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Abstract. The sensitivity of the charmonium and bot- 
tomonium spectroscopy to the short distance part of 
the interquark potential is critically re-examined us- 
ing the latest data. We confirm that the data cannot 
accomodate a QCD scale parameter (A~) smaller 
than about 150 MeV, whereas we find no constraint 
on larger values for the scale parameter, contrary to 
a previous analysis. The effect of dynamical heavy 
quark masses in the loop correction to the perturba- 
tive potential is studied in detail and the effective four 
quark theory with a massive charmed quark is found 
to give an accurate description of the perturbative 
potential for quarkonia of mass up to about 200 GeV. 
It is argued that the experimental determination of 
the mass and e+e - decay width of the 1S and 2S 
toponium resonances (of mass round 80 GeV) with 
the accuracy anticipated at the forthcoming e + e-  col- 
liders should enable the QCD scale parameter to be 
determined to within _+ 100 MeV. 

1. Introduction 

Non-relativistic models have been extremely success- 
ful in describing the bound states of c g and b b sys- 
tems. A variety of flavour independent potentials have 
been used, ranging from purely phenomenological to 
QCD-motivated forms with two-loop perturbative 
contributions at short distances. All these potentials 
essentially agree in the range 0 . 1< r<  1 fm, which is 
the interval constrained by c~ and bb quarkonium 
data [-1]. The data do not determine the form of the 
potential at larger or shorter distances, and so they 
simply demonstrate the consistency of the QCD form 
with experiment, rather than prove its existence. On 
the other hand the much heavier toponium states, 
when found, probe shorter distance behaviour and 
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have a much better chance of providing direct evi- 
dence of the QCD form of the potential, and of deter- 
mining the QCD scale parameter A. To quantify this 
statement is the main objective of this paper. 

Buchmiiller and Tye [1] showed that although 
the 0 and lr data do not determine the QCD form, 
they do impose a lower bound on the scale parameter 
A. They conclude Ags> 0.1 GeV. The argument is as 
follows. They assume the next-to-leading order per- 
turbative potential to be reliable in the region r < ro, 
where r0 Ags ~ 0.1 say. Now if Ags = 0.1 GeV the 
and ~ data are sensitive to the perturbative potential 
in the region 0 .1<r<0.2  fm (~--0.1/AMs) and reject it, 
since the slope of the perturbative potential for this 
value of Ags is less than half that demanded by the 
data. The Buchmfiller-Tye result assumed that the 
perturbative potential was exact right up to r=ro ,  
where the confining form takes over. The dependence 
of their result on the lack of smoothness at r=ro 
was subsequently studied by Hagiwara et al. [-2]. 
They obtained a smooth potential by introducing a 
sufficiently flexible form which contributes mainly in 
the intermediate region r ~ ro and so does not disturb 
the short-distance asymptotic behaviour, but which 
allows small deviations in the region r < ro (which can 
be attributed to higher-order corrections). In practice 
this is achieved by fitting the parametric form of the 
overall potential to the perturbative contribution in 
the interval r<ro as well as to the ~ and lc data. 
The overall potential is constrained by the ~ and 1 r 
data for 0.1 < r < 1 fm and by the perturbative form 
for r<O.1/A~rs. They concluded AMs>0.15 GeV. The 
analysis led to an upper-bound as well, 
Ags < 0.4 GeV. 

Summarizing the above observations, it is possible 
to achieve a good description of the ~ and ]r data 
independent of the valUe of AMs. The sensitivity to 
Ags only arises if we require the potential to approxi- 
mate to the perturbative contribution in the short- 
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distance region where we believe QCD perturbation 
theory to be valid. For example the description of 
the data in [3] uses a value of Ags as low as 70 MeV, 
but at the expense of adding extra sizeable contribu- 
tions to the perturbative potential throughout the 
short-distance region. 

The purpose of this paper is to critically re-exam- 
ine charmonium and bottomonium spectroscopy and, 
in particular, to quantitatively determine the con- 
straints on the QCD scale parameter arising from 
(i) existing data and (ii) toponium (0) data when it 
is available. To do this we use the flexible potential 
form of [2] to fit to the ~ and F data for various 
fixed values of Ags. To examine possible constraints 
on the value of Ags we compare the potential in the 
short distance region to the next-to-leading order per- 
turbative contribution. Apart from the existence of 
a lower bound Ayrs ~> 0.15 GeV we find little sensitivity 
to the value of AMs. This conclusion is unaltered by 
omitting the charmonium data from the fit. 

It is well known [1-7] that toponium spectro- 
scopy is more sensitive to Ags.* Phenomenological 
potentials with different Ags, which reproduce ~, and 
Y spectroscopy equally well, predict very different re- 
sults for the heavier 0 spectroscopy. The mass differ- 
ence and the leptonic widths of the 1 S and 2S topon- 
ium states will be most accurately measured and are 
at the same time most dependent on the short-dis- 
tance properties of the potential. We examine how 
well the scale parameter Ayrs can be determined from 
toponium states produced in e + e- experiments with 
reasonable statistics. We also study the effect of omit- 
ting the ~ data from the analysis. This is desirable 
to avoid the possibility of relativistic corrections af- 
fecting the determination of A ~ .  

The structure of the paper is as follows. In Sect. 2 
we discuss the details of the next-to-leading order per- 
turbative QCD potential that we use in our analysis, 
and examine the effect of heavy quark loops (mc, 
rob#0). Section 3 describes how we incorporate the 
long-distance and intermediate contributions into the 
potential in such a way that Ags is constrained only 
by the short-distance behaviour of the perturbative 
contribution to the potential. The results of confront- 
ing this potential to the ~, and F data are discussed 
in Sect. 4. We examine the sensitivity of the analysis 
to the value of AMs, and compare the short-distance 
behaviour of the potential to that of several other 
potentials which have been used to describe ~9 and 
F data. Section 5 describes the accuracy to which ex- 
perimental information on toponium will be able to 
determine A ~  and section 6 contains our conclusions. 

'~ Igi and Ono [7] have recently performed a very similar analysis 
to one made in [2]. The authors of [-7] are apparently unaware 
of the previous work [-2] 

2. The Perturbative Potentials 

Our objective is to study the constraints imposed on 
the QCD perturbative potential by heavy quarkon- 
ium data. We must therefore critically review the 
short-distance static potential between a colour- 
singlet pair of colour-triplet sources, calculated at the 
next-to-leading order in QCD perturbation theory, 
and examine the region of its validity. First, in sub- 
section a, we discuss the perturbative potential in 
massless QCD and estimate the errors that may arise 
from higher-order corrections. Then, in sub-section 
b, we study the effects of massive quark loops. 

2.a Perturbative Potential in the Next-to-leading 
Order of Massless QCD 

The QCD perturbation expansion for the static po- 
tential [8] should be valid at small enough interquark 
separation since, due to asymptotic freedom [9], the 
effective coupling constant decreases with decreasing 
separation, r. The finite part of the one-loop contribu- 
tion to the static potential has been calculated by 
several groups [10] in pure gauge theories and by 
Billoire [11] including the massless quark loop contri- 
bution. For n I massless quarks, the potential can be 
expressed as 

a 
V(r)=--nCv [l+a(boln#r+A)+O(a2)] (2.1) 

r 

with 

a = as(#)~/n, (2.2) 

bo = ~ c ~ - ~  nl T~, (2.3) 
A=bo~e 31 + 3 7  CA - -  ~ n f  T F. (2.4) 

Here 7e=0.5772 is the Euler constant, and Tv= 1/2, 
Cv = 4/3 and Ca = 3 are colour factors. The coupling, 
as, is renormalized in the modified minimal subtrac- 
tion (MS) scheme [12] and the unit of mass # is the 
scale introduced in the dimensional regularisation. 

The coupling satisfies the renormalisation group 
(RG) equation 

0a 
# ~  = - a 2 [bo + bl a + O(a2)] (2.5) 

with 

17c,2 5.'~ Tv--�89 Tv (2.6) b~ =]~w..~A--~(-. A n f  

which, neglecting the 0 (a 2) term, has the solution 

c 1 bl 2 1 +bl ]l 
AMst"1 '=gexp~-boa+bzln[b-oo(a  bo]JJ" (2.7) 

This equation defines the #-independent QCD scale 
parameter A ~  ). 
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We have thus specified the perturbative potential, 
(2.1), in terms of the constant Ags ("~). However, before 
confronting this potential to data two crucial ques- 
tions must be addressed: up to what distance r and 
with what accuracy is the truncated expansion, (2.1), 
valid? Clearly to make a meaningful determination 
of A we need quantitative answers to these questions. 
This is intimately related to the problem of choosing 
a good renormalization scale.* 

Here we adopt the conservative approach taken 
in [14]. If there is no a priori reason to expect a 
perturbation expansion, 

R=a(p)m{l +k~=lCk(#)ENa(p)]k+O(a(#)n+l)} , (2.8) 

for a physical quantity to breakdown, we assume that 
there exists an optimal scale #OPT at which the coeffi- 
cients of the series in Na satisfy 

ICk(#OPT)I<K=O(I) for k = l  .... n. (2.9) 

Na, with N = 3 for QCD, is a natural expansion pa- 
rameter in large N theories [15]. If we know only 
the first coefficient C1, then a first guess #1 for the 
optimal scale is [16] 

C1 (#1)= 0. (2.10) 

The R G invariance of the physical quantity R gives 
the second (uncalculated) coefficient in terms of the 
optimal coefficients as 

bx 
c2 (#1) = c2 (#oP0- ~oo cl (#oPO. (2.11) 

Our assumption (2.9), together with (2.3) and (2.6) 
then implies that the fractional error of the estimate, 

R = a ( # 0 "  (2.12) 

is given by 

AR "~_IC2(#t)I[Na(pl)]2 <K[Na(#I)]2. (2.13) 

The important  observation here is that the choice 
(2.10) does not introduce artificially large corrections 
so long as there exists an optimal perturbation expres- 
sion satisfying (2.9). It is straightforward to see that 
other more sophisticated assumptions [13] lead to 
estinaates which are consistent with ours to within 
the error given by (2.13). 

Applying the above argument to the perturbative 
potential of (2.1) we have 

Ve(r) = - Cv - -  (2.14a) 
r 

* For  a review see, for example, Duke and Roberts  [13] 

where our first estimate for the optimal scale is 

1 
#1 = r e x p ( -  A/bo), (2.14b) 

and the fractional error 

N 2 
IA Ve(r)/Ve(r)l<K ~-cq(#a)gs �9 (2.15) 

The factor K is the order of 1 and, lacking more 
information, we take K = 1. With the large colour fac- 
tor ( N  2 = 9) already included this choice is rather con- 
servative. The only available perturbation series to 
three-loops in QCD are those of unphysical quanti- 
ties; the R G  functions in the MS scheme [17], an 
effective charge in a special momentum (MOM) 
scheme [18] and its/3 function [19]. In all these per- 
turbation series the factor K is less than unity for 
moderate values (<  10) of n I .  

The perturbative potential only gives a good ap- 
proximation to the quarkonium potential for those 
values of r for which the fractional error, given by 
(2.15), is small. The fractional error is shown as a 
function of rAgs (with n s = 4  ) in Fig. 1. Thus, for ex- 
ample, we expect Vp to be within 10% of the true 
potential for values of r satisfying 

rA~,<0.08.  (2.16) 

Only in this short-distance region can the data impose 
meaningful constraints on the perturbative potential. 
An estimate of the magnitude of higher-order correc- 
tions is implicit in any confrontation of perturbation 
theory predictions with experiment, and it is particu- 
larly important  in the determination of the QCD scale 
A from heavy quarkonium data. On the one hand 
it is unjustified to rule out values of A by requiring 
the exact onset of the perturbative potential as r is 
decreased below a certain value. Even at short-dis- 
tances we must allow for changes in the potential 
form arising from the possible higher-order correc- 

0.3 

-~ 0.2 mc 
> 

:~ ~ m~:O 

0 I I 
0 0.05 0.1 0.15 

rA 
Fig. 1. The fractional error in the perturbative potential (calculated 

_ 4~t from (2.15) with K = I )  shown as a function of rA for A = A ~ s  
= 0.2 GeV. The plot is essentially the same for other values of A. 
The me= 1.5 GeV curve is calculated using (2.23) in the place of 
(2.4) 
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tions. On the other hand we cannot conclude that 
a certain value of A is favoured by a phenomenologi- 
cally successful potential with the correct r ~ 0 behav- 
iour, if the potential deviates too much from the per- 
turbative form within its expected region of validity. 
In order to make an objective, relative judgement for 
the onset of the perturbative form of the potential 
we shall make use of the error estimate (2.15) with 
K =  1 in the short-distance region specified by the 
inequality (2.16). 

Finally a technical note on the solution of (2.7) 
for a--a~/n as a function of/~. It is very efficient to 
solve this equation iteratively as follows [-20] 

~s(~)~ a (#) - 
7~ 

b0 
=~F(-b~ln(#/A~(":b))2+bl ln(2bl/b~)) (2.17a) 

with 

f (x) = lim f ~") (x) (2.17 b) 

where 

F~I)(x)=x, 

F (") (x) = [, 1/x + In (1 + 1 / f  (~ - ~) (x))] - 1 

for n=2 ,  3 . . . .  (2.17c) 

This iterative solution converges very rapidly at small 
X. 

2. b Heavy Quark Loop Effects 

It is well known that quark masses can be neglected 
in loop corrections to the static potential when [21] 

r 2 m 2 ~ 1 (2.18) 

is satisfied, whereas the effects of heavy quark loops 
are negligible when [22] 

r 2 m 2 >> 1. (2.19) 

Now the 1 S states of charmonium, bot tomonium and 
toponium (mr = 40 GeV) are sensitive to the potential 

2 1 
in the region around ( r ) ~ = 2 . 2 ,  1.1 and 0.35 GeV -a 
respectively. Thus toponium (and bottomonium) 
spectroscopy probe regions where 

rm~ = O(1) (2.20) 

and so we must include the effects of massive charmed 
quark loops. On the other hand from condition (2.19) 
it appears likely that loop effects due to the bot tom 
quark are negligible. We investigate these effects 
quantitatively below. 

The effect of the charmed quark mass in the per- 

turbative potential was first investigated in [-2]. The 
perturbative potential in massive quark theory has 
an identical form to (2.1) except that the coefficient 
A now becomes a function of mq r, 

31 2 
A(r)=bo T~+ 37 CA+~ TF 

n$ 

�9 ~ [7~+ln(mqr)--Ei(--eS/6mqr)] (2.21a) 
q - - 1  

which gives an excellent approximation to the Fourier 
transform of the perturbative potential in momentum 
space. Here E i ( - x )  is the exponential integral 

Ei(- -x)=--  ; dte- ' .  (2.21b) 
t x 

For  mqr ~ 1 the factor in the square brackets in (2.21 a) 
reduces to - ~ ,  whereas it diverges logarithmically 
in the mq r >> 1 limit, signalling the breakdown of infra- 
red decoupling in the MS scheme. This latter problem 
can be circumvented by using an effective 4-flavour 
theory [--233 provided we stay in the region where 
the condition 

r 2 m 2 >> 1 (2.22) 

is satisfied. Then the coefficient (2.21) becomes 

a(r)=bo 7~+ 3347CA+} TF[--5 + TE 
+ In (me r) -- E i ( -- e 5/6 mc r)] (2.23) 

where bo is given by (2.3) with nr and where we 
have set mu =rod = ms=0. The fractional error in the 
perturbative potential can still be estimated from 
(2.15), provided the effects of the bot tom quark loop 
are negligible. The result as a function of A r is also 
shown in Fig. 1. The error is less than 10% provided 

r A ~  < 0.07. (2.24) 

As an example of the sensitivity to the charm 
quark loop contribution we compare in Fig. 2 the 
perturbative potential for A ~ = 0 . 2  GeV and mc 
= 1.5 GeV with that obtained by setting mc=O. We 
show only the region probed by the 1S toponium 
state, 0.2 < r < 0.5 G e V -  1. We also give the prediction 
of the effective 3-flavour theory with A determined 
by the matching condition [-24] 

(4) m a]3)(/~ = me) = c~s (~ = c) (2.25) 

where e~":)is given by (2.17) with bo(n:) and bl(n:) 
given by (2.3) and (2.6). Taking A~]=0.2 GeV, the 
matching condition gives AN = 0.25 GeV. In practice 
setting mc = 0 does not have a large effect on the to- 
ponium predictions. In our example, with A ~  
=0.2 GeV the 2 S - 1 S  energy difference is increased 
only by 5 MeV on taking me=0 rather than 1.5 GeV. 
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A~=O2OeV T / ~  
~ _, Z/"Y 

::~ ~ = 0 2  eO V, rn c=lSoev 

,~ ~ ~S) = 0 256e v 

? - 
I [ I 1 

02 0.3 QZ, 0.5 
r ( GeV 4) 

Fig. 2. The behaviour of  the perturbat ive potent ial  for A ~  
= 0.2 OeV using an expanded scale to show the differences resulting 
from setting m~=0 and from changing from a n i = 4  to a n I = 3  
effective theory. The errors are calculated using (2.15) with K = 1 

Alternatively, by requiring a given 2S--1 S mass dif- 
ference setting m~ = 0 would decrease the value of A ~  
by about 20 MeV. 

In the rest of this section we study the effects of 
bottom quark loops quantitatively. The MS scheme 
is not convenient for this purpose because of the pres- 
ence of the large logarithm in (2.21) in the region 
rrnb,>l. Rather, the crossing of the heavy quark 
threshold is best studied in momentum subtraction 
(MOM) schemes where the decoupling of heavy 
quarks is manifest. In such schemes renormalisation 
and hence the fl-function are mass-dependent. Clearly 
the simplest example of such a coupling constant 
would be that defined in terms of the static potential 
[8, 25] 

e=(1/r)v = -- r V(r)/Cr (2.26) 

which, being a physical quantity, has the additional 
advantage of being gauge invariant. Unfortunately 
the next-to-leading order coefficient of the corre- 
sponding fl function, which determines the r depen- 
dence of ~=(1/r)v to the desired accuracy, has not been 
calculated; this involves two-loop diagrams with mas- 
sive quarks. 

The coefficient is known [26] only for a particular 
MOM scheme defined at the symmetric Euclidean 
point of the gluon-ghost-ghost vertex in the Landau 
gauge. In terms of this coupling constant, which we 
refer to as Cq(#)MOM, the perturbative expansion for 
the potential has an identical form to (2.1), but with 

'v {m2q~ (2.27) A = AuoM (r) = A~as (r) -- ~ CA + TF q~=~ F #2 J 
where Ags is given by (2.21) with the sum taken over 
all flavours (n I = 6), and where F, the one-loop vacu- 

um polarization function, reads 

F(x)= - �89 5 4 1 h + l  l n x + ~ - ~ x - ~ ( 1 - 2 x )  h l n ( ~ l  ) (2.28) 

1 

with h =(1 +4x)< Noting the limiting behaviour, 

1 
F ( x ) = - � 8 9  ) for x>>l, (2.29a) 

F ( x ) = ~ - - 2 x + O ( x  2) for x <  1, (2.29b) 

we see immediately that the large logarithms (with 
mqr>>l) in A n  and F cancel in (2.27). Indeed from 
(2.29) we see that heavy quark effects are suppressed 
by (mqr)-2 in accordance with the decoupling theo- 
rem [22]. The optimization of the full theory is carried 
out just as in (2.14) with the subscript replacement 
MS ~ MOM, where the scale #1 is obtained by solv- 
ing (2.14 b) self-consistently since the coefficient A now 
depends on #. The scale dependence of the coupling 
constant e=(#1)MOM is governed by the RG equation 
(2.5) with the coefficients bo and bl now being quark 
mass dependent [26], and can hence only be deter- 
mined by numerical integration. The higher order 
contribution should still be estimated by (2.15) with 
the replacement MS ~ MOM. 

We are now in a position to study quantitatively 
the region of validity of the effective nf-flavour theo- 
ries renormalized in the MS scheme by comparing 
their predictions with those of the full theory renor- 
malized in the MOM scheme. For illustration we take 
A ~ = 0 . 2  GeV. The trajectories, ~(="f)(#) versus #, in 
the effective ny-fiavour theories are determined by 
keeping only the first ny quarks and by fixing Ags {') 
through the matching conditions 

c~"i- t)(# = ms) = ~,~) (# = mr). (2.30) 

Using m,,d,s=O, me= 1.5, rob=5, mr=40 GeV, we find 

(AM, AM, A{~], A~])=(0.25, 0.2, 0.13, 0.06) GeV. 
(2.31) 

To determine the corresponding trajectory, ~=(#)MOM 
versus #, in the full theory, we note that for #>>rn, 
the fl functions in the MOM and MS(ny= 6) schemes 
become identical and that the couplings are related 
by a shift in the momentum scale [27] 

cq (#)MOM = ~6)(# e-  t)~rs for # >> mt (2.32 a) 

with [26] 

t=(187Ca--80nr TF)/[24(11CA--4ny Tv)]. (2.32b) 

All the trajectories, ~= versus #, are compared in 
Fig. 3. 

We can now determine the perturbative potential 
for each theory using the optimization procedure of 
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Fig. 3. The trajectories ~ versus # or/~exp(-t) (see (2.32)) for the 
MOM scheme and the effective nfflavour theories in the MS 
scheme. All the curves correspond to taking (A~, m~, rnb, m,) = (0.2, 
1.5, 5, 40) GeV 

0.9~ 
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~1~ 0.~ "C" 
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Fig. 4. The perturbative potentials in the effective nf-flavour theories 
renormalized in the MS scheme normalized to the perturbative po- 
tential of the full theory renormalized in the MOM scheme for 
(A~, me, rob, m~)=(0.2, 1.5, 5, 40) GeV. The error bars correspond 
to (2.15) with K = 1 

(2.14). The predictions of the effective nFflavour theo- 
ries, normalized to that of the full theory, are shown 
in Fig. 4. The prediction of the full theory can be 
best approximated by that of one of the effective 
n f f l avou r  theories, which one depending on the par- 
ticular region of interest. The small discrepancy of 
up to 5% is the culumative error arising from higher- 
order corrections in the R G  improvement  and in the 
matching conditions, and is consistent with the error 
estimate of (2.15) with K = 1 as indicated by the error 
bars. We see from Fig. 4 that the potential calculated 
in the n i = 4  effective theory, with A ~ = 0 . 2  GeV, 
gives the best approximat ion to the full theory in the 
region 

0 . 0 8 < r < 0 . 5  GeV -1, (2.33) 

which includes the entire range in which the perturba- 
tive potential  can be constrained by heavy quarkon-  

ium data. Indeed to start feeling the effects of bo t tom 
quark loops we would have to probe the short-dis- 
tance region r<0 .08  GeV 1 which would require 
quarks with mq>250 GeV. Such quarkonium would 
instantly decay via weak interactions and cannot be 
observed [28, 5]. 

In summary  we have critically examined the effect 
of heavy quark loops in the perturbative potential  
and found that the effective 4-flavour theory with a 
massive charm quark gives a good description of the 
short-distance potential for any forseeable heavy 
quarkonium phenomenology.  We now proceed to in- 
vestigate whether heavy quarkonia  data can deter- 
mine A = A ~ .  

3. The Quarkonium Potential 

The Q C D  perturbative potential that we have dis- 
cussed in Sect. 2 is only valid for small quark separa- 
tions. In Fig. 5 we show its form in the short-distance 
region, which we specify by 

rA<=O.1, (3.1) 

for various values of A -  A ~ .  For  smaller A the per- 
turbative form is valid in a larger region of r. In Sect. 2 
we estimated the fractional error due to possible high- 
er-order corrections, and showed it as a function of 
rA in Fig. 1. The corresponding errors are indicated 
on the A = 0.2 GeV potential of Fig. 5. It is important  
to notice that charmonium and bo t tomonium data 

>~ 

-3 

I I I I 

A= A ~  
- ' ' N S  

~ A=0.2 

0 0.2 0.4 0.6 0.8 
r (GeV 41 

Fig. 5. The perturbative potential Vp(r) for various values ofA _----A~ 
in the region rA <0.1 where it is expected to be valid. The uncer- 
tainty A Ve, given by (2.15), is also shown for the A =0.2 GeV poten- 
tial 



K. Hagiwara et al.: Probing QC D with Heavy Quarkonia  141 

only probe distances greater than 0.5 GeV-1 (0.1 fm) 
and so are only sensitive to values of A less than 
about 0.2 GeV. 

We seek a phenomenological potential which em- 
bodies the short-distance perturbative behaviour 
(such that it lies within the perturbative error corridor 
for rA<0.1) and yet has a sufficiently flexible form 
so that its behaviour in the rA>0.1  region does not 
constrain the value of A strongly. Both these condi- 
tions are crucial for a meaningful determination of 
A.* We follow [-2] and use a parametric form 

V(r) = Vs (r) + Vi (r) + VL (r) (3.2) 

where Vs is the short-distance potential to be de- 
scribed below and VL is the conventional long-range 
confining potential 

VL(r)=ar. (3.3) 

The "intermediate" component V~ is included solely 
to give sufficient flexibility at intermediate r values 

V1 (r) = r (cl + c2 r) exp ( -  r/ro) (3.4) 

and yet to ensure that V(r) approaches the perturba- 
tive form at short-distances and also retains long- 
range linear confinement. 

The short-distance component of the potential, Vs, 
is obtained from the perturbative potential, Vp, by 
removing the Landau singularity to infinite inter- 
quark separation. More specifically, the perturbative 
potential Vp given by (2.14) has a singularity (Landau 
ghost) at 

{ b 2 ]b,/b~ 
#1 =A i~ -1  ) , (3.5) 

where the next-to-leading order running coupling 
constant as(#), as defined by (2.7) or (2.17), blows up. 
The singularity is clearly seen in Vp shown in Fig. 6 
for the case A=0.2  GeV. It occurs at rA~-0.3. The 
regularized short-distance potential, Vs(r), is then ob- 
tained from Ve(r) by shifting the argument of c~ as 
follows 

CF 
Vs(r) = - - - -~s ( f i l )~  (3.6 a) 

r 

with 

fia = l~t + A (b2/2 b 1) b'/b2, (3.6 b) 

where the functional form of a ~(/~)~ is still defined 
by (2.7) or (2.17). The shift #1 ~ f i l  has the effect of 

I I 

"-c 

0 1 2 3 4 5 
r ( GeV -1) 

Fig. 6. A typical quarkonium potential, V(r), and its components  
for A=0 .2  GeV: V(r)=Vs+V~+VL.  We require V(r) to lie within 
an error corridor about  the perturbative potential Vp(r)in the region 
r<rc  (with rcA =0.1). The error defined by (2.15) is shown at r - r  c 

removing the singularity to infinite quark separation 
so that Vs remains finite and approaches zero at large 
distances (see Fig. 6). 

In summary, all three components of the pheno- 
menological potential (3.2) are regular in the entire 
interval 0 < r < o o .  Vs(r) dominates at short, and VL 
at large, distances, and all three components are im- 
portant in the intermediate region probed by char- 
monium and bottomonium spectroscopy. The poten- 
tial depends on 5 parameters, A in Vs, a in VL and 
cl, c2, ro in V~. These parameters, together with the 
heavy quark masses* which set the scale of their re- 
spective heavy quarkonium spectrum, are to be deter- 
mined by fitting to the available (and forthcoming) 
data. 

For a meaningful determination of A = A M  the 
quarkonium potential V(r) is required to reproduce 
its perturbative form Vp(r) in the region where the 
perturbation expansion is expected to be valid, say 
r < re. To be specific we define this region by 

rcA =0.1. (3.7) 

Deviations can occur in this region due to the V/+ VL 
component and due to the regularisation of V~, (see 
Fig. 6). In Sect. 2 we estimated the error AVp(r) in 
Vp(r) which may be expected from higher-order cor- 
rections. Thus a quantitative measure of the validity 
of a given phenomenological potential V(r) can, for 

* For example the A parameter  in the phenomenologically success- 
ful potential due to Richardson [29] is unrelated to our A M since 
its value is determined by the shape of the potential in the intermedi- 
ate region where the perturbation expansion is not  expected to work 
well 

* As discussed in Sect. 2, only the charmed quark mass is needed 
for the loop corrections to Vp(r). The sensitivity of the spectrum 
to the actual value used in the loop contribution is found to be 
very weak and we fix it to be 1.5 GeV independent of the value 
of m~ determined by the fit to the charmonium data 
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example, be taken to be 

10 
Zg= ~ I V(r ,)-  Ve(r,)lZ/lAV,(r,)l 2 (3.8) 

n = l  

with r,=nrc/lO. When considering the value of Z~ 
we should note that it is proportional to K -2 and 
that we have arbitrarily set K of (2.15) equal to unity. 

Two final comments about the form of the quar- 
konium potential are in order. Since we require our 
potential to have the short-distance perturbative 
form, we do not allow an overall constant term in 
the potential. It is known [1, 2] that the major effect 
of an overall shift in the potential can be compensated 
for by a change in the quark mass. Since the heavy 
quark masses (me, mb and mr) are taken as free param- 
eters, the effect of a constant term can be regarded 
as a trivial shift of the quark masses. However the 
constant term Vo does affect the level spacings and 
hence we may investigate the effects of adding Vo to 
our potential (3.2). For  fixed values of A we repeated 
the fits to the quarkonia data including I7o in our 
parameter set. Small values of Vo were preferred. In 
Sect. 4 we briefly discuss the correlation between the 
slope, a, of the long-distance part of the potential 
(VL=ar) and the value of Vo. We also found that 
the possibility of determining A from toponium data 
is insensitive to the inclusion of Vo. 

The second remark concerns a general property 
of the quarkonium potential. It has been shown [31] 
that the potential must be a monotonially increasing, 
concave function of the separation r. That is 

d V>0 d 2 V 
and ~2r2 <0. (3.9) 

We do not impose these constraints on our parametri- 
zation but check, a posteriori, that the potential has 
this property. We found that the second condition 
was only occasionally violated slightly and then only 
in fits to both charmonium and bottomonium data 
for the smallest values of A(A~0.1 GeV) at large 
values of r(r..~ 3.5 GeV- 1). 

4. Description of Charmonium and Bottomonium Data 

Only toponium has a chance of probing the short- 
distance perturbative behaviour of the potential and 
we do not expect charmonium or even bottomonium 
data to put strong constraints on the value of A. Rath- 
er we use the data to obtain satisfactory phenomeno- 
logical potentials at various values of .4 with which 
to confront toponium data when it becomes available. 
The fine and hyperfine splitting of toponium states 
are predicted to be of the order of 10 MeV [5] and 
are beyond the resolution of the presently forseeable 

experiments. We therefore perform an analysis using 
the spin-averaged quarkonium levels. 

The charmonium and bottomonium data set [32] 
that we use is shown in Table 1. We do not include 
the 2S charmonium level in the fit due to its proximity 
to the open flavour threshold and due to mixing ef- 
fects. The P level is calculated as the spin-averaged 
centre-of-gravity of the three 3P s levels and we neglect 
possible hyperfine splitting from the unobserved 1P1 
level. We take the error to be 10 MeV and keep in 
mind that the general tendency of hyperfine splitting 
will cause the true centre-of-gravity to be less than 
that of the apj levels. Only the triplet S levels of botto- 
monium have been observed. The data in Table 1 has 
been obtained by using the following predictions for 
the 3S-- 1S hyperfine splittings: 

m(~')--m(tlb)=32, 16, 11 MeV 

for the 1S, 2S, 3S levels respectively [33]. Again we 
take the P levels to be simply the weighted average 
of the observed three 3P s levels. The observed ratios 
of the leptonic widths are included in the fits by using 

Fee(nS ) ={m(1 S) Rns(O)~ 2 
Fee(1S ) \m(nS)R~s(O)] (4.1) 

where R,s(r) is the radial wave function. We fit to 
the ratios rather than to the absolute widths since 
the latter have large first-order QCD corrections [34] 

4C~ 2 eq z f 16c~,] 
Fee(nS)= m(nS)2 IR,s(0)l 2 [1 - - ~ - ] ,  (4.2) 

which are essentially cancelled in the ratios. However, 
for each fit we present Fee calculated from the formula 
(4.2) by using cr 

For various values of A = A{~ we vary the remain- 
ing 4 parameters of the potential (given in Sect. 3) 
and the external heavy quark masses to obtain the 
best Z 2 fit to the quarkonia data, simultaneously re- 
quiring the potential to approximate to its perturba- 
tive short-distance form by including (3.8) in Z 2. As 
V(r) is varied to achieve the optimum fit we need 
to repeatedly solve the radial Schr6dinger equation. 
We use the matrix inversion method of [35]. Here 
the Schr6dinger equation is reduced to a matrix equa- 
tion, using the finite difference approximation for the 
derivatives, and solved to obtain the eigenvalues and 
eigenvectors, which correspond to the energy levels 
and wave functions respectively. The method has been 
tested for efficiency and accuracy by using a pure 
Coulombic potential. 

In Table 1 the c g and bb- levels are given with 
respect to the lowest S state. The parameters mc and 
mb ensure that the lowest level is reproduced exactly 
by the potential. 
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Table 1. The optimum fits to quarkonia data (and the perturbative potential) for A = A ~ = 0 . 2  and 0.4 GeV. The masses m(nl) are given 
in MeV and the leptonic widths, F,,~F~(nS), in keV. The data marked by * are not used in the fit 

Data c~ + bb- data fitted Only bb- data fitted 

A = 0.2 •2 A = 0.4 Z 2 A = 0.2 Z z A = 0.4 Z 2 

cE data: 
m(1S) 3068 ,+ 2 3068 0 3068 0 
m(2S)-m(1S)* 595 ,+ 2 609 - 596 
m(1P)-m(1S) 457 •  426 9.6 423 11.3 
F2/F1 0.43 4- 0.06 0.49 1.1 0.47 0.3 
Fl* 4.75_+ 0.51 4.35 - 4.81 

bb data: 

m(1S) 9452 ,+ 2.5 9452 0 9452 0 9452 
m(2S)-m(1S) 567 • 3 571 1.9 568 0.1 569 
m(3S)-m(1S) 900 4- 2.5 902 0.8 903 1.6 902 
m(1P)-m(lS) 448 _+ 2.5 446 0.8 447 0.3 446 
m(2P)--m(1S) 809 ,+ 6 790 10.3 795 5.4 790 
F2/FI 0.44_+ 0.03 0.39 3.1 0.39 2.4 0.38 
F3/F 1 0.33 ___ 0.03 0.32 0.1 0.31 0.5 0.31 
/"1" 1.22,+ 0.05 1.05 - 1.13 - 1.07 

0 
0.7 
0.9 
0.3 

10.4 
3.7 
0.2 

9452 
566 
902 
447 
797 

0.39 
0.30 
1.17 

0 
0.0 
0.5 
0.1 
3.1 
1.9 
1.3 

Z~ata 27.8 21.9 16.2 6.9 

Z2V of (3.8) 1.7 1.2 2.4 0.2 

Parameter 
values 

mc (GeV) 1.36 1.58 
mb (GeV) 4.79 4.99 4.82 5.04 
a (GeV 2) 0.22 0.18 0.21 0.16 
cl -- 1.12 -- 1.35 -- 1.55 --2.54 
c2 1.19 1.15 1.40 0.92 
ro (GeV- 1) 0.70 0.57 0.63 0.36 

We show results as a function of A = A ~  for two 
series of fits; first fitting to the combined cE and bb 
data, and then to the bb data alone. The detailed 
results for A =0 .2  and 0.4 GeV are given in Table I, 
whereas in Fig. 7 we show g2 as a function of A. 
We see that there is a marked increase in Z 2, particu- 
larly in Z 2, for A < 0.15 GeV. This puts on a quantita- 
tive footing a result originally given by Buchm/iller 
and Tye [1]; namely low values of A are ruled out 
due to the conflict between the slope of the perturba- 
tive potential and the one required by the data in 
the 0.I-1 fm (0.5-5 GeV -1) region. As A increases 
from 0.15 GeV the experimentally constrained region 
of the potential separates from the perturbative region 
and, not surprisingly, we see Z z as defined by (3.8) 
plays a negligible role in the fit. Apart from the con- 
straint A >0.15 GeV, we conclude that A is not deter- 
mined by bb (and cg) data.* 

* The rise in Z 2 at larger A shown in the fit of [23 is attributable 
to the inclusion of the observed leptonic width of the bb 1 S state 
in the fit and in particular to fitting it with (4.2) without the first- 
order QCD correction 
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Fig. 7a, b. Z 2 as a function of A obtained by fitting a the cE and 
bb-quarkonia data, and b the bb-data alone. The total Z z includes 
a component Z2v (given by (3.8)) which is a measure of how well 
the potential reproduces the perturbative potential in the short- 
distance region. Note that the optimum solution changes discontin- 
uously from one set of parameters (cl, c2, ro, a, rn~) to another 
at a certain value of A. Including an extra parameter c3 smooths 
out the Z 2 profile but does not change its essential character 
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It is worth stressing that with our flexible interme- 
diate parametrization of the potential we are deter- 
mining the long-distance confining part of the poten- 
tial relatively free from its intermediate behaviour. 
F rom Table 1 we see that the slope of the linear con- 
fining component  of the potential (VL = ar) has a value 
a,~ 0.2 GeV 2 essentially independent of the choice of 
A. This value is consistent with that predicted by the 
string model a=l/2rc~'~O.17 GeV 2. This observa- 
tion is not new; indeed, with the phenomenological 
potential of the Cornell group [-36] 

K 
V(r)= - +ar  (4.3) 

r 

the best fit (zz,t,=65.3) to the combined c? and bb 
data has K=0 . 47  a=0.19 GeV 2, m~= 1.32 GeV and 
mb = 4.75 GeV. The success of the Buchmfiller-Grun- 
berg-Tye potential [13 can also be attributed to its 
large-distance behaviour being determined by the 
Regge slope. 

We repeated the fits but now including a constant 
term Vo in the potential as a free parameter. We found 
a correlation between Vo and the slope, a, of the long- 
distance potential VL. The results are summarized in 
Table 2 for A =0.2 GeV. Acceptable fits are seen to 
have a slope, a, compatible with that required by str- 
ing dynamics and a value of Vo around zero. If, for 
instance, one chooses a larger value of a 
(a>0.2  GeV 2) then a negative Vo is required in an 
attempt to compensate for the rapid rise of the stored 
energy as the quark separation increases through the 
region sensitive to the c? and bE data. 

Finally we briefly consider other phenomenologi- 
cal quarkonium potentials that have been proposed. 
To obtain a consistent comparison we use each of 
the potential forms in turn to fit to the c~ and bE 
data listed in Table 1. 

( i )  Martin Potential [30]. The potential form 

V(r) = A + Br ~ (4.4) 

was originally motivated by the apparent logarithmic 
behaviour of the potential in the region sensitive to 
the data. The optimum fit is shown in Table 3 and 
corresponds to the parameter values 

A =  -6 .00,  B =  5.78, v=0.118 
(4.5) 

mc = 1.43, mb= 4.83 

in GeV units. This is a purely phenomenological po- 
tential and cannot be compared to the short-distance 
perturbative potential. We see that it does not achieve 
a satisfactory description of all the bff data. 

(ii)  Richardson Potential [293. Richardson proposed 
an economical potential which depends on a single 
parameter AR 

4 127r 1 1 
~- (qz )=  3 3 3 - 2 n  I q2 ln(1 +q2/A2)" (4.6) 

With this form we obtain the excellent fit to the data, 
shown in Table 2, for the parameter values 

AR =0.375 GeV, me= 1.50 GeV, mb=4.91 GeV. 
(4.7) 

However the potential is not constructed to repro- 
duce the two-loop perturbative form and hence the 
parameter AR has little to do with the perturbative 
QCD scale parameter A =A ~ ,  which we are trying 
to measure. Indeed the value of AR is determined from 
the data by the intermediate and long-range behav- 
iour of the potential and not by its short distance 
behaviour. However it is worth noting that this one- 
parameter potential form gives an exceptionally good 
fit to the c? and bE data (see Table 3). 

Table 2. The opt imum fits to cg and bE data for A =0.2 GeV for 
different fixed values of the slope, a, defined by VL--ar ,  but with 
a constant  term Vo included in the potential as a free parameter  

a Vo Z z 
(GeV z) GeV 

0.35 -0 .41  98 
0.33 - 0 . 4 0  74 
0.31 - 0 . 3 5  54 
0.29 --0.26 41 
0.27 - 0 . 2 0  34 
0.25 --0.I0 33 
0.23 - 0.04 30 
0.21 0 29 
0.19 0.11 27 
0.17 0.19 24 
0.15 0.22 46 
0.13 0.23 92 

(iii) Kfihn-Ono Potential [-3]. A potential based on 
the second-order perturbative form in the massless 
4-flavour effective theory was considered in [3]; 

V(r)= 16re 1 [ 
- 25 rf(r) 1 

+ a l~r + c 

with 

f ( r ) -  In [ 1/(A r) 2 + b], 

2'/E + 53/75 462 lnf(r)] 

f(r) 625f(r) J 

(4.8 a) 

(4.8b) 

where the parameter b is introduced to avoid the Lan- 
dau singularity. Here A = AM is the same QCD scale 
parameter as ours apart from the fact that they set 
mc = 0. As discussed in Sect. 2, this causes a downward 
shift of about 20 MeV in the value of A when fitted 
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Table 3. The optimum fits to the quarkonia data using various potential forms. The masses are given in MeV and the leptonic widths, 
F,=-Qe(nS), in keV. The data marked by * are not included in the fits 

Martin Richardson Kiihn-Ono, A = 0.2 Kiihn-Ono, A = 0.4 

c? data: Z 2 Z 2 Z 2 Z 2 

m(1 S) 3068 + 2 3068 0 3068 0 3068 0 3068 0 
m(2S)-m(1S)* 595 + 2 615 588 - 596 593 - 
m ( 1 P ) -  m(1 S) 457 + 10 441 1.4 423 11.5 429 7.7 427 9.1 
1"2/1"1 0.43_+ 0.06 0.39 0.5 0.44 0.0 0.42 0.1 0.42 0.0 
/'1" 4.75_+ 0.51 4.34 - 4.63 3.65 - 3.94 

bb data: 

m(1S) 9452 _+ 2.5 9452 0 9452 0 9452 0 9452 0 
m(2S)-m(1S) 567 + 3 575 7.6 569 0.6 572 2.9 570 0.8 
m(3S)-m(1S) 900 _+ 2.5 913 28.2 899 0.0 901 0.3 901 0.2 
m(1P)-m(1S) 448 _ 2.5 413 190.0 451 2.1 444 2.9 446 0.6 
m(2P)-m(1S) 809 _+ 6 800 2.3 805 0.4 804 0.7 806 0.3 
1"2/1"1 0.44_+ 0.03 0.50 4.4 0.41 1.1 0.43 0.2 0.42 0.2 
Fa/F~ 0.33 _+ 0.03 0.34 0.1 0.28 2.2 0.29 1.7 0.29 1.7 
FI* 1.22+ 0.05 0.69 - 1.32 - 1.12 - 1.22 

Z2aat. 235 17.9 16.4 13.0 

Z2v - - 25.9 22.4 

Table 4. The parameter values corresponding to the fits shown in 
Table 2 for the Kiihn-Ono potential form of (4.8) 

A a b c mc mb 
(GeV)  (GeV)~ (OeV)  (GeV)  (OeV)  

0.2 0.67 238 - -  0.41 1.22 4.66 
0.4 0.70 499 - 0 . 8 1  1.41 4.83 

to the same data. The optimum fit to the data using 
the potential of (4.8 a) is shown in Table 3 for A = 0.2 
and for A = 0.4 GeV, and the corresponding parame- 
ter values are given in Table 4. Excellent descriptions 
are obtained provided the regularization parameter 
b is allowed to take arbitrary values.* The approach 
of the Kfihn-Ono potential to the perturbative poten- 
tial at short distances is relatively slow due to the 
large value of the regularization parameter b and also 
to the presence of the constant term, c, in the poten- 
tial. The Z 2 values are shown in Table 3 a n d ,  though 
large, are acceptable. However as A is decreased be- 
low 0.15 GeV the value of Z 2 increases rapidly, as 
in Fig. 7, confirming once again that the cg and bE 
data cannot accommodate a short-distance potential 
with A < 0.15 GeV. 

All the above potentials are compared in Fig. 8. 
As expected, they have a common slope in the region 

* With b=20,  as taken in [3], we find zz,t,=84.3 for A =0.2 OeV 
and Z],t,=630 for A =0.4 GeV 
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Fig. 8. Quarkonia potentials, obtained by fitting various phenomen- 
ological forms [given by (4.4), (4.6) and (4.8)] to the cg and bb- 
data of Table 1, compared with the potential of (3.2) for two repre- 
sentative A values 

sensitive to the c( and bb data, 0.5 < r <  5 GeV-1.  At 
short distances both our potential and the Kiihn-Ono 
potential behave roughly as the two-loop perturbative 
potential. The Richardson potential with AR 
=0.375 GeV gives the most singular behaviour at 
short distances, but is not too different from the two- 
loop behaviour with A~] = 0.5 GeV around 
r=0 .1  GeV -1. At large distances ( r > 5  GeV-1), the 
linearly rising behaviour of our potential and that 
of Richardson is clearly seen. 
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5. Predictions for Toponium as a Function of A 

Our main objective is to see with what accuracy the 
value of A -  AM can be determined by toponium data 
when it becomes available. The toponium spectrum 
is expected to be much richer than either of those 
of charmonium and bottomonium. The number of 
narrow toponium S states below the threshold for 
pair-production of T(t77) mesons is predicted to be 
[38, 53 

n~_3.8(m~" 
\ r o b /  " 

Taking mr=40 GeV we anticipate about 10 narrow 
toponium S states. 

The predictions for the S states of the toponium 
spectrum are shown in Table 5 for the quarkonium 

Table 5. Predictions for the toponium S states obtained using poten- 
tials that describe c~ and bb-data. We have taken m (1 S)= 80 GeV 

n (rZ)~s E,+ 1 - E ,  in MeV 
(GeV) -1 

A = 0.2 A = 0.4 Richardson Martin 

1 0.35 670 746 987 505 
2 0.82 358 363 372 298 
3 1.32 224 221 228 215 
4 1.89 157 161 170 170 
5 2.43 130 135 140 141 
6 2.88 118 121 120 121 
7 3.23 111 111 108 106 
8 3.71 105 104 98 95 
9 3.88 100 98 91 85 

10 4.16 

potentials with A =0 .2  and A =0 .4  GeV obtained in 
the fit to the cO and bb data of Table 1. For compari- 
son we also show the predictions of the "Martin" 
and "Richardson" potentials of (4.4) and (4.6) respec- 
tively. We see that the level spacings of the higher 
radial excitations (n > 3) has little dependence on the 
choice of potential since they are sensitive to the re- 
gion of the potential constrained by the c6 and bb 
data. The observation of these higher excited states 
is still important in order to test the flavour indepen- 
dence of the potential. However, the decreasing sepa- 
ration between the higher excited states will make 
the states much more difficult to resolve experimental- 
ly [5, 39]. 

Fortunately the IS, 2S and (provided the topon- 
ium mass is less than about 80 GeV) also the 1 P level 
are the states for which quantitative measurements 
are possible I-5]. These toponium levels exhibit a 
strong A dependence as shown in Table 6. The predic- 
tions for five different values of A = AM are shown 
for three possible toponium masses, m(1S)=60, 80 
and 100 GeV, and are obtained by minimizing Z2at, 
+ 2 2  by fitting the quarkonium potential to the c6 
and bb data as well as to its perturbative short-dis- 
tance form, as explained in Sect. 3. In Table 6 and 
in the following, F (~ stands for the 'virtual-photon 
contribution' to the leptonic width of the triplet nS 
states, 

r~.~ = r ( n s  --, ~* --,  e + e - )  (5.1) 

including the first-order QCD correction, that is F (~ 
is used to denote F~(nS) of (4.2). The true leptonic 
width, including the effects of the Z-boson contribu- 

Table6.  Predictions for the properties of toponium that are most sensitive to the value of A=AMs, shown for various values of the 
toponium mass, m(1 S), and various values of A. The potential is obtained by fitting to the cg and bb-data as in Table 1 

m(1 S) A Mass differences in MeV F] ~ F(2 ~ F(3 ~ 

(GeV) (GeV) (keY) F(a ~ F~ ~ 
2 S - 1 S  3 S - 1 S  1 P - - 1 S  2 P - 1 S  

60 0.1 603 945 458 
0.2 652 997 517 
0.3 679 1025 550 
0.4 707 105t 582 
0.5 752 1090 627 

853 2.58 0.53 0.32 
913 3.35 0.46 0.27 
945 3.82 0.43 0.24 
975 4.26 0.40 0.22 

1017 4.73 0.37 0.20 

80 0.1 603 954 473 
0.2 670 1028 548 
0.3 708 1069 590 
0.4 746 1108 630 
0.5 802 1162 681 

863 2.65 0.50 0.32 
945 3.54 0.42 0.26 
990 4.09 0.40 0.23 

1033 4.60 0.37 0.21 
1090 5.08 0.35 0.19 

100 0.1 610 964 492 
0.2 694 1059 583 
0.3 741 1112 633 
0.4 787 1163 680 
0,5 851 1229 735 

877 2.79 0.46 0.30 
978 3.78 0.39 0.24 

1034 4.40 0.36 0.22 
1088 4.96 0.34 0.20 
1158 5.45 0.34 0.18 
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chardson potentials as a function of the toponium mass. The ~ ' - J /  
r and ic' ic mass differences are also shown. The former has not 
been used in the fit 
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Fig. 11. The ratio of the toponium 2S to 1S leptonic widths as 
a function of the toponium mass;  the ratio is expected to be essen- 
tially free from uncertainties due to Q C D  corrections. The ratios 
obtained from cd and bE data are also shown 
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Fig. 10. The leptonic width F(O--*"7"--* e+e ) as a function of the 
toponium (0) mass. F~ is given by (4.2); the contribution of the 
virtual Z is omitted. The observed r and Y leptonic widths are 
also shown, the latter multiplied by 4. These data have not  been 
used in the fits 

tion, is then trivially obtained from F ~~ once the Z- 
boson mass and couplings are accurately measured 
[5]. F rom Table 6 we see, as A grows from 0.1 to 
0.5 GeV, that both  the 2 S -  1S and 1 P -  1S mass dif- 
ferences increase, and that F(~ ~ grows, whereas the 
ratios Ft2~ ~ and -3r(~176 decrease. 

In Figs. 9-11 we show the predictions for m ( 2 S ) -  
m(1S), F] ~ and -2r(~176 respectively, over a wide 
range of m(1S) values, that are obtained from our 
potential with A = 0 . 2  and 0.4 GeV, together with 
those we have obtained using a Richardson-type po- 
tential and a Mart in- type potential. It  should be not- 
ed that the 0 ' - J / 0  mass difference shown in Fig. 9 
and the J/r  and Y leptonic width data shown in 
Fig. 10 were not included in the fits as explained in 

Sect. 4. Nevertheless, all the potentials give satisfacto- 
ry descriptions of the cg and bb- data with the excep- 
tion of the large discrepancy in the 1~ leptonic width 
predicted by the Martin-type potential  (see Fig. 10). 

For  high mass quarkonium states we see from 
the figures that the predictions of the different poten- 
tials models are very clearly distinguished. The Ri- 
chardson potential predicts a rapid growth of the 
2 S--  1 S mass difference and of the leptonic width with 
increasing quarkonium mass, whereas the Mart in  po- 
tential products a decrease of these quantities. The 
potentials whose short-distance behaviour  is con- 
trolled by two-loop perturbative Q C D  give intermedi- 
ate predictions, reflecting a milder short-distance 
behaviour as compared  to that of Richardson's  poten- 
tial but more singular than the Mart in  form (see 
Fig. 8). 

Note  that the curves shown in Fig. 10 for the lep- 
tonic widths included the first-order Q C D  correction 
factor of (1-16c~J3g)  in (4.2). This large correction 
(about 30% for F~e(Y)) means the leptonic width pre- 
dictions are unreliable. For  instance, by simply replac- 
ing the correction factor by the positive-definite form 
(1 + 16~#3zc)-1 makes the A =0.4 GeV prediction for 
F] ~ agree with the lc~ e + e -  data  (see Fig. 10). Such 
ambiguities in F~ ~ are largely cancelled in the ratio 
of branching fractions shown in Fig. 11 and so Fz/F1 
rather than F1 should be used  to probe the short- 
distance part  of the potential  and to determine A. 

Finally, we study the extent to which the prospec- 
tive toponium measurements will be able to determine 
the Q C D  parameter  A. For  this purpose we assume 
a toponium mass of m(1 S)=80  GeV and include in 
the fit ' d u m m y '  toponium data which could be ob- 
tained at the forthcoming e + e -  colliders. To be pre- 
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cise the t o p o n i u m  ' d a t a '  are taken to be the values 
predicted by our  potent ial  but  with statistical errors 
cor responding  to those expected to be achieved at 
LEP,  as est imated by the L E P  study g roup  [5]. We 
show results for two sets of  t opon ium ' da t a ' ,  namely 
those with central values predicted by our  A = 0.2 and 
A- -0 .4  GeV potentials given in Table 1. Fo r  
A = 0.2 GeV we have 

m (2 S) - m (1 S) = 670 + 20 MeV, (5.2 a) 

F ( O ) / r ( o )  = 0.42 + 0.06 (5.2 b) 2 / ~ 1  

and for A = 0.4 GeV 

m(2 S ) -  m(1 S) = 746 _+ 20 MeV, (5.3 a) 

F~~ ~ = 0.37 _+ 0.06. (5.3 b) 

Here we have taken a 20 MeV error  on the mass 
difference and a 15% error  on the ratio of the leptonic 
widths as anticipated [5] to be relevant to the forth- 
coming experiments. We include the t opon ium ' d a t a '  
with the cg and bE data  listed in Table 1 and perform 
a fit to the combined  data  as a function of  A as ex- 
plained in Sect. 4. The top  quark  mass is determined 
by requiring m ( 1 S ) =  80 GeV. The results of  the Z 2 
fits are shown by the dashed curves in Fig. 12 super- 
imposed on the Z 2 curve of  Fig. 7a  which corresponds  
to the fit to the cg and bE data  alone. If  one allows 

2 Z 2 values up to Zmi,+3 then we see that  t opon ium 
data  should be able to determine A = AM to an accu- 
racy of  just  less than _+ 100 MeV. 

We find that  it is essentially the mass difference 
' d a t a '  which determines A. The ' d a t a '  of  (5.2b) (or 
(5.3 b)) for the ratio of  the leptonic widths gives only 
a weak constra int  on the value of  A. These conclu- 
sions can be anticipated from Figs. 9 and 11. F r o m  
Fig. 10 we see that  the width F]  ~ is more  sensitive 
to A than the ratio F(z~ ~ Indeed if ' d a t a '  for F~ ~ 
with the expected accuracy [-5] of  10% is incorpo-  
rated into the fit, and if predict ion (4.2) for F(~ ~ is 
taken at face value, then the Z2 v e r s u s  A profile is 
shown by the dot ted curve in Fig. 12 and we see A 
is determined to within __85 MeV. However  f rom 
(4.2) we note that  the first-order Q C D  corrections 
to the leptonic width are -16c~s/3~ relative to unity 
and so we expect h igher-order  correct ions of  order  
(16c~s/3rc) 2, that  is of  the order  of  about  5%. It  is 
clearly impor tan t  to reduce the theoretical uncer- 
ta inty in (4.2) so that  the measurement  of  F~ ~ can 
be reliably incorpora ted  into the fit and hence the 
determinat ion of  A can be improved.  

We also studied the possible improvement  in the 
determinat ion of  A if the 1 P t opon ium state was ob- 
served, for example via 2S --* 1 P7  --* 1 $77. Including 
a measurement  of  the 1 P - 1  S mass difference with 
an error  4-20 MeV in the fit results in a X 2 versus 
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Fig. 12. The effect of including toponium 'data' in the fit to deter- 
mine A. The continuous curve is the Z 2 profile obtained by fitting 
to cg and bb- as presented in Fig. 7a. The dashed curves show the 
effect of including the toponium 'data' of either (5.2) or (5.3). These 
'data' are the predictions of our A =0.2 and 0.4 potentials respec- 
tively and so give zero additional Z 2 contributions at these values 
(as indicated by the solid dots). The dotted curve shows the effect 
of including F~~ keV in the fit rather than the ratio 
of (5.2b). The dot-dashed curve shows the improvement obtained 
by including, in addition, the 1 P - I S  mass difference of 
548 + 20 MeV 

A profile shown by the dot -dashed  curve in Fig. 12, 
leading to a determinat ion of A to within about  
+ 75 MeV. 

We studied the sensitivity of  our  conclusions to 
omit t ing the cg data  f rom the fits. We found very 
similar results, thereby decreasing the sensitivity of  
the analysis to relativistic corrections. 

We also checked to see whether  the determinat ion 
of  A is biased by the parametr ic  form used for the 
potential.  First we fitted the cg, bb  and ' t t- '  da ta  by 
adding one more  parameter  in the intermediate po-  
tential 

VI (r) = r (c l  + C2 r + c3 r 2) exp( -- r/ro). 

The Z 2 curves as a function of  A are essentially the 
same as those shown in Fig. 12. Next, we studied the 
effect of  including a constant  term Vo in the potential.  
We repeated the combined  fit to the c?, bE and ' t t- '  
shown in Fig. 12 for Vo=0  but  now leaving Vo as 
a free parameter  and  we found very similar Z2 profiles 
with min ima at the same values of  A. We conclude 
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the determination of A does not depend on whether 
Vo is included or set equal to zero. 

6. Conclusions 

We have critically re-examined the sensitivity of the 
charmonium and bot tomonium data to the short-dis- 
tance part of the interquark potential in the frame- 
work of the non-relativistic quark model. We studied 
the next-to-leading order QCD perturbative predic- 
tion for the potential and quantitatively investigated 
both its region of validity and the effects of heavy 
quark loops. By using a phenomenological potential 
which embodies the short-distance perturbative 
behaviour and long-distance linear confinement and 
which has a flexible form for intermediate distances, 
we find that the c6 and bb- data do not constrain 
the QCD scale parameter A - A M  apart from requir- 
ing A > 150 MeV. 

Predictions for the properties of higher mass quar- 
konium states are found to be quite sensitive to the 
value of A, confirming previous observations (see, for 
example, [1, 2]). When compared to the predictions 
of other potentials, two extremes being the Richard- 
son- [29] and the Martin- [30] type potential, the 
predictions of the potentials which incorporate the 
next-to-leading order perturbative behaviour are dis- 
tinctively different for m(2S) - m ( 1  S) and 
F(2S~e+e )/F(1S~e+e -) which are expected to 
be measured rather accurately for toponium at LEP 
[5]. An important  question is how well the toponium 
measurements will be able to determine A. We investi- 
gated this question by assuming sample 'da ta '  for 
the above two quantities around the predictions of 
our potential and with statistical errors expected in 
the forthcoming experiments. By performing a Z 2 fit 
as a function of A to the toponium 'data '  together 
with the cg and bb-data we concluded that the topon- 
ium measurements could only determine A to within 
+ 100 MeV if A is the region 0.2-0.5 GeV. 

With the anticipated experimental errors [-5] we 
find that A is essentially determined by the 2S-1S  
toponium mass difference and that the ratio of the 
leptonic widths is rather insensitive to A. It is fortu- 
nate that the 2 S - 1 S  mass difference is the quantity 
most sensitive to A as it is also the quantity most 
accessible to accurate experimental determination. 
We took the error on the measurement of the mass 
difference to be 20 MeV corresponding to that ex- 
pected* for toponium of mass 80 GeV. If the topon- 
ium mass turns out to be either 70 or 90 GeV then 
the 2 S - 1 S  mass difference can be measured more 
accurately, with errors* of 10 and 15 MeV respective- 

* The expected experimental accuracy assumes a luminosity of 
0.4 pb ~ at nine different energies in the resonance region, see 1-5] 

ly, and consequently a more precise determination 
of A can be achieved. The absolute measurement of 
the mass may have a systematic error of about 
100 MeV but fortunately this is not relevant to the 
measurement of the mass difference. 

Although the ratio of the leptonic widths do not 
put much constraint on the value of A, the situation 
can be improved by including the width 
F(1S~e+e -) in the fit. The width is expected to be 
measured to 10% accuracy, and including such a 
measurement in the analysis would determine A to 
within about  _+ 85 MeV. However we would first have 
to compute the higher order QCD corrections to the 
formula for F(1S~e+e -) to ensure the theoretical 
prediction is sufficiently reliable. 
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