
Nuclear Physics B292 (1987) 330-348 
North-Holland, Amsterdam 

H I G H  S T A T I S T I C S  C O M P U T A T I O N  O F  T H E  T O P O L O G I C A L  

S U S C E P T I B I L I T Y  O F  SU(2)  G A U G E  T H E O R Y  

A.S. KRONFELD 

Deutsches Elektronen-Synchrotron DESY, Hamburg, FR Germany 

M.L. LAURSEN 

NORDITA, Kobenhavn, Denmark 

G. SCHIERHOLZ 

lnstitut fiir Theoretische Physik, Universit~it Kiel and Deutsches Elektronen-Synchrotron DESY, 
Hamburg, FR Germany 

U.-J. WlESE 

Institut fiir Theoretische Physik, Universitiit Hannover, FR Germany 

Received 21 August 1986 
(Final review received 22 March 1987) 

We use a recently proposed definition of the second Chern number of a lattice gauge field to 
compute the topological susceptibility of SU(2) gauge theory using numerical simulations. We 
describe the algorithm, which is very fast, so we are able to attain high statistics. For the 
computation of the susceptibility we have used 64 , 84 , and 104 lattices at values of the gauge 
coupling fl ranging from 2.3 to 2.6. We address the issue of scaling and compare our results to 
those of other groups. 

I. Introduction 

This  p a p e r  cont inues  efforts [1-3]  to invest igate  the topologica l  s t ruc ture  of  

n o n a b e l i a n  gauge  theories using the lat t ice fo rmula t ion  and  numer ica l  s imulat ions.  

O u r  emphas i s  is on  high stat ist ics on large lattices.  W e  used the combina to r i c  

a lgo r i t hm of  Phi l l ips  and  Stone [4], which p roved  to be  the fastest.  Here  we discuss 

the  topo log ica l  suscept ibi l i ty ,  which is the s implest  quan t i ty  descr ib ing the inf luence 

of  the  topo log ica l  p roper t ies  of  gauge theories.  W e  also compare  our  results  to those 

o b t a i n e d  previously .  In  a fo r thcoming  pub l i ca t ion  [5] we discuss the impl ica t ions  of 

ou r  ca lcu la t ions  to the 0 vacuum and the C P  prob lem.  

0550-3213/87/$03.50©Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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The observable consequences of gauge field configurations with nontrivial topol- 
ogy enter through the anomalous divergence of the flavor singlet axial-vector 
current: 

1 
½ 0 . J S = - 1 6 ~ r 2 t r ( F ~ * F ~  } , *F~,,=½e~,,ooFo,. (1.1) 

Integrating eq. (1.1) over the space-time manifold M gives the topological charge, 

1 
Q =  16~r 2 fMdaX tr{ F~,,(x)*F~,~(x)}, (1.2) 

which is a topological invariant and, neglecting boundary contributions (see refs. 
[6, 7]), assumes integer values. The anomaly (1.1) breaks the classical UA(1 ) invari- 
ance of the QCD lagrangian, so that Goldstone's theorem is evaded: there need not 
be a nearly massless meson with the quantum numbers of the ~1'. Indeed, the mass 
of the ,/' is related to the topological susceptibility 

Xt = ( Q 2 ) / V  (1.3) 

(where V is the volume of the manifold) by [8]: 

2 +  2 2 m 2 = 2 N / x t / f 2  mn, mn - (1.4) 

as the number of colors N c ~ oo. Owing to the qualitative successes of large Arc 
predictions, we therefore anticipate (using Nf = 3) that 

X t = (180 MeV)' ,  (1.5) 

even though the real world has only N¢ = 3 and the simulations in this and previous 
papers have N c = 2. 

So far lattice calculations have been done on small lattices, at small values of fl, 
and with low statistics. To extend the calculations to larger lattices and further into 
the continuum one needs an efficient algorithm for computing the topological 
charge of a lattice gauge field. Such an algorithm exists now, and this paper presents 
the first calculations of Xt on lattices up to 10 4 and with high statistics. In sect. 2 
we review the basic elements of topology, emphasizing the points important to 
lattice calculations. Sect. 3 covers the algorithm of ref. [4]. That algorithm is for 
simplicial lattices, so sect. 4 describes the interpolation from a hypercubical to a 
simplicial lattice, and adds some remarks about our computer program. In sect. 5 we 
present the results of our numerical simulations; in particular we compare and 
contrast our results for the susceptibility with those of other groups. We also suggest 
the topological susceptibility as a probe of scaling. In sect. 6 we argue that our 
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calculations of the topological susceptibility obey a certain bundle universality. 
Finally, sect. 7 contains some concluding remarks. 

2. Topological charge 

On the lattice the topological significance of eq. (1.2) is lost. Naive transcriptions 
of the integrand are not a total divergence, and ad hoc subtractions are needed to 
calculate X t [9]. Geometrically Q is a property of the principal bundle underlying 
the gauge field, and therefore one must concentrate on the topology of the principal 
bundle. 

To do so, one covers the base manifold (i.e. space-time), chosen here to be a torus, 
by a set of cells: 

M = T 4= U c i ,  (2.1) 
i 

with overlaps c~j = c~ r~ cj such that 

cij = Oc i (~ Ocj. (2.2) 

Since the lattice introduces a cellular structure anyway, it is quite natural to start 
from this perspective. In each cell c~ one can gauge transform by 

A~i)(x) = g T ' ( x ) [  O~ + A~(x)] g i ( x ) ,  (2.3) 

so that the potential A(~ ~) is everywhere nonsingular, but in different gauges in 
different cells. On c~j the potentials are related by 

A( i ) (  x ) = oij ( x )[ 0/~ -~- A(J ) (  x )] uji ( x ) ,  (2.4) 

where 

Oij(X ) = g Z I ( x ) g j ( X )  = U j T I ( x ) ,  X ~ Cij. (2.5) 

The transition functions vij or, equivalently, the local sections gi now carry all the 
information about the topology of the gauge field and completely determine the 
bundle. 

Eq. (1.2) may now be rewritten: 

Q = ~ i f ~ d 4 x P ,  P 16-15 tr (F~(~) *F~) }. (2.6) 

Since the Chern-Pontryagin density P is a total divergence, 

e = o~,~(~°)(i), (2.7) 
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one obtains 

where 

Q = d 'x .  e(f)( i)  = ~.. 
Ci , ij 

a~(o) (i, j ) =  ~ ( f ) ( i ) _  ~(o)( j ) ,  

~2(°)(i) = - 1-~-e~,ootr{ A~i)[ OoA (i, + ZA<i)A(i'] } 
8 , /72  3 p o ] • 

(2.8) 

(2.9) 

(2.10) 

Using relation (2.4) it is elementary to show that eq. (2.8) reduces to the expression 
(writing cij ~ = c i n cj n %) 

1 E f d2x~'e~"°tr{(vj'O'v'J)(OJkO°vkJ)} 
Q =  8~r2 i<j<k cljk 

1 
+ ~ ~., f d3x, e~,,otr{(vij3,vji)(vijO,vji)(vij3ovji)}, (2.11) 

i <j  cij 

which involves only the transition functions. This expression was first derived by 
Liischer [10]. 

Ref. [11] shows that in SU(2) one can use the cochain reduction [12] to integrate 
(2.11) completely: 

Q = Q(1) + Q(2) + Q(3) + Q~). (2.12) 

Each term in this expression for the charge is a sum of integer winding numbers, 

Qti) = y'n(O, Q~) = Y'.n, (2.13) 

where n is associated with "lattice points," c~ N cj A c k O c t O c,,, and n (1), n (2), and 
n (3) arise from gauge singularities along faces, plaquettes, and edges of the cell, 
respectively. 

An alternative to the cochain reduction [11,12] is to write the charge in terms of 
the section &. From (2.5) and (2.11) one derives 

1 
Q =  24~r 2 ~ / f -  sc, d3x"e~'°Jr{(g:lO'gi)(gj- lO°gi)(g:lO~gi)} '  (2.14) 

which is the sum of winding numbers of the maps gi on the boundaries of the c v It 
is also possible to integrate this expression because again the integrand is almost 
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everywhere a total divergence. Writing 

gi = exp(i~x • , )  = cos a + ie,~. ,r sin et, (2.15) 

in SU(2) enables one to express the integrated of (2.14) as [11,12] 

1 
24~r2e.~ootr{ ( g:lO.gi)( g: lOog,)( g:lOogi) } = 0~%~( i) ,  

1 
~o~,~(i) = ~ 2 ( a  - sin a cos a)e~,~o.e . • (Ooe,~ X Ooe,,), (2.16) 

except at singular points, x, ~ 0% at which gi = - -  1, i.e. a = ~r, where %~(i) has a 
"vor tex"  

1 
8--~e~,~ooe,~. (Ooe,~ X Ooe,~). (2.17) 

Applying Gauss' theorem and since 0 (0c , )=  ~ ,  eq. (2.14) reduces to [11] 

with 

Q = Q( ' )= En( ' ) (xs ;  i ) ,  

1 fs2(xs)d2x~v (O0e~ x 0°e.)  ~ z n m ( x s ; i )  = G , e~ooe~" 

(2.18) 

(2.19) 

where Sff(xs) is a sphere of radius e around the location x S of a vortex, with 
orientation induced from 0% 

Computationally, eqs. (2.13) and (2.18) also show special promise since they yield 
integers for each cell. Eq. (2.11), on the other hand, yields an integer only after 
summing over all cells. If one adopts the cellular structure of the lattice, eq. (2.18) 
has an advantage over eq. (2.13), at least at present values of the gauge coupling. Eq. 
(2.18) only requires locating singularities (of the section) leading to Q(1). Since 

EnO (xs; i) (2.20) 

is also the winding number of gi on 0ci, this is equivalent to determining how many 
times an arbitrary element of SU(2) - we call it the probe - falls into the image of 
Oc~ under the map g~. 

Obviously, any definition of a smooth bundle to a lattice gauge field requires 
interpolation from the links to points missed by the discrete mesh of the lattice. An 
efficient procedure will oblige the computer to do as little explicit interpolation as 
possible. We started [13] to compute Q using eq. (2.18) and the section [14] for 
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Liischer's interpolation [10]. This method involved "gauge cooling" (i.e. trans- 
forming to lattice Landau gauge) and subdividing the lattice until one could use 
geometrical methods to locate the singularities. This algorithm did not turn out to 
be optimal for SU(2) (see the end of sect. 4 for a comparison of algorithms), because 
the subdivision was costly. What one really wants is to extend the lattice gauge field 
to the bundle using only spherical polyhedra; then the search for singularities 
reduces to the computation of 4 × 4 determinants. Such an interpolation exists now 
[4], as we describe in the next section. 

3. The algorithm 

As the cells discussed above Phillips and Stone [4] consider the dual cells c~ 
surrounding sites xi of a simplicial lattice, and their intersection with simplices o, 
c 7 = a N c r The simple dual geometry of simplicial lattices is in fact crucial to the 
numerical success of ref. [4]. From the previous section one sees that the faces c u 
(and cu° ) will be especially important. 

In each dual cell one can locally fix to radial gauge, (x - x~)- A (i) = O. The link dij 

from xi to x j  is a radial path in both c~ and cj, so parallel transport from i to j 
along dij is (see fig. 1): 

,31, 

where Uij is the gauge group matrix associated with dis., and the second equality 
follows from the usual interpretation of U u. In the local radial gauge, however, U u 
also has the interpretation as the transition function at xij, the midpoint of d u. The 
reconstruction of a bundle now involves defining transition functions at all points 
on the faces of the dual cells. 

To  effect this extension Phillips and Stone order the vertices of each simplex, 
o = (0 ,1 ,2  . . . . .  d ) ,  restrict attention to the c~ °, and introduce appropriate coordi- 
nates for the d -  1 dimensional faces cu°. If i and j are adjacent according to the 
ordering, then vii remains constant for all x ~ c j .  If i and j are not adjacent, but 
rather separated by 1 ~< n ~< d -  1 vertices, then the interpolation of v u depends on 
the n coordinates corresponding to the interposed vertices. Consider, for example, 
two dimensions, where a simplex is a triangle, o = (0,1, 2), depicted in fig. 2. At all 

xwj 
x i * -- = X j  

i ~ . _ _ j  

Fig. 1. Viewed from each endpoint, x i and xj, the link 4j is a radial path. 
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2 

X01 

Fig. 2. The 2-simplex o = (0,1, 2). The bundle is determined first on the midpoints X i j  , then on the 
segments towards the center C, and finally in the interior. 

three midpoints the condition (3.1) determines the transition functions v01, v12, and 
Vo2. On the line segment Xo--~l (xl---~2) the transition function Vol(Vx2 ) is constant. At 
the center of the triangle C, 

Vo:(C) = Vo,(C) (3.2) 

by the cocycle condition. The smoothest interpolation along x02C is the geodesic 
from U02 to UolU12. Hence, 

( z l )  = (U oUoiU  ) , (3.3) 

where 0 ~< g I ~ 1 is the coordinate parametrizing c02". In higher dimensions the 
construction continues according to the following principles: eq. (3.1), the cocycle 
condition (3.2), induction on the dimension, and geodesic interpolation /l la (3.3). 
Since the construction becomes rather intricate, we refer the reader to ref. [4] for 
details. 

Phillips and Stone [4] also provide a section. In a the section gi ° has zero winding 
number on all Oci ° except Oc0 °, which has the topology of S 3. Although we do not 
wish to give detailed formulae or a detailed description of the section, we would like 
to give an indication of its geometric structure, and, more importantly, of the 
computation necessary for evaluating the winding numbers. %° is geometrically a 
hypercube; the 16 comers compose {PIP =Po + EaiP,, ai ~ {0, ½}}, i.e. the site 0, 
the midpoints of the links radiating from 0, and certain points in the interior of a. 
The section maps each of the corners to a parallel transporter inside the simplex o, 
i.e. to a product of link matrices. The section on Oc0 a naturally splits 0% ° into its 
eight faces. Six of these faces are split by the interpolating functions into four 
tetrahedra and a quadrilateral-based pyramid. The other two are split into two 
triangular prisms. More precisely, a tetrahedron, for example, of space-time is 
mapped to a spherical tetrahedron in S 3 = SU(2), etc. 
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To decide if the probe is in a tetrahedron or a prism, one must only compute 
determinants of 4 × 4 matrices whose columns are given by vertices of the spherical 
tetrahedron/prism (written as a vector in R4). The sign of these determinants 
indicates the position of the probe relative to the sides of the tetrahedron or prism. 

The pyramid is harder to analyze because of the shape of the base. The pyramid is 
part of a cone in S 3 with four triangular faces. The position of the probe relative to 
these faces is again given by 4 × 4 determinants. If the probe is inside the cone, then 
the number of times it falls inside the pyramid is 0, 1, or 2 and equal to the number 
of real, positive roots of a quadratic equation describing the base. 

In conclusion, Phillips' and Stone's interpolation [4] reduces the calculation of the 
SU(2) topological charge to the computation of 4 × 4 determinants and of the roots 
of quadratic equations. The importance of the fact that S 3 -- SU(2) should not be 
underestimated. Their interpolation also defines transition functions for SU(3). 
However, as far as we are aware, no one has sufficiently mastered the analytic 
geometry of SU(3) to reduce computation of Q to fast arithmetic operations. 
Instead, the functions defining the section must be interpolated explicitly to 
discover the "singularities" or "vortices" - points where the winding of the SU(2) 
subgroups is concentrated. 

4. Implementation on a hypercubic lattice 

In order to exploit this algorithm on a hypercubic configuration one must slice a 
hypercube into simplices. The minimal procedure [15] is as follows: number the 
vertices of a hypercube from 0 to 15 as in fig. 3; if one writes the numbers in binary, 
the bits correspond to the coordinates of the vertices, taking 0 as the origin. 
Consider the vertices with an even number of unit bits {0, 3, 5, 6, 9,10,12,15}. Draw 
plaquette diagonals between pairs chosen from this set that differ by exactly two 
bits, e.g. from 310 = 00112 to 910 = 10012 - the second and fourth bits differ. There 

Fig. 3. Numbering of the vertices in a generic hypercube. 
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Fig. 4. The new links: 24 plaquette diagonals and one-body diagonal. 

are 24 such diagonals. FinaUy, draw a new link from 0 to 15 - a body diagonal. The 
sliced hypercube is sketched in fig. 4; there are sixteen simplices: 

[0,1,3,  5,9], [0, 2, 3,6,101, [0,4, 5,6,121, [0, 8, 9,10,12],  

[3,5,6,  7,151, [3, 9,10,11,151, [5,9,12,13,151, [6,10,12,14,151 , 

[0, 3,5,9,15],  [0, 3,6,10,15], [0, 5,6,12,15], [0, 9,10,12,15],  

[0, 3,5,6,15],  [0, 3,9,10,15], [0, 5,9,12,15], [0, 6,10,12,15].  (4.1) 

With the help of fig. 5, it is not difficult to visualize how these sixteen simplices fill a 
hypercube. 

To triangulate a hypercubic lattice into a simplicial complex one must take care 
to treat the 3-cubes at the intersections compatibly. For example, having sliced a 

Fig. 5. The simplex [0,1, 3, 5, 9] illustrates how the hypercube is triangulated. 
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Fig. 6. Even in three dimensions the minimal triangulation requires reflection of the generic cube. 
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given hypercube, one cannot translate it to one of its neighbors; instead one must 
reflect about the common 3-cube. The need for reflection is not peculiar to four 
dimensions; it is necessary already for d--3,  as shown in fig 6. Continued 
reflections will build up a 24 block, and then translation of the 24 block will 
complete the triangulation. Note that this provides the mild requirement that we use 
lattices whose sides are an even multiple of the lattice spacing long. 

The next step is to define parallel transporters for the new links. For the 24 
plaquette diagonals we choose the element of SU(2) so that parallel transport 
around the two triangles is "half '  that around the plaquette: i.e. 

Uo 3 ~_ Uo2U23 ( U32U20~ro1U13 )1/2.  (4.2) 

For the body diagonal there are now three "grand plaquettes" across which we can 
interpolate: (0, 3,15,12, 0), (0, 5,15,10, 0), and (0, 6,15, 9, 0). We want to pick the 
body diagonal that yields, on the whole, the configuration with the smallest parallel 
transport around dosed loops. We should therefore interpolate, as in eq. (3.5), using 
the path with the largest parallel transport, which makes the field on the associated 
grand plaquette as smooth as possible. 

Lasher, Phillips, and Stone [3] have also implemented the simplicial algorithm on 
a hypercubical lattice. However, they decompose a hypercube into 24 simplices, 
rather than our 16. Consequently, our program was originally 1½ times faster. The 
algorithm (see above) dictates that the program spends most of the time evaluating 
4 × 4 determinants. During testing and debugging the program we noticed that it is 
important to evaluate the determinants (and the roots of the quadratic equation) in 
double precision (64-bit) arithmetic, especially for smooth "instanton" configura- 
tions obtained by cooling. Using single precision (32-bit) arithmetic the program 
frequently concluded that the probe was on the wrong side of the faces of the 
spherical solid figures. Double precision costs more time, but we realized how to 
recoup this loss. Ref. [4] mandates the complete list of determinants; most of them 
involve the unit vector ! = (1,0,0,0), which effectively reduces them to 3 × 3 
determinants. Moreover, most of the determinants also involve the probe Y, and the 
choice Y = (0, - 1, 0, 0), for example, effectively reduces 4 × 4(3 × 3) to 3 × 3(2 × 2) 
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determinants. (Recall that the charge is independent of the probe.) Making these 
reductions explicit in the program yields a tremendous saving in time. 

Table 1 compares the IBM-3081 CPU time for 64 lattices for four algorithms: 
(i) integration [1] of the transition function expression (2.11) using Liischer's bundle 
[10]; (ii) the method [13] mentioned in sect. 2 using the section for Liascher's bundle 
[14]; (iii) Lasher et al. [3]; and (iv) our present program. The first two methods will 
become faster for smoother configurations (higher fl) and the table is based on 
fl = 2.2. We should also add that method (ii) [13] was not fully optimized, because it 
was abandoned in favor of the fastest option. 

5. Numerical results 

In this section we present our numerical results. Using the standard heat bath 
updating algorithm, we generated sequences of configurations distributed according 
to the Boltzmann distribution of the Wilson plaquette action 

s =  ½/3Y'.tr( 1 - U ( O p ) }  (5.1) 

for several values of the SU(2) coupling ft. In eq. (5.1), U(0 p) denotes the parallel 
transporter around the plaquette p. All of our runs began with cold starts and 
> 1000 sweeps for thermalization. For 64 lattices the program ran so fast that we 
discarded 50 configurations between those for which the charge was determined. 
For larger lattices we kept a closer eye on previous experience, which indicated 
decorrelation times of -- 10 sweeps [16] for our range of fl, and thus determined the 
charge after every 15 update sweeps. We occasionally observe several tens of 
successive configurations with the same charge, yet any quantitative measure of the 
correlations would indicate thai separations of 15 sweeps suffice. (Note, though, 
that the statistical analysis is affected by the fact that the charge is always an 
integer.) 

Table 2 contains our numerical results for a 4Xt (a is the lattice spacing) for 64, 
84, and 104 lattices at f l=  2.2-2.6. This table also indicates the number of 
configurations Nto t in each Monte Carlo sample. We estimated the error by dividing 
the samples into bins of Nbi n successive configurations and computing the suscepti- 
bility for the individual bins. For the runs with moderate statistics we took 

TABLE 1 
Comparison of CPU time for various algorithms on a 6 4 lattice 

method 1 2 3 4 
reference [1] [13] [3] this work 
IBM-3081 40 min 3 min 3 min 30 sec 
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TABLE 2 
Compilation of a4x t  from this work 
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fl V a4xt Nto t 

2.2 64 (7.45 + 1.17) × 10 -3  450 
2.3 64 (2.85 5: 0.31) × 10 -3  250 
2.3 104 (3.06 5: 0.11) × 10 -3  800 
2.4 64 (7.56 5: 1.08) × 10 -4  200 
2.4 84 (10.12 + 0.61) x 10 -4  1600 
2.4 104 (11.14 5: 0.21) X 10 -4 4000 
2.5 64 (2.78 5: 0.46) × 10 -4  200 
2.5 104 (3.26 + 0.20) × 10 -4  800 
2.6 104 (1.08 5: 0.15) × 10 -4  400 

Nbm = 50 or 100, depending o n  Nto t. At fl = 2.4 we have high statistics on 84 lattices 
and very high statistics on 104 lattices. We could therefore look at a wide range of 
binsizes from Nbi n = 200  to  800;  in this range the error estimates do not change, so 
we are confident that we have realistically determined the statistical error inherent 

to the Monte Carlo technique. 
The high statistics at fl = 2.4 allow us to address finite volume effects. From table 

2 one sees that a4xt  increases as V increases from 64 to 84 to 104 at fl = 2.4. From 
64 to 84 the susceptibility changes by 30%, whereas from 84 to 104 the change is 
only 10%. Such a trend is in qualitative agreement with the conventional wisdom 
[17] for the limit V ~ oo, fl fixed, and provides us with confidence that the finite 
volume effects are under control, and that they are quite likely small for the 
V = 104, fl = 2.4 simulation. Indeed, other applications [5] motivated this long run: 
it seemed to offer the best compromise between infrared and ultraviolet cutoff 

TABLE 3 
Charge Q and the number  N~(N~) of configurations with charge + Q ( -  Q) 

e Nj 

0 322 + 29 
1 279 + 17 274 + 17 
2 200 + 11 176 + 4 
3 95 + 12 119 + 11 
4 45 + 4 57 + 6 
5 105 :7  1 0 + 5  
6 4 5 : 2  7 + 3  
7 1 0 
8 0 1 

Simulation on a 8 4 lattice at fl = 2.4. Of course, Q = 0 has only one entry. 
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TABLE 4 
Same as table 3, but for a 104 lattice 

w Nj 

0 451 + 15 
1 520 + 15 465 + 20 
2 413 ± 23 382 + 18 
3 329 ± 20 305 ± 12 
4 221 + 17 207 ± 12 
5 141 ± 12 161 ± 13 
6 85 _+ 8 108 ± 8 
7 5 7 ± 8  57_+4 
8 26_+7 2 9 ± 7  
9 10_+3 ii±4 

10 6 + 2  8 + 3  
11 3 i 2  1 
12 1 1 
13 1 0 
14 I 0 

errors, given our computer resources and the status of the susceptibility computa- 
tions. 

For the connoisseur tables 3 and 4 and figs. 7 and 8 show the distributions for the 
high statistics simulations on the 84 and 104 lattices, respectively. From these data 
one can verify that (Q) = 0.054 + 0.050 for 84 and (Q)  = -0.001 + 0.004 for 104. 
The peak at Q = - 1  in the 104 histogram is apparently just a statistical fluctuation, 
coming from the third bin of 800 configurations; amusingly enough, the <Q) for 
that bin is actually positive. 

Since we are now able to compute the topological susceptibility very quickly, X t 
becomes a viable candidate observable for studying scaling and the approach to the 
continuum limit in lattice gauge theories. The computation is very clean: no fitting 
is required, in contrast to the string tension, mass gaps, or phase transition 
temperatures. The main drawback is that the relation to easily (experimentally) 
measured quantities is rather indirect, coming through approximate expressions like 
eq. (1.4). Nevertheless, taken in conjunction with the recent precise calculations of 
the SU(2) quark potential (string tension) [18], further work on the topological 
susceptibility could demonstrate if there is a window in fl with universal, if not 
asymptotic two-loop, scaling. Note that the error on Xt at fl = 2.4 on the 10 4 lattice 
is already comparable to that on K in the high statistics computation in ref. [18]. 

In anticipation of such future studies we discuss asymptotic scaling and the 
topological susceptibility. In fig. 9 we plot a 4 x t  as  a function of ft. The curve 
represents the two-loop renormalization group formula for the lattice spacing a: 

- 1 "  6 2 ~51/121 - a = A  L (-ffTr "fl) e x p ( -  ~Tr2fl), (5.2) 
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-8 -6 -t, -2 0 +2 ,t~ +6 , 8  

Fig. 7. Charge distribution on a 84 lattice at/3 = 2.4. 

raised to the fourth power and normalized to the high statistics simulation at 
V =  10 4, fl = 2.4. Here A L is the lattice scale parameter. Table 5 gives values of 
106xt /A 4 assuming (5.2), as well as those of Fox et al. [1] (using Liischer's bundle 
[10]), Arian and Woit [2] (using Woit's latest algorithm [19]), and Lasher et al. [3] 
(using Phillips' and Stone's bundle [4], but with 24 simplices rather than 16, cf. sect. 
4). The 64 lattice computations of the susceptibility show some mutual agreement, 
especially for fl >/2.4. Some also provide evidence of two-loop scaling for/3 >/2.3. 
However, the errors are so large and the lattices are so small that the agreement and 
the scaling are misleading, especially at the larger values of/3, where the physical 
volume is miniscule. The simulations on 104 lattices support such skepticism: the 
asymptotic scaling window is broken. Moreover, the topological susceptibility shows 
the s a m e  scaling violations as the string tension K. In fact, using the results of ref. 
[20] we find that the ratio 

a 4 x t / a 4 K  2 (5.3) 

is constant over the whole range of fl values listed in table 5. We should mention, 
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Fig. 8. Same as fig. 7, but  for a 10 4 lattice. 

though, that the finite volume corrections at fl >t 2.5 might alter the values of a 4Xt 
slightly. 

With some reservation we offer, finally, the topological susceptibility in physical 
units. To  do so, we need A L = 6.6 MeV, based on the string tension calculation of 
ref. [20] at fl = 2.4. Using the V =  104, fl = 2.4 simulation we find 

Xt = (262 ___ 1 MeV) 4. (5.4) 

Averaging the 104 column of table 5 does not change Xt significantly, because the 
error at fl = 2.4 is so small that it dominates the (weighted) average. The result (5.4) 
is the same magnitude as the large N c prediction (1.4), but not in quantitative 
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TABLE 5 
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fl this work, 104 this work, 64 ref. [1], 6 4 ref. [2], 64 ref. [3], 64 

2.2 2.23 + 0.35 1.90 + 0.33 2.12 _+ 0.60 1.29 + 0.12 
2.3 2.51 + 0.09 2.29 + 0.24 2.76 + 0.30 2.11 + 0.53 1.77 + 0.16 
2.4 2.48 -4- 0.05 1.70 + 0.25 2.43 _+ 0.26 1.38 + 0.40 1.91 + 0.21 
2.5 1.99 + 0.12 1.69 + 0.30 2.51 + 0.29 1.29 + 0.39 1.69 + 0.28 
2.6 1.79 + 0.12 

a g r e e m e n t .  However ,  cons ide r ing  the l imi t a t ions  of  the  large N c expans ion ,  the  

a s s u m p t i o n  of  universa l i ty ,  a n d  sys temat ic  effects of  the  n u m e r i c a l  s imu la t ion ,  the  

a g r e e m e n t  is qu i t e  sat isfactory.  

A l t e r n a t i v e l y ,  o n e  can  a s sume  tha t  eq. (1.4) holds .  T h e n  ou r  resul t  (5.4) yields  a 

p r e d i c t i o n  o f  the  TI' mass :  
rn~, = 1854 M e V  (5.5)  

c o m p a r e d  to  the  expe r imen ta l  va lue  958 MeV.  
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6. Universality 

There are various ways to assign a smooth bundle to a lattice gauge field. The 
interpolations of Ltischer [10] and of Phillips and Stone [4] are only two examples. 
While deep in the continuum limit all of the interpolated fields have the same 
topological charge, this is not guaranteed at the values of fl discussed in the previous 
section. Indeed, we have compared Ltischer's bundle with Phillips' and Stone's 
bundle on a configuration by configuration basis. On a 64 lattice at fl = 2.5 the two 
definitions agree in only 66% of the cases, while in 28% (6%) of the cases they 
disagree by 1 (2) units. There is a tendency, though, that the agreement improves as 
fl is increased. Moreover, the topological susceptibility appears to be the same for 
both bundles. 

The origin of this discrepancy lies in the fluctuations of the gauge field at the 
scale of a lattice spacing. These have no genuine topological meaning, and, unlike 
smoothly varying fields, contribute differently in different interpolation schemes. 
Consequently, one cannot assign a unique topological charge to lattice gauge 
configurations with large fluctuations on the shortest scales. In the following we 
shall argue, however, that the contribution of these short distance fluctuations to the 
topological susceptibili ty is exponentially suppressed compared to the contribution 
of the smoother fields. 

The contribution of the small scale fluctuations can be calculated [21] by finding 
the minimum action Sm~n of a configuration with I Q I = 1. At most Smin is the action 
of a one (anti-)instanton configuration, but at least that of an exceptional configura- 
tion [10] bounding the I QI = 1 configurations. One can determine the value of Smi ~ 
numerically by monitoring Q and S during "cooling" runs. We have done this for 
configurations from the equilibrium ensemble, and for instanton configurations. 
Both runs indicate that 

Smin >_ 12ft. (6.1) 

We find, among others, minimal action configurations where the six plaquettes 
surrounding a certain link have tr( U( 3 p)} --- - 2 and the rest have tr( U( 0 p)} = + 2. 

Assume a dilute gas of the minimum action configuration, which is justified 
because the correlation between the small scale fluctuations is an exponential 
characterized by the 0-  glueball mass. Then the contribution to the susceptibility is 

x~m~l sc~e -- t -  lexp( _ 12fl). (6.2) 

Since the renormalization group predicts (cf. eq. (5.2)) 

X t - (  l~q'a'2j~)2°4/121exp( - 12_20~t 
Vf w P ) ,  (6.3) 

and since 12 > 127r2/11 = 10.77, the fluctuations on a scale well below the correla- 
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tion length will not effect the topological susceptibility. We therefore expect that X t 
obeys the same scaling law as other physical observables, and that its value is 
universally defined even for ensembles containing configurations for which the 
charge is not unique. 

7. Conclusions 

These calculations show that it is now possible to perform a solid computation of 
the topological susceptibility using numerical simulations. The fast algorithm [4] 
allows us to achieve high statistics on large lattices in a reasonable amount of 
computer  time. For example, the run with a Monte Carlo sample of 4000 configura- 
tions took around 500 hours on the University of Hamburg Siemens-Fujitsu 7882, 
which ran about as fast as the IBM-3081. The charge program is readily vectoriz- 
able. The string tension, glueball masses, and phase transition temperatures require 
ans~itze for fits, but Xt does not: we compute it directly. The topological susceptibil- 
ity is therefore competitive with other physical quantities as a probe of the SU(2) 
gauge theory. 

One would like to extend these calculations to the physically more interesting 
gauge group SU(3). The interpolation of ref. [4] exists for SU(3), but the algorithm 
for the charge computation does not. Barring a breakthrough in that direction, the 
method of ref. [13] seems most promising, perhaps in conjunction with the reduction 
of SU(3) to SU(2) [22,11]. Eventually, we hope to test the intriguing ideas [23] 
linking topology to confinement. 

We are grateful to the computing centers of the Universities of Hamburg, Berlin, 
and Hannover  and of NORDITA for time on their computers; in particular we 
thank B. Nilsson for assistance on the new VAX-8600 at NORDITA. It is a pleasure 
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Phillips on various aspects of this work. We thank C. Schleiermacher for help with 
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also like to thank R. Peccei for frequent hospitality at DESY. 
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