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A family of lattice Higgs models with matter fields carrying the fundamental representation 
of an SU(N) gauge group is analyzed at strong gauge coupfing. Similarities with QCD with 
staggered fermions are emphasized. For large N the phase diagram is derived, and the scaling 
limit at the critical endpoint of the first-order Higgs-confinement transition line is investigated. 

I. Introduction 

From the moment that lattice versions of nonabelian gauge theories were written 
down, the strong coupling approximation has given important clues to the qualita- 
tive features of the nonperturbative dynamics. Such information is clearly 
desirable - if not indispensable - before a model is analyzed by purely numerical 
methods. The immediate interest in the pure gauge theory, for example, stemmed 
from the fact that confinement is apparent in the limit of strong coupling. Although 
it is remote from the weak coupling continuum limit, one expects qualitative 
features like a nonvanishing gap or string-tension to persist as long as one can move 
between the two points of the phase diagram without crossing a phase boundary. 
With lattice fermions coupled to the gauge fields, strong coupling again proved to 
be a valuable guide. It predicts the spontaneous breakdown of chiral symmetry 
[1-4] for staggered fermions and even gives reasonable rough estimates for the 
masses of mesons and baryons. 

Recently the focus of interest of the lattice community has broadened from QCD 
to also include gauge-Higgs models [5]. One considers scalar matter coupled to 
lattice gauge fields in a way resembling the bosonic sector of the standard model. 
Such a theory has at least three bare coupling constants that have to be tuned 
simultaneously to a critical point in order to reach a continuum limit. So far the 
gaussian fixed-point, where all couplings are weak, has been investigated [6] and 
seems to lead to a noninteracting theory in the proper cutoff limit. Numerically it is 
indicated [7] that the system might exhibit critical behavior also on the boundary of 
a sheet of first-order transitions. The hyperplane fl = 0 of the infinite gauge coupling 
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is intersected by a first-order line with an endpoint. This is the submanifold of the 
phase diagram to be considered in this article. Judging from the data, it should not 
be an untypical representative of its neighborhood; the phase structure continues 
toward negative/3 values without drastic changes. 

In sect. 2 we shall define a general N family of SU(N) gauge Higgs models and 
integrate out the gauge fields. The resulting scalar theory of the radial Higgs field is 
juxtaposed with the analogous theory of the chiral condensate of QCD. Both are 
still interacting theories with nontrivial effective action and can thus in general only 
be analyzed numerically. A dimer formulation [3] has been derived and simulated 
for QCD and is shown to emerge for the Higgs model, too. Here, however, we stay 
on the analytic track, and in sect. 3 we resort to taking the additional approximation 
of large N. Then a Landau description of the critical endpoint holds, and we have 
full control over the phase diagram and scaling behavior. In sect. 4 some conclu- 
sions are offered. 

2. Effective theories of strongly gauge-coupled quark and Higgs fields 

At strong coupling (no plaquette term) we wish to consider side-by-side lattice 
gauge fields coupled to fundamental Higgs fields 

= E 

X,lx 

and to staggered fermions 

j .1) Ze = D ~ D ~ D U e x p  m ~ x + i  ~ _ , F , ~ [ ~ k x U ~ + ~ - ~ x + ~ U £ ~  . (lb) 
x,/-~ 

Here x and /~ denote the usual labels of sites and directions in a D-dimensional 
hypercubic lattice, and Fx~ are the standard sign factors. The gauge fields are 
integrated with the invariant group measure on every link, DU = l-Ix,, dUx~. As we 
shall see, SU(N)  and U(N)  gauge groups are equivalent in the scalar theory. When 
coupled to fermions they differ by the propagation or absence of antisymmetric 
baryonic composites, and we shall restrict ourselves to the simpler U(N)  case. For 
the phase structure and chiral symmetry breaking it has been found [8] that there is 
only a small quantitative difference between U(2) and SU(2). The measures of the 
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complex scalars and anticommuting variables are 

N 

Dip D~p + = I-I I-I d Re < d Im qo~, (2a) 
x n = l  

N 

D+ D~ = YI l--I d#~ d~, (2b) 
x n = l  

where n is the otherwise suppressed gauge group index. Finally m, B and A > 0 are 
real parameters. The parametrization in (la) is connected to the standard lattice 
Higgs action 

Z:t = f D~o D~o + DUexp{ - ~ [I(++~o~ - 1)2 + q,+%,] 

by 
X, t* 

NB (( 
k = ~ 1 + -~-~] - 1) = - ~ ( 1  + o()~)) = -~-~ (1 + o (1 /N) ) ,  

2A 
x = +<2, (3) 

N 

and X is small in the interesting sections of a typical phase diagram (U(1) or 
SU(2)) [71. 

At strong coupling the gauge variables are simply random fields on the links, and 
they are integrated out link by link leaving behind a nearest neighbor interaction of 
gauge invariant composite fields. The relevant U(N) group integrals are found in 
ref. [3]: 

f(S)U(N) dUexp ( ¢&+ U%,+~, + ~0++~,U+ %, ) 

and 

= ~ a(N,k)(eP+~&~+%+~,)k=Hu(eP+c&q>+%,+~,) 
k = 0  

(3a) 

fu< N) dUexp ( ~xUq+x +~̀  - ~x +~'U++x ) 

N 

E ( - ) " - ( - N ,  
k = 0  

(3b) 
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with 

( N -  1)! = ( - - )ka( - -N,  k) = ( N -  k)! (4) 
a(N,  k) = k ! ( N  + k -  1)! k!N! 

We recognize that H N is essentially a modified Bessel function 

Hu( z214) = (2/z) N-1Iu_~( Z ) . (5) 

Note that formally the result for fermions looks like the bosonic formula continued 
to negative N. The bosonic result is identical for SU(N) and for U(N) since there 
are simply no SU(N) gauge invariant combinations of % ¢/ to distinguish the 
different centers. Inserting now (3) into (1) we derive the effective theories 

H 1 + + × I-[ N(~cP ¢P~ q~x+l,), (6a) 
x,p- 

D~exp m E , q %  (6b) 

Here ZQ is still given as a Grassmann integral and thus defies a numerical 
treatment. However, the equivalent generalized monomer-dimer model [3] has been 
simulated very efficiently. It obtains by expanding H o n  every link, integrating 
exactly every term in the multiple expansion, and considering the sum over the 
various terms as a new statistical system. Then we have independent integer link 
variables k~,~ = 0,1,. . . ,  N, and find 

ZQ= E I'-IYQ(k~,)I-IPQ(a~) (7) 
{k~.} x , ~  x 

with the auxiliary field 

o~= ~_,(kx~ + k(~_~,)~ ) (8) 

counting the power of ~b x in the original theory and weights 

7Q(k) = k!N! ' 

N! 
pQ(o) = ( N -  o)! mY-°" (10a) 
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The Higgs system Z H could clearly be simulated as a one component scalar field 
theory by conventional methods, although a relatively extravagant action would 
have to be computed at every, say, Metropolis step. On the other hand it is clear 
that also this model can be written in dimer form (7), where now the links can be 
occupied by any number of dimers, kx~ = 0,1 . . . . .  and the once again strictly 
positive weights are given as 

( 4 )  k ( N -  1)! (9b) 
VH(k) = k ! ( N + k - 1 ) ! '  

pH(o)= fo~dRRN-i+"exp{ - A 2-BR} g--~R (10b) 

We are presently implementing a simulation of scalar models in dimer form to see if 
it is efficient enough to be of interest. The possible advantage would be that the 
computer has to deal only with integers, no functions have to be evaluated, and by 
changing the precomputed weights y, p whole classes of models could be simulated. 

Here, however, we carry on computing ZQ, Z n analytically in the large N limit. 

3. The large N approximation 

To bring out the leading large N behavior of the partition functions (6) we rescale 
all field by v/-N, put 

HN(¼N2z 2) =exp{-NW(z:)}, (11) 

and end up with 

(12a) 

Also, for large N, we use 

W ( z 2 ) = I - 1 / | + z  2 + log(½ (1 + l~-+-~-z 2 )) + o (1 /N) ,  (13) 

which follows from an asymptotic expansion of the Bessel function in (5) for large 
index or by the method outlined in ref. [3]. Thus 1/N is a loop counting parameter, 
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and for N ~ oo the saddle-point approximation becomes exact. Here it may be 
noted that in ref. [9] some results on the Higgs-gauge phase structure have been 
obtained from a leading order mean-field expansion. Since it can be rearranged as a 
1/D expansion, it is valid in the limit of large euclidean dimension. The emerging 
phase diagram is of the same type as that which we shall find. 

The Boltzmann weights in (6) and (12) depend only on the combinations cp+q)x 
and ~q~x, which are locally gauge invariant- actually O(2N) and SP(2N, C) 
invariant-  combinations of the fundamental matter fields. Physically, this is the 
result of the integrated gauge interaction which at infinite coupling has zero 
confinement radius. Clearly, one wants to eliminate the by now trivially redundant 
gauge degrees of freedom and go over to neutral fields. For the bosons this is simply 
achieved by integrating the angles in c G and remaining with the real positive field 
R~ = qo+q)x. For the fermions we use on every site the identity 

do 1 
N~ f dqJ d ~ / f ( ~ )  = ~ 2~ri 0 N+i'f(O )" (14) 

Both the Grassmann integral and the contour integral pick up the Nth order term in 
the expansion of f. The result for large N is 

ZH= [Ix fo°~dRxexp{-N[~(½AR2x+ BRx-logR~) 

ZQ= [I~ ~dGexp{N[~(mG-I°g°~)+ EW(-GG+")])x,, (15b) 

The fermion-derived integral (15b) has the well known real constant saddle point 
[1-3] 

Dv/m2+2D-1 - ( D -  1)m 2v~D - 1 
(16) 

= D 2 + m 2 m o O  + D 

that exhibits chiral symmetry breaking. For the Higgs field we write 

Z H = exp{ -NVf(A, B)}, (17) 

where V is the number of lattice sites, and have 

f= latin U( R ), 
R 

u ( R ) - - -  ' DW(R:). ~AR + BR - log R + 

(18) 

(19) 
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Fig. 1. Phase diagram of the gauge I-Iiggs model at large N. The solid line is the first-order transition 
with critical endpoint, the dotted lines show the boundaries of metastable regions. 

Here U is the effective (Landau) potential determining the phase structure of the 
large-N strongly gauge coupled Higgs gauge system. 

Depending on the values of A and B the potential U has either one or two 
minima (phase coexistence, metastability) in the range 0 < R < o0. For D = 4 the 
corresponding phase diagram with the first-order line is displayed in the fig. 1. 
There is a unique critical endpoint with U ' =  U ' =  U " = 0, where two phases 
merge, and its coordinates A*, B * are summarized in table 1. 

The scaling behavior close to a critical point is given by the mass of the quadratic 
fluctuations around the saddle point. In (15b) the stable fluctuations (steepest 
descent) around the real saddle point are imaginary, and, writing 

Ox=~q_i(_)Xl+X2 +'''+xD~x 
we find a mass [3] 

m 2 = 4 m.  (20) 

This is the Goldstone mode of the staggered chiral symmetry, and the mean field 
critical exponent v = ½ in (20) is called PCAC relation in this context. Carrying out 

TABLE 1 
Critical field, coupling constants, and quartic Landau potential coefficient in various dimensions 

D R* A* B* C* = U(4)IR. 

2 2.70016 0.041889 1.64930 0.030315 
3 1.81925 0.167659 2.01898 0.233418 
4 1.48766 0.347248 2.28653 0.648432 

8 1/4 
8 3 I/4 2 ~i/2~ ---)oo ( - ~ ) ( 1 +  5( 2 l l / 2 1 g , ~ ]  ] ½ D ( 1 - ( 6 )  1/2) ~(~D) 3D(1-5(~] ] , ,  

(next term down by another power D- 1/2) 
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a similar expansion around a minimum of the action (15a) by writing 

Rx=R+~ x 
a Higgs mass 

m 2 = 4X/1- + ~2 U " ( R )  (21) 

results. The extrema close to the critical endpoint are governed by the Landau 
potential 

C* 
r 4 (22) U(R*+r)=U(R*)-er+½ar2+ 4! ' 

which arises from Taylor-expanding U around R* for A = A* + a, B = B* + b 
close to the critical point (a,  b small). Here 

C* = U(4)IR., e = - a R * -  b, (23) 

and the combination e is chosen such that e = 0 is tangent to the transition line at 
the endpoint. Numerical values for C * are contained in the table. This implies close 
to the critical point 

rn2-=- 4~/1 + R*2 (a  + ½C*72), (24) 

with ~ determined to minimize (22). Therefore scaling laws 

1 . 2 E m2~4~l+R*2lal(2C f ± ( ~ )  +1) (26) 

hold. The sign in (26) is the sign of a, and f±(x) minimizes the expression -x f± 
1 2 +_ ~f+_ + C*f4/4!. Special cases arise on the critical line e = 0 

4V/1 + R*2a  for a >  0 
m 2 =  -8~/1 + R * : a  for a < 0, 

(27) 

and for a = 0 

m 2 = 2V/1 + R .2 C.1/3(61b1) 2/3. (28) 

The scaling structure of this critical endpoint is the same as for the Z(2) Higgs-gauge 
system in the mean field analysis of Br4zin and Drouffe [10], i.e. a ~4 model. 

For  the chiral order parameter (16) the first 1/N correction has been computed 
[3] and led to no qualitative change in the picture. We would expect the same to 
hold true if one computed the first correction to the effective potential U in (19). In 
particular, such a correction would not change the Landau exponents. On the other 
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hand  the simulation of (6), presumably in dimer form (7), will be exact at g 2 =  

for any N and thus reveal even effects that are nonanalyt ic  in N, if present. 

4. Conclusions 

We analyzed U ( N ) - Q C D  with fermions and the fundamental  (S )U(N)  Higgs 

gauge model  at infinite gauge coupling. In a remarkably parallel fashion both  are 

converted to effective scalar theories of the chiral condensate f ~  and square radius 

o f  the Higgs field ~o+~ describing the pion- and Higgs-boson excitations respec- 
tively. At  finite N both theories may be looked upon as generalized monomer-d imer  

models.  At  diverging N a saddle-point expansion is applicable that incorporates real 

f luctuations a round (¢p+~) and staggered imaginary ones around (~p~p) as the 
stable modes of  steepest descent. In  either case we find a diverging correlation 

length close to a critical point  which the fermion system owes to the Goldstone 

p h e n o m e n o n  associated with the continuous chiral U(1). Criticality of the bosonic 

field theory is achieved by tuning two free parameters to the endpoint  of  a 

first-order fine. 
The effective theories (15) at  g2__ o0 possess rather unusual kinetic energy terms 

and  integrat ion measures. Nevertheless, by  standard renormalization group and 

universali ty arguments,  one would conclude that the infinitely many  extra terms are 

irrelevant at D = 4. The cont inuum pion and Higgs boson constructed at the strong 

coupl ing critical point  are then the quanta  of  a one-component  ~9 4 theory and as 

such presumably  noninteracting. 

The  author  would like to thank the DESY Theory Group  for their hospitality. 
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