Dy"D2h + 

~, (2) 1 1 2 

+ 2hRt~VR~ov~h ~ + 2R#SR~#v~h~hV~ 

+ RB~,R#Xh~h~ - R/aXRr~,h~h~ 

- 2Rt~XRpa~h~,hO~ + 2R~lJVXRo/~v~h~xh p~ 

-2R/~Xh~I2~v + 2R~'t3VXh,~xI2~v + hR~VI2l~ v 

+ 1-,0. OF, v + 2R~,.rt.t, ~ 
2 "'t~u'* 

+ 2RaSh '~v [D,~Dvh,~ - D/~Dvh.~ 

-D,~Dnhav + D#D,h.v]  } . 
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In the last equation we introduced 

~ = DvD,~h ~ - D~Dvh - D2ht~.~ + D~D"h~v 

and 

kl,#~- g'~'(RaB~) (2) 

= t, ,~ t , ,~  D~h~D~h~ - D~h~D~h~ D~,h~D hB - D~h"~DBh.n- D~h Dah~, + 
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+ ½ ( -D~hD~h#8 + D#h~Dsh~ + D#h~D~h + D~h~D~h },  

- 2hh~R~'~R,~Bv~ + 7R"B:"R.¢y~h.~h ~ 

aB'ytt ~ v ~BT~ 
- R R ~ h ~ h  ~ + 4hR D~D~h ~ 

-SR~#~*h~,[D#Dyh~ + D~D~hl~y] 

+ 2R~#~[D~h~sD~h#v + 2DI~h~D~h~ 

+ 2D~h~Drh~t~ + 2D~h~D~h#8 + 2Di3h~D~hy~ ] 

Appendix B 

In this appendix we define the coefficients appearing in eq. (4.13) for an arbitrary 
radius L = y-1/2 of S °. If the background is to fulfil the equations of motion, y has 
to be chosen equal to .~ of eq. (4.3) and e must be adjusted according to (4.5). 

A~ = ½B + 2~, 

A 2 = - D ( D  - 1)ya + 2yfl + 2y(2D + 1)y _~ 136 , 

A 3 = - D ( D -  1)ya + ( - D +  3)yf l+ 2Dyy + ½8, 
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A4= 

B 1 ~-- 

B 2 =  

B3= 

B4 = 
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{ -~D1 4 +3D 3 _ ~ D 2 + 4 D ) y 2 a + ( _ ½ D 3 + 3 D 2 _ ~ D + 6 ) y 2 f l  

+{ -D2+9D-12)y2"y+ {½D 2 - ~ D +  2 } y 3 - x  

2a + ±fl 2 ' 

( D 2 -  5D + 4 ) y a -  2yf l -  6 y y -  ½3, 

{ D 2 -  5D + 4)ya+ I ( D -  5)yfl-  2 y y -  ½3, 

( ¼0"- D3 a}y2 + (13 D - +  D-8}y2/3 

+{ID2-9D+8}y27+  (-¼D 2+¼D-2}y3+¼e; 

C x =4a +fl, 

C2= {2D 2- 6D + 4 } y a -  3, 

C3 = {2D 2-  6D + 4} ya + ( D -  l) yfl + 4 y v -  3, 

C 4= (I D z -  2 D ) ( D -  1)2yRa + {I D3-  3D 2+ 9D-  2}y2fl 

+{D 2 5D+4}y2y+{ 1 2 3 1 .  - 5D + T D - 1 } y 3 + i e ,  

rx=fl+4V, 

r 2 = - 2 D ( D -  1)ya + 4 (D-  1)yv + 8, 

F 3 = - 2 D ( D -  1 ) y a -  2(D-  1)yfl-  4yv + 8, 

F 4= ( - D  2+ 2D)(D-  1)2y2a + { -D  3 + 3D 2-  3D + 1}y2fl 

+{ -6D 2+14D-8}y2"Y+{D 2 - 2 D + l } y 3 - e ;  

G1 = !fl2 + 2y, 

G 2 = - D ( D -  1)ya + 13 , 

G 3 = - D ( D -  1 )ya -  ( D -  1)yfl-  2(D-  1)y'y+ ½3, 

G 4= - ID2(D-  1)2y2a- I D ( D -  1)2y2fl-D(D- 1)y2~, 

+  D(D- 1)y - 

H 1 = 2a + 113 2 

H 2= D ( D -  1)ya-  13, 

H 3 = D ( D -  1)ya + I ( D -  1)y/3- 13 , 
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H 4 = ¼ D 2 ( D  - 1)2y2a + ¼ D ( D  - 1)2y2fl + ½ D ( D  - 1)y2"y 

~D(D- 1)y8+ 1~; 

L = 4 y y .  

Appendix C 

T h e  coef f ic ien ts  in  the q u ad ra t i c  ac t ion  (5.5) read as follows: 

a ~ = A 1 ,  i =  1 , 2 , 3 ,  

a ~  = - 2 A i r / 1  ~ - A 2 , 

a I = Alr/2.~ 2 + A 3'r/1.y + A 4 , 

a 2 =  - 2 A f o 2 Y - A 2 ,  

a~ = Al'q2.y 2 + A 3'1/2.y + A 4 ; 

a 3 =  - 2Alr/3.~ - A2 ,  

a ]  = AI'O2.y 2 + A3'O3.y + A 4 ; 

a 4 = DA 1 + D2B1, 

a4= -2(DA~ + D~S~),74y-(DA~ + D~S~), 

a ~ =  ( D A  1 + D2B1)'O].y 2 + ( D A  3 + O2B3) ' / /4y + ( D A  4 + D 2 B 4 )  ; 

c 2 = - 2 C 1 D r / 4 . ~  - DC2, 

C 3 = CaD'O]y 2 + DC3~4Y + DC4 ; 

f x  = - 2 F 1 , l ~ Y  - F :  , 

f )  = F~n~y ~ + F~,I~;, + F4; 

f 2  = _ 2Fl~6f i  _/72 ' 

f 2  = Flr/~y2 + F3r16. ~ + F4 ; 

gz = - 2Glr/4.V - G2,  

g3 = Gl'q2. ~2 + G3"r/4.Y + G4 ; 

h 2 = - 2H1'1/4.~ - H 2 ,  

h 3 = H l n ] y  2 + H3"04 y + n 4 . 
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Appendix D 

Next we define the expressions appearing in the action of the coupled scalars 
(6.6f, g,h). These quantities depend on l as well as on k 2. 

~ ° = ( H :  + l G 1 ) k 4 + ( h 2 + l g 2 ) k 2 + ( h 3 + l g 3 ) ,  

~0= G:k 4 + g2k 2 + g3, 

fO=a~k 4+ a4k 2+ a 4, 

~0 = C1Dk 4 + c2k2 .-I- ¢3, 

~0 _ Flk4 + f2k2 + f~ 

~°=a3k 4 + a3k 2 + a~, 

1 ~=~o+ n(,,_ :)~o, 

nD2y2 o 
~ ' = ~  ° - f i D e ° + 2  k 2,5 ( n T ~ 4 ~ 2 - L D ( D - 1 ) Y  

2Dy 
~ = ~o + (~ _ F ) ) k : O  _ DLy,  

_o= [4(fo+ 1 o)fo (~o)2] - :  
-- n ( n - -  1) t2  3 - -  , 

% = 2D(1 - 2y /k  2) + 2n(n - 1) 1D2~2/k4, 

60 2 

093 -~- 

~0, =.~1/2 [l(l  + D - 1) ]a/2/k2, 

[2 i = - n ( n  - 1)- : [ l ( l  + D -  1) f2]x/20ai/k 2 , 

LD 2y 2 
k 2 

2D(n - 1)-Xy/k 2, 

l :/2 / :[(1_ 

i = 3 , 4 ,  
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2 2  0 n - 1  
M n = 2  ~°-o~3k ( f 5 - L k 2 ) +  

n 

n - 1  2 2  0 1~22 = 2 f o _  o~4k (f5 - Lk2) + n 

1 ~o] 
~ 3 3 = 2  ~ o + . ( . _ 1 )  2 , 

[ n - l ~  z ] 
f f J2k4~°-  t t T )  ~ 6 ~ ] ,  

n - 1  
~2k4~  0 4  2 + LD ~4k 4 

n 

- L ( n -  1 ~2 2 61 

n - 1  
1~12 = 1~21 = -2o~3094k2(~ O -  L k  2) q-- 2 ~'~3~4k4~ 0 

n 

+ L D  $23 k4 -- 2 L  ~23~24 k6 , 
n 

~/~13 ~/~31 = n(n -- 1)-1L~23 k4 - 2n-1~2 k2~ ° 3 2 ,  

~/~ 23 -~" ~32  ~--- ~0 __ 2r/-1~24k2~O + n ( n  - 1 ) -  1L~24k4, 

p11= 2 -  4~2o,~ + 2 . - 1 ( n -  1 ) k 4 ~ ,  

p22 = 2 D -  4~2~4 ~ + 2n-1 ( .  - 1)~4~4 ~, 

P33 = 2(n - 1) -1, 

P12 = P21 = --4k2~°36°4 + 2 n - 1 (  n - 1)k4~23~24, 

P13 = P31 = - 2n-  l k 2 ~ 3 ,  

P23 = P32 = - 2n-  lk 2124. 
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