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Abstract. This paper describes the beginning of an 
attempt to study the weak coupling limit of lattice 
gauge theories, using the Hamiltonian formulation 
and the semiclassical approximation. The topics are 
caustics and the behavior of the ground state wave 
function in the vicinity of caustics. For two very sim- 
ple SU(2) models (one plaquette, two plaquettes) we 
demonstrate the existence of caustics, determine their 
locations and study the peaking behavior of the 
ground state wave function on them in the limit g2 

--~0. 

1. Introduction 

Lattice gauge theories [1] on a finite volume have 
been studied quite intensely during the past years [2]. 
For the limit of large lattice coupling constant the 
strong coupling expansion [-3] has been used to prove 
confinement and to calculate various physical quanti- 
ties of interest. Existing calculations [4] extend over 
large orders of the inverse coupling constant. For 
smaller values of the coupling constant where this 
expansion can no longer be used computer simula- 
tions [5] (Monte Carlo calculations) have been per- 
formed [2]�9 In both the strong and the weak coupling 
regimes they are consistent with the expected behav- 
ior: for large coupling constants they match the re- 
sults for the strong coupling expansion, whereas in 
the weak coupling region they do not contradict the 
scaling behavior predicted by the renormalization 
group equation [6]�9 For example, for a physical mass 
the expected behavior is: 

mphy s =const - 1/a. exp [-- i/2fio g2] 

�9 (/30 g2)-B1/2B~. [1 + O(g2)] (1�9 

* Work supported in part by the US Department of Energy under 
Grant DE-FG 02-84ER40158 

(/30,/31, are the coefficient of the/3-function, a is the 
lattice distance, and the constant is the quantity to 
be read off from the numerical computer analysis). 
The status of analytic calculations in the weak cou- 
pling regime is much less satisfactory than that in 
the strong coupling region�9 For U(1) gauge theory 
in 3 dimensions G6pfert and Mack [7] have shown 
that confinement holds for all values of the coupling 
constant, but for nonabelian theories an analogous 
proof is not available. Note that for these theories 
it is the weak coupling regime which is relevant for 
the continuum limit. 

A natural framework for analytic investigations 
of lattice gauge theories is the I-Iamiltonian formula- 
tion [8]. Based on the Hamiltonian of Kogut and 
Susskind [8] several attempts have been made for 
solving the Schr6dinger equation, in particular for 
the ground state wave function. Motivated by a suc- 
cessful variational calculation in compact Quantum 
Electrodynamics in 2 + 1 dimensions [9], various var- 
iational techniques have been explored [,10] first in 
the abelian U(1)-case in 2+  1 and 3+ 1 dimensions, 
then also in the nonabelian SU(2) [-11] and SU(3) 
[12] cases. Other calculations make use of the t-ex- 
pansion [13] or Lanczos' method [14]. None of these 
authors claim to have a systematic study of the ex- 
treme weak coupling limit�9 The behaviour in the limit 
of small coupling constant, however, is used as an 
important test for the quality of the approximation�9 

Systematic perturbative studies of the weak cou- 
pling limit in the Hamiltonian formulation have been 
started by Lfischer [,15] and Miiller and Riihl [,,16]. 
The latter deals with SU(2)-lattice gauge theory in 
2 + 1 dimensions and calculates, to leading order in 
powers of the coupling constant, the energy gap and 
the static potential. The first approach (calculations 
are done in the continuum limit directly) makes use 
of the fact that for small spatial volume the effective 
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coupling constant is small: the size of the volume 
therefore controls the validity of the perturbation ex- 
pansion, and one expects that perturbation theory 
gives a reliable answer for small-size models. With 
increasing volume, of course, corrections due to tun- 
neling effects have to be included [17]. 

The standard method for studying tunneling ef- 
fects in quantum mechanical systems is the semiclassi- 
cal approximation. The particular gZ-dependence of 
the lattice Hamiltonian [8]: 

g2 2 

/4= 5- T+ 7 V (1.2) 

(T is the electric part and plays the r61e of the kinetic 
energy, V represents the magnetic part and provides 
the potential) suggests to attack the g2 ~ 0  limit of 
(1.2) by the same method as one treats the limit h--+ 0 
in ordinary quantum mechanics (i.e. g2 plays the r61e 
of h). This then leads to Hamiltonian classical me- 
chanics in a system of many degrees of freedom. Sev- 
eral years ago instanton contributions 1-18] to the 
(euclidean) partition function of gauge theories have 
been investigated quite extensively; since the integra- 
tion over the size of the instanton configurations di- 
verges, it has remained unclear whether instanton 
configurations in the functional integral could be a 
useful starting point. In principle one expects that 
analogous configurations exist also on the lattice and 
show up in the limit g2-+0; if these contributions 
were the only effect seen in a semiclassical approxima- 
tion to (1.2), an analysis of this type would not appear 
to be very promising. It is, however, well-known that 
a semiclassical analysis of a quantum mechanical 
problem has many more facets [19, 203, such as foci, 
caustics, shadow, Young's phenomenon; it is also 
very likely that phenomena of modern nonlinear me- 
chanics [21] such as chaotic behavior play a r61e. 
We therefore feel that the idea of applying the full 
apparatus of the semiclassical approximation to the 
weak coupling limit of (1.2) looks sufficiently promis- 
ing, and an attempt should be made. 

In this paper we describe an exploratory study 
of a simple SU(2) lattice model (without fermions) 
which exhibits some of those features which we expect 
to be relevant for a larger realistic lattice model. In 
order to analyse the ground state of (1.2) in the semi- 
classical approximation, one solves the corresponding 
classical equations of motion: the solutions start in 
the region of small fields, where the ground state wave 
function is of order unity, and then spread out in 
configuration space, where the wave function de- 
creases exponentially. It is therefore natural to study 
first classical solutions at distances not too far away 
from the point of zero fields. At very large distances 

the exponential suppression makes it less probable 
that the details of the ground state wave function 
matter. At finite distances the most prominent feature 
of the classical solutions are caustics, i.e. regions in 
configuration space where neighboring trajectories in- 
tersect. It is this phenomenon on which we concen- 
trate in this paper. 

In order to investigate the influence of caustics 
on the ground state wave function in some detail we 
have chosen to study the simplest nonabelian lattice 
models: one consisting of one single plaquette, the 
other of two plaquettes. In both cases we use free 
boundary conditions*: the classically allowed region 
then consists of one isolated point, the origin. The 
classical solutions we are interested in have energy 
zero and leave the origin in all possible directions 
of configuration space. Although focal points and 
caustics in the semiclassical approximation to quan- 
tum mechanics have been known for a long time, 
it is only more recently [20] that a formulation has 
been given which allows generalization to higher 
numbers of variables. In this formulation, caustics are 
related to singularities of mappings, and Arnold [22] 
has given a complete list of normal forms of stable 
singularities for the Hamilton-Jacobi function S for 
spatial dimensions < 5. This classification has turned 
out to be very useful for us, although our models 
also contain singularities which are not on this list 
(they correspond to unstable singularities). The most 
striking feature of the ground state w~ve function is 
that on the caustic it develops a peak in the limit 
g2 -.+ O: 

~k ~ const g-V.exp [ -  1/g2S(A)]. (1.3) 

Here p is a positive fractional power which depends 
upon the detailed structure of the caustic; A denotes 
the coordinates of the point on the caustics, and the 
normalization of the wave function is such that for 
a regular point (not on the caustic) the factor in front 
of the exponential is independent of g2. Our main 
effort has been to establish for our models the appear- 
ance of caustics in the case of SU(2) gauge theory 
and then to find, in the vicinity of the most interesting 
parts of the caustic, the form (1.3) for the wave func- 
tion. 

This paper will be organized as follows. We first 
(Sect. 2) present a brief summary of the semiclassical 
approximation. In particular we say a few words 
about the classification of caustics as stable singulari- 
ties of mappings. As a first illustration we then (Sect. 
3) apply the semiclassical approximation to the sim- 

* For the case of periodic boundary conditions Liischer [15] has 
shown that the potential has valleys (toron configurations). It is 
for this complication that we have chosen to use, for the beginning, 
free boundary conditions 
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plest model, consisting of one single plaquette. Be- 
cause of the high symmetry, this model does not yet 
fully exhibit the phenomenon which we want to ex- 
plore. We therefore in Sect. 4 turn to the next simplext 
model which consists of two plaquettes. Here we first 
use the computer for locating the caustics, then we 
construct the ground state wave function in the vicin- 
ity of the most interesting parts of the caustic. In 
the last section we summarize and give a brief discus- 
sion. Some details of analytic', calculations are put into 
two appendices. 

Both equations (2.5) and (2.6) can be solved if we 
know the solutions of the classical equations of mo- 
tion of the Hamiltonian 

H(p, x) = 1 Gab(x) Pa Pb + V(x). (2.8) 

Since (2.5) is the same as 

{aS, x) = E, (2.5') H k o x  

the solution is given by the action integral 

2. Semiclassical Method in Quantum Mechanics 

The generic form of the Schr6dinger equation which 
is to be solved in the limit h -> 0 is the following*: 

Gab(x)(-,~ . ~  b 
\GX GX 

+ V(x)] ~,(x) = ~ , (x) .  
] 

(2.1) 

Here a, b = 1, ..., N; Gab(x) is the real, symmetric, and 
positive definite metric tensor, and F~b are the connec- 
tion coefficients: 

Fib = { G c" - F a x  b ax" ]" (2.2) 

There are two equivalent ways of deriving the semi- 
classical approximation. The first one is usually pre- 
sented in textbooks on quantum mechanics (see, e.g., 
[-23]). With the ansatz 

0 (x) = A (x)- exp [i/hS(x)] (2.3) 

S(x) = S(x) + O(h 2) (2.4) 

one goes into the Schr6dinger equation (2.1) and de- 
rives differential equations for the functions S(x) and 
a (x): 

aS aS 
Gab(x) OX a aX b = 2 [ E - -  V(x)] 

(2.5) 
or S; a S; a = 2 [ E -  V(x)], 

ab / 2 a S \  
G (x) lA ~xb); = 0  

or (A 2 S; a); a = 0, (2.6) 

where ;a is the covariant derivative: 

2 a S \  = ~ _ [ A 2  a S  _F~,(A2 aS ,27, 

* This h is merely a small parameter and will be identified later 
with - i g  2 

S(x) = ~ Pa dq a. (2.9) 
XO 

The line integral goes along the classical trajectory 
which connects the points Xo and x and has energy 
E. The point Xo is specified through the boundary 
condition which ~ (x) has to obey. Similarly, the con- 
tinuity equation (2.6) is solved by: 

A2(x)=const exp - Sdo- G 10x~); a , (2.10) 
x o  a lGa  b aS OS 

V ax" ax b 

where da= ]/Gab dxadx b is the differential of the arc- 
length, and the line integral again goes along the clas- 
sical trajectory. 

Equivalently, one could start from Feynman's 
path integral [24] representation of the time-indepen- 
dent Schr6dinger wave function 

O(x)=~[dx] exp[i/h ~ padqa] dxo O(Xo), 
I_ XO 

(2.11) 

Here the integration goes over all paths which con- 
65  ~ 

nect the points Xo and x and have energy E; p, - aica, 

and Y = �89 Gab 2 , 2 b  V. In the limit h ~ 0 the classical 
path dominates and 

O(x)~A(x )exp  i/h ~ padq �9 
I-  x o 

(2.12) 

This is the same as (2.9), but the prefactor A now 
represents the quantum fluctuations around the clas- 
sical path between xo and x. Under normal circum- 
stances the leading contribution to A (in the limit 
h ~ 0) comes from the gaussian fluctuations, but as 
we will discuss later, it may happen that one has to 
keep more than quadratic term in the exponent of 
(2.11). 

In a given problem it may happen that the wave 
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function 0(x) is known already in some region of 
configuration space. Then the task will be to find (l(x) 
in the remaining part of configuration space by means 
of the semiclassical approximation. To be specific, let 
O(x) be known in a bounded region D with boundary 
So. We then know the functions S(x) and A(x) on 
So and can use this information to set up the classical 

problem: for any X o ~  o we have pa=--~x~" which 
9~ O 

uniquely fixes the classical trajectory through Xo. 
Now let us assume that for any x outside of D and 
not too far away from So there is exactly one trajec- 
tory which connects x with some point XoeZo. We 
then have a unique prescription for calculating (2.9) 
and also (2.10) and, hence, for calculating the wave 
function O(x) at the point x. This will remain true 
also further away from Zo, until we reach a point 
where different trajectories coming from Zo intersect. 

Before we start to discuss this phenomenon in 
more detail let us describe how the semiclassical ap- 
proximation works in a lattice gauge theory calcula- 
tion. The Hamiltonian has the form [8] : 

g2 2 
H = ~ -  T + ~ -  V, (2.13) 

where the electric part T consists of a second order 
differential operator with a positive definite metric 
(in its form it agrees with the differential operator 
of (2.1)), and the magnetic part V is a positive semi- 
definite function of the group elements associated 
with the links of the lattice. In order to compare with 
(2.t) we note that the ground state energy of (2.13) 
goes as O(1) when g2 ~ 0 .  After multiplication with 
gZ the Schr6dinger equation takes the form 

[g---~T+2vltp=gZE~t, (2.14) 

which explicitly shows the dependence upon g2. For 
small g2, the classically allowed region shrinks to 
those points where the potential V vanishes. If we 
choose free boundary conditions, V=0  only for zero 
fields; for periodic boundary conditions the potential 
vanishes on a manifold of dimension > 0 [25] (a more 
detailed discussion is given in [15]). There exist other 
types of boundary conditions for which V vanishes 
on a set of isolated points: an example for this is 
presented in Appendix A. In the main part of this 
paper we will work only with free boundary condi- 
tions. This is the simplest case, since the classically 
allowed region is just the one point where all field 
variables vanish. 

Now since in the classically allowed region both 
8S 

V and g2E are zero, we know from (2.5) that 0~ ,  =0.  

Therefore S = const on each connected component of 
OS 

the classically allowed region, and also p~ = ~ x ~=0 .  

This then determines the starting condition of the 
classical trajectories: for the case of free boundary 
conditions we search for classical trajectories of zero 
energy which start at the origin with momentum zero. 
For a complete calculation of the semiclassical wave 
function, however, we need more than the starting 
values of the classical solution: we also have to know 
the starting value of the prefactor A (i.e. the constant 
in (2.10)). This information is easily obtained from 
the quadratic approximation to (2.14) and its solution, 
the gaussian wave function. If we would work with 
periodic boundary condition, this last question would 
be significantly more difficult: the solution can be 
found in [15]. 

We now return to intersection points of classical 
trajectories. This phenomenon is most conveniently 
phrased in terms of geodesics and curvature. It is well 
known [20] that a classical trajectory which connects 
two points x o and x 1 minimizes the action integral 

XI 

S= S Pa dq". (2.15) 
XO 

Here the variation goes over all paths from Xo to 
x 1 , which have constant energy E = H(p, q). Using the 
equations of motion 

�9 . ~H Ga b q = - ~ p =  Pb (2.16) 

and the relation between time and arclength 

d a = ~ b d t  

= 1/2 [ E -  v ]  dr, (2.17) 

(2.15) can also be written as 

X I  

s = v? (2.18) 
XO 

Trajectories which minimize this integral can, formal- 
ly, be viewed as geodesics in a space with a metric 

G " b = 2 [ E -  V] G "b. (2.19) 

Let -a Rbce be the corresponding Riemann curvature 
tensor, and let us consider a continous set of geodesics 
x a (a, c~) through the point xo (a denotes the arclength, 

d x  a 
labels the geodesics). Then the vector ~-a  (a, ~) is 

tangential to the geodesic x"(G e), whereas the vector 
d x "  c~) ~ = 

v = - ~ - ( ~ ,  o measures the deviation of an infini- 
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tesimally neighboring geodesic from the geodesic 
xa(a, 0). Obviously, Va=O if the two geodesics i n t e r -  
sect. Such a point is called conjugate to Xo or focal 
point. The vector v a satisfies the equation for geodesic 
deviation (Jacobi equation) [126]: 

D 2 d x  b d x  ~ 
~ vC=O. (2.20) dtT2 V a-k- R~ca da  da  

D 
Here daa 

geodesic: 

denotes the covariant derivative along the 

Dv a d x  b 
- v "  . ( 2 . 2 1 )  

da  - ;b da  

IP P 
I 
I 

i 

I 

[al ~" [b) q 

Fig. 1 a, b. Mapping of the N-dimensional gagrangian manifold in 
the 2N-dimensional phase space to the N-dimensional configuration 
space in the simplest case N = 1. a For each q, there is one value 

OS 
of p=~-~, b For each q, there are either two or no value of p 

depending on whether q is to the right or left of the dotted line 

Equation (2.20) has an obvious interpretation: the 
curvature tensor /~ acts like a force on the vector 
v. Depending on the sign and size it either pushes 
neighboring geodesics apart or causes them to inter- 
sect. In particular, if /~ is zero the geodesics do not 
intersect. This shows quite clearly that it is the pres- 
ence of curvature which is responsible for focal points. 

If on a geodesic x"(a,  s:---0) a focal point exists, 
it will, in general also exist on other geodesics nearby. 
The locus of these focal points is called caustic. In 
N-dimensional configuration space the caustic forms 
a manifold S s of dimension less than N. The shape 
of Zj~ can be rather complicated, but useful informa- 
tion can be obtained from Arnold's list of generic 
singularities [20, 22]. 

The basic idea is to relate the caustic to stable 
singularities of smooth mappings for which mathe- 
matical literature is available.. In the 2N-dimensional 
(pq)-space each function S(q, t) describes, by virtue 

~S 
of p , = ~ q , ,  a N-dimensional surface whose shape 

changes as a function of time. For  simplicity consider 
the case N = 1 (Fig. 1). At some time to S may have 
the form shown in Fig. 1 a: for each q there is one 

~S 
value p = ~q.  At some later time t > to S has a different 

shape, as shown in Fig. 1 b. For  some values of q 
0S 

there are two values p=~qq, for other q's there are 

none. In terms of classical trajectories, for t = to one 
classical trajectory passes through each point, where- 
as for t > to some points are reached by two different 
trajectories, others by none. It is convenient to intro- 
duce, for each S(q, t), the map re: p ~ q. It is the inverse 

0S 
of the equation p =~qq. With the Legendre-transform 

Of 
f = p q - S  we have q=~pp. I:n Fig. l a  the map n is 

smooth, whereas in Fig. l b there is a singularity 
marked by the dashed line. To the right there are 
two preimages of this map, on the left hand side there 
is no preimage. The general task is then to classify 

0 f  singularities of mappings n: p ~ q; because of qa _ 0p, 

we are particularly interested in derivative maps. In 
[20, 22] Arnold presents a list of normal forms in 
the neighborhood of these singularities. With a little 
algebra it is possible to deduce from them the shape 
of the caustic S s. In the following sections we shall 
discuss examples which arise in our model calcula- 
tions: in some of the cases we can make immediate 
use of Arnold's list of singularities. There are, how- 
ever, also singularities which are not contained in this 
list: these are unstable singularities. 

We now return to our wave function 0(x) which 
we have started to construct by means of the semi- 
classical approximation. As long as each point x is 
reached by one classical trajectory, 0 (x)is represented 
by a single term (2.12), as we have outlined above. 
Beyond a focal point, however, points x may be 
reached by more than one trajectory. The wave func- 
tion O(x) then consists of several terms of the form 
(2.12): 

O ( x ) = ~ A j ( x ) e x p  i/h I p a d q a + 2 #  �9 (2.22) 
j ~ X o j  

Here, for a given x, the sum over j  runs over all classi- 
cal trajectories which connect the point x with some 
point Xoj on the initial surface x o. For  each such 
trajectory the index /~ counts the number of focal 
points between Xoj and x (Morse index). As we have 
said before, in lattice gauge theories with free bound- 
ary conditions all trajectories start at the origin, so 
Xo~ = 0. It is clear from (2.22) that a focal point repre- 
sents a singularity of the semiclassical approximation 
to O(x). Before the focal point ~9(x) consists of one 
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piece, after it O(x) has the form (2.22). What becomes 
singular is the prefactor A (x). This is most easily seen 
if we use Riemann normal coordinates 1-26] ya rather 
than the previous system x a. Consider againt the clas- 
sical trajectories as geodesics in a curved space (2.19), 
starting from xo. In addition to our reference trajec- 
tory x"(o-), take N -  1 linearly independent and infini- 
tesimally neighboring geodesics x~(o-) (i= 1 . . . . .  N -  
1). They could be labelled, for instance, by a set of 
N - 1  angles relative to the reference trajectory xa(a), 
by which they leave the point xo. At the focal point, 
some linear combination of them will intersect with 
xa(a). The new coordinates ya are the arclength o- and 
these N - 1  angles. Because of (2.9) and (2.18), the 
arclength is the same as S. Along each of these trajec- 
tories, the y2, ..., yN stay constant. The metric tensor 
Gab transforms into: 

dx"' dx b' Gab--'g.'b" 
dYa dYb (2.23) 

det ~ ~ det ~.  d x  2 = G. 
dy 

The covariant derivative of S simply becomes: 

0S 
S; a -- dy,; = g)a t 

s ; a =  ~aa' S;a, = ~ a l  =(~al E l l  (2.24) 

In the last line we have used the fact that in Riemann 
normal coordinates G" 1 ~ 6a i and G 1 a ~ 6 la. Equation 
(2.6) in these coordinates simplifies: 

1 O(~/~AZS ;b) 
0 =(A2 S;b);b-- ~/~ ~yb 

1 ~ (]//GA2 d 11 ) 
- V ~  (3y 1 (2.25) 

Along the trajectory y"(t): 

cons t=~f~A2G 11 o r  A 2 - -  
const G11 

(2.26) 

At the focal point the transformation x---, y becomes 

singular, i.e. the Jacobian determinant vanishes. 

Hence G=  det G- d x  2 dy becomes zero, and A is singu- 

lar. The same can be seen in the path integral (2.11): 
at the focal point two minima of the action integral 
SPa dq a coincide. Therefore, one of the eigenvalues of 
the matrix of second variations must be zero, and 
the prefactor A in (2.12) from the gaussian fluctua- 
tions becomes singular. 

The appearance of such a singularity near a focal 
point only signals that the semMassical approxima- 
tion breaks down. In principle, one has to solve the 
Schr6dinger equation near the focal point more ac- 
curately than it is done in (2.5) and (2.6). In the exam- 
pies that we will present below it is sufficient to ap- 
proximate in (2.1) the metric and the potential by 
their constant values at the focal point. We then 
search for a superposition of plane waves which away 
from the focal point matches the behavior obtained 
from the semiclassical approximation. This procedure 
divides the configuration space into two parts: there 
is an inner region near the caustic where the "naive" 
semiclassical approximation (2.3) cannot be used. The 
size of this region scales with some fractional power 
of h, and the power depends upon the detailed shape 
of Zf. In the outer region (2.3) or (2.22) are valid 
approximations. At fixed h, ~(x) as a function of x 
is perfectly well-behaved. But if we let h ~ 0 for fixed 
x, then ~(x) is singular on a caustic: relative to a 
point away from the caustic, A (x) scales with a nega- 
tive, fractional power of h: 

0 (Xcaustic) = const h-  p exp [i/hS (x . . . .  tic)] " (2.27) 

The value of the exponent p depends upon the de- 
tailed structure of S s. 

In the following we shall present the two simplest 
examples which illustrate all the features outlined 
above. In case of the two-plaquette problem (Sect. 
4) we have found it convenient to proceed in the fol- 
lowing way: a) first establish the existence of a caustic 
and the behavior of classical trajectories in the neigh- 
bourhood; b) use Arnold's list of normal forms to 
find (up to a smooth transformation of variables) the 
function S; c) from a local approximation to the 
Schr6dinger equation at the focal point find the solu- 
tion which, away from the caustic, matches the semi- 
classical approximation. This solution shows the sin- 
gular behavior of the prefactor A near the caustic 
or, equivalently, the behavior (2.27) when h--. 0. d) 
Finally, replace i/h--* --1/g 2 which leads to the situa- 
tion of lattice gauge theories. 

3. The One-Plaquette Problem 

As a first illustration of the ideas outlined in the pre- 
vious section we consider a single plaquette with free 
boundary conditions. This simple quantum mechani- 
cal system has been investigated by several authors 
[27]. 

The notation is indicated in Fig. 2. For each link 
variable we use the parametrization U~ = xw + i~-  6, 
X/2o +~/2 = 1 (i= 1, ..., 4), and the Hamiltonian takes 
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3 

Fig. 2. Single plaquette with free boundary condition 

the form 

H =  _ _ _  8 Z ~=1 
tr [1 - U~ U2 U;  1U41]. (3.1) 

Here A stands for the Laplacian in 4 dimensions, and 
the prime indicates that the variables are restricted 
to the surface of the unit sphere. It is convenient to 
use 4 dimensional polar coordinates. The link vari- 
ables then are xio = cos O~, :~ 
= sin Oi(sin Oi cos ~0i, sin 0; sin (&, cos 0~), and the 
Laplacian A' takes the form: 

0 2 ~ 1 
A ' i = ~ 2  + 2 ctg O i ~ + ~ m  ~ [,2, (3.2) 

where Li is the usual angular momentum vector oper- 
ator expressed in terms of polar coordinates. 

We now have two options to continue. According 
to the strategy outlined above we would first solve 
the Schr6dinger equation with (3.1) in the quadratic 
approximation. For the ground state this leads to a 
gaussian wave function, the exponent of which has 
the form - 1/gZS(x1, X2, x3, X4). It is manifestly 
gauge invariant. We then would use S for defining 
the starting conditions for tlhe classical equations of 
motion. The solution to this again preserves gauge 
invariance, such that the resulting expressions for S 
and A are also invariant under gauge transformations. 
The number of variables that we are dealing with 
is 4 x 3 = 12; from the gauge fixing procedure outlined 
in [28] we know that the number of independent vari- 
ables is much smaller. By applying suitable gauge 
transformations to the variables UI . . . . .  U4 we can 
fix the SU(2) elements U l = U z = U 4 = l .  After this 
there is still invariance left under a global gauge trans- 
formation which leaves us with only one degree of 
freedom. Therefore, if we encounter a focal point 
along some trajectories in our 12-dimensional space 
it will, in fact, lie on a hypersurface of dimension =< 11. 
Displacements within this surface are generated by 
gauge transformations which correspond to a symme- 
try of our Hamiltonian. 

For practical reasons it is therefore advantagous 
to eliminate all gauge degrees of freedom from the 
start (this does not hold for more complicated lattice 
models, e.g. already a 1 a-cube). Following the proce- 

dure of Bronzan [28], we fix the S U (2)-elements along 
the maximal gauge tree which consists of the links 
4, 1, and 2. This leaves us with the Hamiltonian 

g2 4 
I-/= 4'+)3 It-cos 0], (3.3) 

where all angles now belong to the loop variable 
U = UI Uz Ua- 1 U4 1. There is still gauge freedom left: 
a global SU(2) rotation which for all variables 
U1, U2, Ua, U4 and U means a "spatial" rotation of 
the angles 0 and q~. The ground state wave function 
must be invariant under these rotations, i.e. it has 
"angular momentum" zero. By eliminating in this 
way the dependence upon 0 and q~, (3.3) reduces to 
an ordinary differential equation: by a simple change 
of variables it is possible to solve this equation in 
terms of Mathieu-functions [27]. For various reasons, 
however, we wish to apply a semiclassical analysis. 

First we solve (3.3) in the quadratic approxima- 
tion. Clearly the lowest energy, rotationally invariant, 
and normalizable solution is 

0o (6)) = N.exp [ -  2/g z. 0 2] (3.4) 

with energy eigenvalue E =  3/2, and the function S 
can be read off as 

S = 2 0  2. (3.5) 

Nevertheless, (3.4) is only approximately correct: 
since the quadratic approximation to (3.3) is restricted 
to the region O ~ 1 it is not justified to require norma- 
lizability of 0o for O ~> 1. One therefore has to replace 
(3.4) by a combination of parabolic cylinder functions 
[29]: 

0o(Z) = IDa(z)-  z)] 

(3.6) 
z = ]//~ 2 0 

g 

with energy eigenvalues E =  v +�89 For v = 1 this re- 
duces to (3.4); for v ~= positive integer the asymptotic 
behavior (g ~ O ~ 1) is: 

z) N [z ~ e - z 2/4 _ (_  z)~ e-  z 2/4 00( 

z - v -  
F ( 1 - v) 1 e=~/41 .] (3.7) 

For  v close to one: 

0o (z) = N [z v e -  22/4 + �89 (1 - v) 1 ~ z - ~ - 1  eZ2/4]. (3.8) 
Z 

The main difference between (3.4) and (3.7) or (3.8) 
�9 is the term ~e22/4: in addition to the exponentially 
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decreasing term e -~2/4 there is also an exponentially 
increasing term e z~/4 which, in the semiclassical ap- 
proximation, has necessarily to be present. 

In the present problem it is most convenient to 
visualize the situation in the 3-dimensional phase 
space of the SU(2)-element U: it has the topology 
of $3, and our quadratic approximation is valid on 
a 3-dimensional tangential plane at the north pole. 
We now choose Zo to be a sphere around the north- 
pole with radius g ~ O o ~ 1. On the surface of this 

~S 
sphere we have p o = ~ = 4 0 ,  po=p~=0 .  With these 

starting conditions, the classical equations of motion 
to be solved reduce to 

0 = sin O, O = 4 arctan (e t) (3.9) 

o 
S= y dO' ]/32(1 - c o s  O') 

o 

_ j ' 2 0 2  (O small) "~ 
[ 1 6 - 8 ( n - O )  (O near n)J (3.10) 

with ~o- const, 0 =const .  Hence the classical trajec- 
tories are rays leaving the north pole at t = -  oe. 
Along any of these rays the first focal point is at 
the south pole of S 3 ( O = n  ). According to what we 
have said in the previous section, the semiclassical 
approximation will be invalid near this focal point*. 
This can be deduced from the calculation of the pre- 
factor from (2.9). One finds: 

t o o} l n A 2 =  -- In sin ~ - + 2  In sin O--2E In t g ~  

+ln  N 2, (3.11) 

which implies 

N 
A(O)o~ n -  0 (3.12) 

near the south pole. (Similarly the north pole is an 
intersection point of different trajectories, A is singu- 
lar also for O ~ 0.) 

We therefore return to the Schr6dinger equation 
and demand that, away from the south pole, the solu- 
tion matches the semiclassical approximation. If we 
approximate the potential in (3.3) by the constant 
value 8/g 2, the Schr6dinger equation becomes a free 
wave equation for spherically symmetric (euclidean) 
waves. A solution can therefore be written as a super- 

* It also happens that at the south pole the metric of our coordinate 
system becomes singular (gOO = 1, gS~= 1/sin 2 O, g~0O 
= 1/sin 2 0  sin 2 8). This is, however, a feature of our choice of coordi- 
nates, and it should be distinguished from the appearance of the 
focal point 

position of spherically symmetric rays: 

i 2~ 8 ( n - O )  
~ o ( O ) = N '  dO cos0  ~ &0e -Kc~ K =  g~ 

0 o 

= (2n) 3/2 N' I 1/2 (Z) (3.13) 

Alternatively, we could start from the Schr6dinger 
equation (O = n -  O): 

g21 O z 2 _ ~ _ 8 ~ + 8 ]  
0o(O)=~Oo(O) (3.14) 

and pick the solution which is regular at O = 0. The 
normalization in (3.13) has to be chosen such that 
it matches the semiclassical behavior (3.10), (3.11): 

. / 8 ( ~ -  o ) \  
261//~ 11/2 t T - -  ) 

~ 0 ( ~ )  = N ~  e -  16/g2 ~ (3.15) 

This solution exhibits all those characteristics which 
we have listed in the previous section: 

(i) At the south pole O = n, 0o takes the value 

N 2 6 ~ 2  e @0(n) = ~ - -  16/g2 (3.16) 

It is, therefore, regular as a function of 0. Note that 
as a function of g2 the prefactor goes as 0 (g-2). Nor- 
malization is chosen such that for any point away 
from the south pole or the north pole the prefactor 
is independent of g. 

(ii) Asymptotic behavior of ~9o(O ) sets in for g2 
n - O .  In this region it matches the semiclassical 

approximation: 

25/2 
Oo (0) ,,~ Ne-  16/g a ~ - -  0 Ees (=- o)/g2 _ e -  8 (~- O)/g~]. 

(3.17) 

This has to be compared with (3.10) and (3.12): the 
"singularity" ~ l / ( n - O )  disappears if we take a 
closer look at distances n -  O = 0(g 2) and use the full 
solution (3.15). The configuration space thus divides 
itself into the "inner" part n -  O < g 2  where the semi- 
classical approximation is not good enough and an 
"outer"  part n - O > g  2 where this approximation 
provides an adequate description. 

In addition to these features which are typical for 
a focal point, the asymptotic behavior (3.17) contains 
another piece of information. It is only the first term 
in the brackets of (3.17) which matches the semiclassi- 
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cal solution Oo=A e x p [ - l ~  s] with S of (3.10). We 

interpret it as a spherical wave whose center is located 
at the north pole. On its way towards the south pole 
it decreases exponentially. The second piece in (3.17) 
belongs to a wave which moves in the opposite direc- 
tion. In terms of classical trajectories, the first piece 
belongs to classical solutions which at time t = -  oe 
have left the north pole arid at time t = 0  arrive at 
the south pole. In the second wave, the trajectories 
have traversed their common focal point and are on 
their way back to the north pole. Because of the rota- 
tional symmetry it is clear that the north pole is again 
a common focal point, and beyond this point the 
whole procedure repeats itself. As a result, there is 
a whole tower of exponentially small contributions, 
and our discussion only refers to the leading two 
terms. 

For  this simple model it is not difficult to calculate 
even exponentially small corrections to the ground 
state energy. The exponentially small piece near the 
north pole comes from trajectories which have com- 
pleted a full circle: 

1 
l - v =  - - -  211g 3e-32/gz. (3.18) 

For further illustration, we consider in Appendix A 
another version of the one-plaquette model. There 
the ground-state is (almost),degenerate, and the split- 
ting is exponentially small. The same kind of argu- 
ments which have led us to (3.18) can there be used 
to calculate the mass gap (A.8). 

Although this one plaquette model has given us 
a first illustration of a focal point and its characteris- 
tics, it is far too simple and, if we would stop here, 
it would leave us a misleading impression. What  it 
has shown correctly is that, because of the compact- 
ness of the configuration space, classical trajectories 
are likely to intersect. In the neighbourhood of a focal 
point, the wave function has certain distinctive pecu- 
liarities. Special to this model, however, are position 
and simplicity of the focal point: because of the sym- 
metry, all trajectories intersect at the same point, the 
south pole. As we shall see, in a more general model 
the coupling between the plaquettes generates a much 
more sophisticated shape of the caustic, and some 
parts of it are considerably closer to the origin than 
the south pole. After the study of the two plaquette 
model we will have a clearer impression that caustics 
really are a dynamical effect. 

We finally mention that the singularity of the func- 
tion S of the one-plaquette model is not contained 
in Arnold's list of normal forms [22]: in our case 
we have a three-dimensional configuration space, and 

the singularity consists of an isolated point, the south 
pole. In Arnold's language, this singularity is not sta- 
ble. The appearance of this unstable singularity is 
closely related to gauge invariance. 

4. Two-Plaquette Model 

I. Model and Computer Analysis 

The Hamiltonian of this model is (Fig. 3): 

g2 7 ~2 
u=-8 -  Y {tr[,1-t: -lu6vsv  -1] 

/ = 1  

+t r  [1 - U7 U4 U3 -1U21]}.  (4.1) 

Our treatment will be similar to that of the previous 
section. The gauge tree consists of all links but 4 and 
5. Along the gauge tree we fix the link variables to 
unity and are left with two remaining loop variables 
BI=Ul-lU6UsU7 ~ and Bu=UTU4U~-IU21. In 
term of these variables the Hamiltonian becomes: 

2 

H = 2 [,4~/(I) + 4 ~  (II) - 2 ~L (I)" ~R (II)] 

2 
- -  [-4-- tr B [  ~ - -  tr B • I ] ,  (4.2) +g2 

where ~L,R are the differential operators [,16] 

[-Y-g+Xo N, 
1 

~ = =  V, L=RxO (4.3) 

with 9 2 = ~  =A'. In (4.3) the operators are written 
in cartesian coordinates. For  later purposes it will 
also be useful to have them expressed in polar coordi- 
nates. By the chain rule one finds: 

2i(~L,R = 

COS q~ --sin ~p 

sin ~p cos q~ 

o 0 

cos O _+ sin O 

sin O cos O 

o 0 

!) (c~ ~ sinl) 
0 1 0 . 

- s i n O  0 cos 

:)CI 0 i 6) 0 0 

1 

sin 0 sin ,9 

0 

(4.4) 
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5 4 

1 2 
Fig. 3. Two plaquettes with free boundary condition 

Before rewriting (4.2) in terms of polar coordinates 
we note the following. After having exploited local 
gauge invariance in order to fix the link variables 
along the gauge tree, we still have the freedom of 
performing one global SU(2) rotation. Such a gauge 
transformation acts as a spatial rotation of the SU(2) 
vectors B~ and Bn. Therefore the gauge invariant 
ground state wave function can depend only upon 
the relative (spatial) angle between the vectors Bt and 
B u. Among the remaining three angles, one of them 
belongs to a rotation of one of the B-vectors around 
the other. The other two parameterize rotations 
which rotate Bt and B u simultaneously. It is therefore 
suggestive to define the two spatial angles 01 and 
q?l of B I relative to a fixed coordinate system, whereas 
02 and (Pa are defined relative to the vector Bt. Since 
the wave function then will not depend upon 01, q)l, 
and q~2, these degrees of freedom must drop out of 
our problem. We demand that, as starting conditions 
for the classical trajectories near the origin, the mo- 
menta po,, p~l, p~ are zero. From the equations of 
motion it then follows that they remain zero forever, 
and the remaining equations of motion for the physi- 
cal degrees of freedom (O1, 6)2,02 and their conjugate 
momenta) become independent of 01, qh, q)2 and 
their momenta. That means that 01, qh,cP2 still 
evolve as functions of time, but gauge invariant quan- 
tities do not depend upon them. Nevertheless, we shall 
come back to the rotations of ,o2. 

Rather than presenting the Hamiltonian (4.2) in 
terms of polar coordinates, we immediately switch 
to classical mechanics. With the ansatz 

= A'exp [ - ~ 2  S] we arrive at the following classical 

Hamiltonian: 

H=lg~[4P~ + e p ~ -  2 eos O po~ " po~ 

1 1 

+ 2pa2 cos O1 cos 02 cos 0 -- sin O1 sin 6~ 
sin O1 sin 02 

+2 sin Op~(po~ ctg 02 +Po~ ctg O1) I 
A 

4 
+ ~- [ 2 -  cos O1 - cos 023. (4.5) 

Here we have set P~I -=-P~ol -Po~ =0 and relabelled 
0 2 =0. The equations of motion which follow from 
(4.5) are given in Appendix B. 

As a first step we consider the quadratic approxi- 
mation. The appropriate approximation to (4.2) is: 

H =  -~g2 [4A 1 +4A2-2171 . V2] 

+ ~ ( ~  + :~), (4.6) g-  

where we have returned to cartesian coordinates. 
1 

With zl, 2 = ~ (~1 -+ xa) H can be diagonalized, and 
v -  

the lowest energy wave function is: 

Oo(fq, f%)= N'exp [ - ~  S] 

~2 ~2 

=(l+\c0t c02]1]'(s 

t 1 
+ 2" (~-1 - ~  ":~1"~2 

~=3, co~=5. 

(4.7) 

(4.8) 

As mentioned before, S depends only upon O 2 = ~ ,  
2 ~2 02 - x  z , and the relative angle 0 between xl and x2. 

We can use S in (4.8) in order to define starting condi- 
0S 

tions for our classical trajectories. Then P~I- 001 = 0, 
OS ~S 

Pc, 0~01 =0, pq,2 = #(02 =0 whereas 

0S 1 +1  
PO2 -- ~O1 -- 201 (~11 ~22) "Ji- 202 c O s 0 ( ~  - / / '  \('01 (J)2] 

(4.9) 

and similar expressions hold for Po2 and pa. It should 
be noted that in the same way as the gaussian approx- 
imation (3.4) represents the leading term of the para- 
bolic cylinder function (3.6)~3.8), the wave function 
(4.7), (4.8) is the dominant part of a more complicated 
expression. Equation (4.7) describes an "outgoing" 
wave which exponentially decreases away from the 
origin. However, because of the compactness of the 
group manifold, part of this "outgoing" wave tunnels 
back to the origin and arrives as an "incoming" wave 
with an exponentially small amplitude. These expon- 
entially small pieces have to be added to (4.7). From 
the point of view of harmonic oscillators, the Hamil- 
tonian (4.6) after diagonalization describes two un- 
coupled oscillators, each of which can be treated in 
the same way is in Sect. 3. The true ground state 
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�9 0" / e 2  

Fig. 4. The three gauge invariant degrees of freedom for the SU(2) 
two-plaquette problem with free boundary condition. The lines with 
arrows indicate the contraction of boundary planes to lines (see 
text) 

( 

-1 

-3 

2.0 2.5 01 ~ e2 30 

I I _L I q 

Fig. 5. Caustics in the plane O~ = 02. Two of the interesting features 
are the tip of the cusp at ,9= 0 and the "bottle neck" F 

wave function near the origin then is a product of 
the two single oscillator functions, but since there is 
freedom to distribute the full energy E between the 
two oscillators, the wave function really is a superpo- 
sition of such product states. It is conceivable that 
a closed representation in te, rms of products of para- 
bolic cylinder functions holds. 

In the next step we solve', the equations of motion 
derived from (4.5). Apart from the special case 0 - 0 ,  
P.9 ~0, 01 ~--02, Poa ~P02 no, closed analytic solution 
is available. So we have used the computer (in Appen- 
dix B we describe a perturbation around a soluble 
case). The configuration space in which the classical 
solutions have to be visualized is 3-dimensional 
(O1,02,  and 9). There is the peculiarity that the 
boundary planes O~ = 0, rc or 02 = 0, zc have to be con- 
tracted to a line: for example, on the plane 0 2 = 0  
points with the same value O1, but different 0 are 
identical (Fig. 4). This whole plane should really be 
contracted into a single horizontal line (as we have 
indicated by arrows in Fig. 5). We further note that 
solutions in the horizontal plane 0 =0  always stay 
in this plane; the same holcls for the vertical plane 
O I = 02  . Finally, we should not forget about the other 

angle variables 0~, (Pt, and ~o 2 upon which the ground 
state wave function does not depend. Here ~02 plays 
a special r61e in the following sense: if we rotate one 
of the loop variables B around the other, say Bn 
around B~, then q)2 changes, but all points in Fig. 
4 with 0 = 0  are left invariant. This rotation in (P2 
will be of importance later on. 

Rather than following the evolution in time of 
classical trajectories we concentrate directly on focal 
points. They are determined in the following manner. 
Let us return, for a moment, to the notation of Sect. 
2. If X denotes the starting point for a classical trajec- 

OS 
tory x(t)(with starting value of momenta P = 3 x  x=~)' 

then choose N -  1 other points close to ~, e.g. 

(21 "q- 6X1,  9~2, " ' ' ,  )ON) 

()~l, 9~2 . . . .  , "~N-- l "q- (~XN- 1, XN)" 
(4.10) 

The corresponding momenta are again obtained by 
differentiating S. Denote the corresponding trajector- 
ies by x(t)+6xi)(t) (i= 1, ..., N--  1). For finite time 
they will stay close to x(t), i.e. the deviations 6x(~ 
remain small. So we can linearize the equations of 
motion: 

-(i _ 02HI  
fix ~(t)- ~ ,,=,,0" 6x(~)(t) 

p=p(t) 

~2H[ 
+ .=x.) 0p" (t) 

p=p(t) 

o ~2HI 
-,hi  (t) =bx x 

p=p(t) 

~ 2 H  I 

+ ~ x = x(o" 6 p(i) (t). 
p = p (t) 

(4.11) 

(4.12) 

A focal point is reached if at some time t our trajec- 
tory x(t) intersects with some neighboring trajectory 
which can be written as a linear combination of the 

x(t +&)=x(t)+6t .2( t)=x(t)  
N-1 

q- 20~i6X(1)(t)" (4.13) 
i=1 

This can happen only if 

0 = det " ... " .: . (4.14) 
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Y el~ e, 

Fig. 6. Schematic drawing of the behavior of classical trajectories 
in the vicinity of the cusp 

So for each classical trajectory x(t) we have to calcu- 
late N - 1  other trajectories (by solving (4.11), (4.12)) 
as well as the determinant (4.14). In our two-plaquette 
model, N = 3. We therefore need two more trajectories 
with starting values 

(O1+~oi,O2,0) (o,,o~ +~o~ ,0). (4.15) 

Starting values for the momenta are obtained by dif- 
ferentiating S in (4.8). 

Let us now briefly describe the results of a com- 
puter analysis. We begin in the plane O1= 02 and 
plot the lines of focal points (Fig. 5). They are ob- 
tained by varying the starting angle 0 near the origin 
and by then calculating, for each single trajectory x(t), 
the position of the first two focal points. The most 
interesting part of Fig. 5 are the cusp on the line 
0 = 0  at 01=02~2.39 and the point F at O1=O2 
~2.645, O~ 1.66. The position of the cusp has also 
been calculated analytically in Appendix B. In Fig. 
6 we illustrate how classical trajectories behave in 
the vicinity of the cusp: the lines of focal points are 
envelopes to the classical trajectories. This holds ev- 
erywhere on the left hand branch in Fig. 5, the branch 
on the right hand side is generated by trajectories 
which do not lie in the plane O1--02.  Near the cusp 
in Fig. 6 we easily see that each point to the left 
of the lines of focal points is reached by only one 
trajectory; on the right hand side three different tra- 
jectories pass through each point. 

Leaving the plane O1 = 02 we first follow the tip 
of the cusp. It always stays in the plane 0 = 0 ,  and 
it describes a curve which is shown in Fig. 7. The 
embedding of the point F into the 3-dimensional 
O 1 , 0 2 , 0  space is indicated in Fig. 8. It looks like 
a bottle-neck, although the "bot t le"  above and below 
is triangle-shaped. Near any of the 3 corner lines we 
have a cusp-structure similar to that of Fig. 5. All 
smooth pieces of the 2-dimensional caustic are enve- 
lopes to classical trajectories. F rom this it follows that 
at the "bott le-neck" classical trajectories are squeezed 
together in order to pass through the point F in the 
O1 = 02 plane. Combination of Figs. 5-8 provides fur- 
ther information on the caustic Z I : above and below 
the bottle-neck the ends of the caustic Z• are tied 
to the corner points (O1, 02, 0)=(n,  n, 0)=(n,  n, z0, 

rc 

3.O 

e2 

2.C 

1s 

t0 2.0 30 r~ 
e~ 

Fig. 7. Caustics in the plane 0 = 0 

Fig. 8. Schematic drawings of the caustics near the "bottle neck" F 

(re, 0, 0)= (n, 0, ~), (0, n, 0)= (0, n, n) and the origin. 
These points are then singular, too. The fact that Zf 
also reaches the origin relates back to our discussion 
after (4.9): there is not only an "incoming" wave front 
which reaches the origin, but from a particular direc- 
tion (0 = re) this wave front is even singular. Altogether 
we see that the caustic is a rather involved 2-dimen- 
sional surface with corners, cusps and the bottle-neck. 
Intuitively one may think that these one or zero di- 
mensional parts of Zf are more singular than the 
smooth pieces, and the wave function will be more 
singular than elsewhere. We shall see that this is more 
or less correct. 

There is still another part of the caustic which 
does not require further computing work. Combina- 
tion of Figs. 5 and 6 shows that trajectories which 
leave the origin with some O>0 eventually come 
down again and pierce through the plane 0 = 0  at 
some point beyond the line of focal points shown 
in Fig. 7. In fact, each point of this part of the 0 = 0 
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plane is reached by such a trajectory coming from 
the origin. Now we have to remember that we still 
have the rotations in (P2 which leave all the points 
of the plane 0 = 0 invariant. Each point in this plane, 
which can be connected witih the origin through some 
trajectory x(t), can also be connected through a 
q~2-rotated version of this trajectory and, hence, is 
a focal point on x (t). This implies that the whole plane 
0 = 0 beyond the line shown in Fig. 7 is part of the 
caustic. As we shall discuss below, it turns out that 
this is the most singular part of the caustic. 

i 
2 

:" ql 

Fig. 9. The cusp singularity in normal form. It is classified as A a 
by Arnold [20] 

2. The Cusp Singularity 

In the following we shall describe how the wave func- 
tion behaves in the neighbourhood of the most singu- 
lar parts of the caustic. We start with the cusp in 
the O1 = O2 plane and ignore the direction perpendic- 
ular to this plane, since this dimension does not parti- 
cipate in building up the singularity. Our construction 
goes in various steps: we start from Arnold's list [20] 
of normal forms of S, then construct a solution to 
the Schr6dinger equation which away from the cusp 
matches the semiclassicat approximation, and, finally, 
include the q)2-rotation. All this will first be done in 
the classically allowed region, then translated into our 
situation of the two-plaquette model where all this 
structure lies in the forbidden region. 

As we have outlined in Section 2, the singularities 
which one encounters in a semiclassical analysis are 
singularities of the projection map in 2n-dimensional 

of the n-dimensional manifold ~p, q[q p q-space 
l 

= onto the configuration q-space. According to 

Arnold [20], the cusp-singularity is described by the 
normal form: 

F(Pl,  q2) =" P~ + q2 P~ (4.16) 

with 

OF 
= 4p~ + 2q2 Pl (4.17) ql = ~3pl 

#F 
p~. (4.18) P2 -  ~ q 2 -  

In 4-dimensional (Pl, P2, ql, q2)-space this describes 
a projection onto the q l - q 2  plane. (4.17) is a cubic 
equation which can be solved analytically. A singular- 
ity of this mapping occurs if the Jacobian vanishes. 
In our case: 

~ q l  2 0 = ~ - p =  12pl + 2q2. (4.19) 

In the ql q2-P lane this describes the singular line 

q l =  "~- 8 (-- 6 )  3/2, (4.20) 

which is illustrated in Fig. 9. Inside the shaded region 
the map has three preimages (i.e. three classical trajec- 
tories with different momenta reach a point in this 
region): 

(pl)1 = 2 1 / /  q2 6 '  

(pl )2  = - 2 ~ -  ~2 .cos ( 3 +  60~ ) (4.21) 

60o I (Pl)3 = 

with 

q l  
COS q) : 3 " (4.22) 

Outside this region there is only one (real) solution 
with an expression similar to (4.21), (4.22). Clearly, 
this type of singularity looks very much the same 
as the cusp in Fig. 5. 

A more detailed analysis, however, shows that the 
singularity structure of (4.16) does not yet in all detail 
agree with the result of our computer study. What 
is not yet right is the shape of classical trajectories 
whose slope P2/Pl can be calculated from (4.21) and 
(4.18): they are not tangent to the singular line (4.20), 
whereas in Figs. 5 and 6 the singular line is the enve- 
lope of the classical trajectories. On the other hand 
we know from the discussion in [20] that the normal 
form (4.16) always allows for a smooth change of vari- 
ables which leaves the shape of the singular lines in- 
variant. We could now try to construct this transfor- 
mation of coordinates; however, it turns out to be 
much more convenient to proceed directly to the next 
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step of our task, namely the construction of a solution 
to the Schr6dinger equation in the vicinity of the cusp. 
This will give us the desired function S(ql, q2) from 
which we can read off the necessary change of vari- 
ables in (4.16). 

In order to illustrate the general idea we return 
to the notation of Sect. 2 and work in a classically 
allowed region. The task is to solve the Schr6dinger 
equation 

[ -- h 2 d -- k 2] ~/(q l, q2) = 0 (4.23) 

with the requirement that, away from the point 
(ql, q2)=(0, O) the limit h-* 0 leads to a wave function 

of the form I]/(ql, q2)"A(ql, q2) exp ~ S(ql, q2) 

with S showing the characteristics of Figs. 5 and 6. 

Clearly, any superposition of plane waves exp ~ ~. 

with ~ = k g is a solution of (4.23). The direction of 
the classical trajectories in Fig. 6 suggests that the 
momentum ~ is mainly along the 2-direction, i.e. 
[PlI~ IP21. In this approximation we write: 

~k(ql, q2)=Idpl exp [h (qa p l + k o  q2 

t424/ 
2ko 

Comparison with (4.16) shows that the ansatz 

f (pO=exp [ - h  p14 ] (4.25) 

satisfies all our demands. The exponent in (4.24) be- 
comes: 

S=ql Pa + ko q 2 - ~  ~ q2- p41. (4.26) 

In (4.23) we can always rescale the q's such that k o = �89 
Then: 

+ 1 ~ ,  ~2 
S = q l  Pl  ~ t ' /2--P'l  q l  --P~. (4.27) 

In the limit h--* 0 the integral in (4.24) is evaluated 
by means of the saddle point method. The condition 
for the existence of an extremum is: 

0 S  0 2 4 
0 = ~ p l  = q l - - ~ p l  (pl q2+Pl ). (4.28) 

The agrees with (4.16), (4.17) and, hence, in the ql --q2 
plane the line of singularities is the same as (4.20). 
Only the value of P2 is slightly changed: 

0S 1 
p2. (4.29) 

P 2 - 0 q 2 -  2 

This has to be compared with (4.18): It is this change 
of P2 which, near the tip of the cusp, makes the trajec- 
tories tangent to the line of singularities. To finish 
the discussion of (4.24), (4.25) we still have to calculate 
the fluctuations around the saddle point. It yields the 
prefactor A: 

2.s,, ~2rcih A = ~ dpl e i/2til(pl -p l  saddle) = ] /  ~t7 " (4.30) 

It is well defined unless 

S" = - 12p 2 - 2q2 = 0. (4.31) 

This is just the defining equation of the singular line 
(4.19), (4.20). On this line we cannot use the gaussian 
approximation (4.30) but have to keep higher than 
quadratic terms in S. The result is still well-defined, 
but relative to a regular contribution (4.30) it goes 
as h-1/6. An exception to this is the tip of the cusp, 
the point (ql, q2)=( 0, 0). There we use directly (4.24) 
and find that the prefactor diverges ~h-1/4 relative 
to a regular contribution with S" 4=0. So the tip of 
the cusp is more singular than the singular lines. 

Next we try to incorporate the extra degree of 
freedom which corresponds to rotations in (o2. In 
terms of those variables which we are using presently, 
we are looking for a solution which is invariant under 
rotation around the q2-axis. As a result of this, the 
negative q2-axis should become part of the caustic. 
It is not difficult to find the appropriate generalization 
of (4.24). Let simply Pl =(P11, P12) and 41 =(q11, q12) 
be two dimensional vectors. Then (4.24) becomes: 

i 
~b(q 1, q2)= ~ d2pl exp ~(ql  Pl 

1 ~ � 8 9  

+ �89 q2-- q2 ~2_(~2)2)]. (4.32) 

Call this exponent again S and repeat the same steps 
done before. The saddle point conditions are: 

0S 2 2 
0 = - -  q11--4pll(Pll +P12)--2qZP11 

0pl 1 (4.33) 
OS 

0 =  =q12-4p12(p~l + p22)- 2qz plz. 
0P12 

The caustic is defined by the condition that, in addi- 
tion to the first derivatives in (4.33), the determinant 
of the matrix of second derivatives of S vanishes: 

2 2 2 q2 ,434  

Solutions to (4.33) and (4.34) fall into two classes: 
either 
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q2 -<0, I l l=O ,  ~ 2 _  q2 
- 2 

or  

q2 < O, 

(4.35) 

' 6 '  

P~ [1 fh. (4.36) 

The first solution is the negative qz-axis, the second 
solution represents the rotationally invariant general- 
ization of the previous singular line (4.20). As to the 
singular behavior in the limit h ~ 0 we find, after some 
algebra, the following behavior (relative to a regular 
point). On the line (4.35), which includes the tip of 
the cusp at the origin, A diverges as h-1/2. On the 
surface (4.36) still A~h-1/6, just as before. We see 
that, as a result of the additional rotational degree 
of freedom, not only has the caustic received an addi- 
tional piece, but this new piece is also the most singu- 
lar part of the caustic. 

Finally we have to take., care of the fact that, in 
our two-plaquette model, the caustic lies in the classi- 
cally forbidden region. The analogue of (4.24) is: 

~(ql ,  q2) = ~ d p t e x p [ ~ ( P l q l + � 8 9  
Ival ~ Ipzl 

__p2 q 2 -  P~)]" (4.37) 

In contrast to the oscillatory case considered before 
we now no longer look for stationary points in the 
exponent but for maxima. A closer look at the second 
derivative shows that outside the shaded region in 
Fig. 9 we have one maximmn (as in the oscillatory 
case we had one stationary point), whereas inside we 
have two maxima and one minimum. On the negative 
q2-axis the two maxima have the same height. If we 
approach the singular line, the smaller of the two 
maxima combines with the minimum in order to form 
a saddle point and this disappears. So in contrast 
to the oscillatory case the wave function is no longer 
singular on the line of Fig. 9. It is only at the tip 
of the cusp that A still diverges: A~h-1 /4  relative 
to a regular contribution. Similarly, if we apply the 
same argument to the analogue of (4.32), we find that 
the wave function is no longer singular on (4.36), but 
on the negative q2-axis A still diverges as h-~/2 (rela- 
tive to a regular point). 

3. The Bottle-Neck Singularity 

We now return to the other singularity, the bottle- 
neck in Fig. 8, and perform a similar analysis. We 
again begin with Arnold's normal form [20] which 

q3 

- ql  

Fig. 10. The "bottle-neck" singularity in normal form. It is classified 
as D~- by Arnold [20] 

applies to this case: 

F = p~ P 2 -  P3z + q3 P~ (4.38) 

0F 
ql = ~-p~-pl = 2pl P2 (4.39) 

0F 2 
q2 = ~ = Pl - 3P 2 + 2q3 P2 (4.40) 

OF 
p2. (4.41) 

P3= 0q 3 -  

In the six-dimensional (ql, q2, q3, Pl, P2, p3)-space it 
describes a map onto the three-dimensional (ql, 
q2, q3) subspace. The caustic is defined as the locus 
of singularities of this map: in addition to (4.39)-(4.41) 
we require that the Jacobian of the map (Pl, P2) 

(ql, q2) be singular: 

0 = 0 (q t, q2) ___ 4 [P2 ( -  3p2 + q3) - p2]. (4.42) 
0(Pl ,  P2) 

In the (qt, q2, q3)-space, (4.39), (4.40), (4.42) describe 
a two-dimensional surface which is illustrated in Fig. 
10. The main features of the result of our computer 
analysis (Fig. 8) are well reproduced. A little algebra 
shows that inside the "bottle-neck" the mapping has 
four preimages, outside there are only two. However, 
just as in the previous case, Arnold's normal form 
(4.38) is not yet exactly what we need. Again the tra- 
jectories whose slope can be calculated from (4.39)- 
(4.41) are not tangent to the caustic, and we have 
to make a change of variables. Again it is convenient 
to proceed directly to the next step of our analysis, 
the construction of the wave function near this singu- 
larity at (ql, q2, q3)=( 0, 0, 0). We have to solve 

[ -hzA -k2] O(q~, q2, q3) = 0  (4.43) 

such that for r O(ql, q2, q3) in the limit h ~ 0  
matches the semiclassical approximation. Starting 
from a superposition of plane waves with IP[ =ko we 
make the assumption that ~ is mainly along the 
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q3-axis. Then: 

P'Ei~Pl ql + P2 q2 + Pq3--~Y(P~ + P2) �9 zp 
(4.44) 

[' ] With p = 2  and a weight factor exp ~(p~-pZp2  ) we 
obtain: 

~(qa, qa, q3) = ~ dp~, dp2 exP[h (P'q 
IPII, [Pzl "~ 2 

+ P~ - P~ P2)]. (4.45) 

The exponent 

q3 2 2 3 2 (4.46) S=pi  ql + P2 q2 +2q3--~- (Pl -t-P2)+P2--Pl P2 

yields the saddle point conditions: 

qt =2p l  1 P2 + g P l  q3 

q2=1q3 pz-- 3p~ + p~. 

(4.47) 

(4.48) 

These equations coincide with (4.39), (4.40) if we put 
Pz--~P2-�88 and restrict ourselves to small q3~ 1 
(disregard terms of order q~). Therefore, the shape 
of the caustic in (ql, q2, q3)-space is slightly deformed, 
but all the essential features (corner lines, bottle-neck, 
number of preimages) remain unchanged. 

From (4.45), (4.46) we can read off the asymptotic 
behavior in the limit h ~ 0. Away from the caustic 

we have -O(qt' q z ~ + 0  and hence can use the method 
O(Pl, P2) 

of stationary phase. If the point lies in the interior 
of the caustic we have four values (p~, P2) for which 
the exponent S is stationary, i.e. the wave function 
comes as a sum of four terms. For  each of them, 
the gaussian fluctuations go as O(h). On the caustic 
we have to distinguish between the planar pieces and 
the corner lines. On the planar part the matrix of 

~2 S 
second derivatives ~ has one zero eigenvalue, 

and for the corresponding eigenvector the first non- 
vanishing term in the Taylor expansion of S is the 
cubic term. Appropriate scaling of the integration 
variables yields A =0(h 1/2+ 1/3), i.e. relative to a regu- 
lar point the prefactor goes as h-1/6. On the corner 
lines (except for the point ~=0)  there still is only 
one zero eigenvalue, but now the cubic term in the 
Taylor  expansion of the exponent vanishes. So the 
first nonvanishing term is a mixed third derivative, 
as a result of which the integration variables have 
to be scaled differently. One finds A = 0(h3/4), i.e. rela- 
tive to a regular point the prefactor diverges as h-1/4. 
Finally, at 4 = 0  we see from (5.45), (4.46) that A 

--0(h2/3), which means A diverges as h-1/3 compared 
to a regular point. So c]= 0 is the point of strongest 
divergence. 

Strictly speaking this analysis is still incomplete 
for the following reason. So far we have constructed 
a solution to the Schr6dinger equation which, in the 
vicinity of the most singular point f t=0  (or the point 
F in Fig. 5) reproduces the singularity structure of 
our computer analysis. As we have mentioned earlier, 
each point inside the bottle-neck can be reached by 
four classical trajectories, each point outside by only 
two. Comparing this with the situation illustrated in 
Fig. 5 we notice that all trajectories come from above, 
i.e. they leave the origin with some initial 0 > 0  and 
eventually turn downwards*. There is, however, still 
another possibility to connect such a point with the 
origin: there is always a trajectory which leaves the 
origin with some 0 < 0 .  This then implies that our 
solution (4.45) cannot be complete because it does 
not contain this extra solution. But since these extra 
trajectories do not participate in building up the caus- 
tic near the bottle-neck, one may expect that they 
simply add an extra term to (4.45) and hence do not 
affect our conclusions. 

As the last step we have to replace h ~ g2 and 
to locate our caustic into the classically forbidden 
region. F rom the previous example we have learned 
that only those stationary points of the exponent have 
a chance to survive as an identifiable term of the wave 
function which are genuine extrema and not just sad- 
dle points. A closer look at (4.39), (4.40), and the ma- 

OzS 
trix of second derivatives - -  shows that there 

3qi 3qj 
is altogether only one extremum inside the bottle- 
neck. For  q3>0  it is a maximum, for q3<0 a mini- 
mum. All other stationary points turn out to be sad- 
dle points. It is now useful to connect our analysis 
of the vicinity of the bottle-neck with that of the cusp 
(Fig. 5): let us follow the path shown in Fig. 11. Near 
the cusp there is a well-defined term in the wave func- 
tion ~, until the trajectory reaches the plane 0=0 .  
At this point there is a second, equal contribution 
from the "mir ror"  trajectory below the plane 0 = 0 .  
Continuing along the classical path into the region 
0 < 0 ,  the corresponding contribution to ~ becomes 
subdominant to that of the "mir ror"  trajectory, but 
it still provides a well-defined term in the wave func- 
tion since it belongs to a maximum of the exponent. 
This remains so until the trajectory hits some part 
of the caustic: from then on the extremum of the 
exponent turns into a saddle point. In this way each 

* For an interior point in the plane O1 = 02 above the bottle-neck 
F, two trajectories lie inside the plane O1 = 02 and two other trajec- 
tories pierce through this plane 
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classical trojec'cory ------<. 
I~ 2.0 2.5 01--- 02 3.0 

COLIS~'iC~ 

-a J~ ,___________---J , 

Fig. 11. Schematic drawing of a classical trajectory that passes near 
both the tip of the cusp and the "bottle neck" singularity F 

point inside the shaded region above the bottle-neck 
can be reached by one such trajectory, which agrees 
with our analysis of the vicinity of the bottle-neck. 
There is, of course, always t]~e other trajectory which 
leaves the origin at 0 < 0  and always provides the 
dominant term to the wave function. In contrast to 
the analysis of the cusp singularity it is not possible 
to read these results directly off from the analytic 
continuation of (4.45); when replacing i/h by - 1 / g  2, 
the integral diverges for large P2. If we introduce a 
cutoff, the main contribution will come from some 
endpoint of the integration. This difficulty reflects that 
(4.45) is incomplete: it does not contain the extra clas- 
sical trajectory which, in fact:, now even gives the dom- 
inant contribution. 

4. A Few Additional Remarks 

This completes our presentation of results of the two 
plaquette model. As we have indicated before, this 
is still far from an exhaustive discussion of the ground 
state wave function. Along each classical trajectory 
which leaves the origin we have computed so far only 
the first two focal points. They form that part of the 
caustic which we have tried to illustrate. If we move 
further along any of these trajectories there are more 
focal points which are part of other pieces of the caus- 
tic. It is only because on these parts of the caustic 
the wave function is exponentially further suppressed 
that we stopped after the second focal point. Alto- 
gether our analysis suggests that for any point in con- 
figuration space the wave function is a sum of sepa- 
rate pieces; on the caustic some of these pieces co- 
alesce and produce, in the limit g2_~ 0, an additional 
negative power of g. Although far from being trivial, 

it appears to be possible to construct the wave func- 
tion in the vicinity of the most interesting parts of 
the caustic. As a technical point it is apparently easier 
to perform the analysis of the wave function on a 
caustic in a classically allowed region; some of the 
structure then disappears when translating into the 
classically forbidden region. 

The following remark may be very important. 
Clearly, our SU(2) two-plaquette model contains an 
analogous U(1) two-plaquette model: we only have 
to restrict our plaquette variables B x and B n to a 
U(1) subgroup ((pl =q)2=0, 0~=0, 02=0  or re). It is 
interesting to note that in this restricted configuration 
space there is no caustic. In other words, intersections 
of neighboring trajectories only occur if we leave the 
U(1)-part of our configuration space. On the other 
hand, we have seen that the most singular part of 
the caustic is the plane O = 0 (beyond the line in Fig. 
7), i.e. it lies in the U(1)-subspace. It is tempting to 
speculate that some of this will generalize to larger 
lattice models. If so, this represents a qualitative dif- 
ference between abelian and nonabelian gauge theo- 
ries. 

5. Conclusions 

In this paper we have started an investigation of the 
ground state wave function of nonabelian lattice 
gauge theories in the weak coupling limit. In this re- 
gime it seems natural to apply the semiclassical ap- 
proximation which reduces the Schr6dinger equation 
to a problem of classical mechanics. In this first part 
we have concentrated on a particular phenomenon, 
the caustics, which appear at some finite distance 
away from the origin. As the most prominent feature 
of caustics, the ground state wave function peaks as 

1 - - - S  
g - r e  g~ where the power p depends upon the de- 

tailed shape of the caustic. In order to illustrate this 
phenomenon in some detail we have chosen to study 
two simple models, one with only one SU(2) group 
element, the other one with two group elements. For 
these two examples, we have shown what the caustics 
are and how the wave function behaves in the vicinity 
of the caustic. It is not yet clear to us what, in a 
larger lattice model, the relevance of the caustics will 
be for confinement dynamics. We feel, however, 
tempted to speculate that, when we come to evaluate 
in a larger lattice model quantities of physical interest 
(vacuum expectation values of gauge invariant opera- 
tors, time-time correlation functions etc.), the en- 
hancement of the ground state wave function on the 
caustics gives a significant contribution. 

Several remarks are in place concerning the inter- 
pretation of our results. First one may ask whether 
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the caustics are merely an artifact of the simple mod- 
els that we have selected or whether they are more 
general. We firmly believe that they are a general fea- 
ture of nonabelian lattice models, and, as a support 
for this, we have started a computer analysis of a 
less naive lattice model, a cube of unit length. Again 
we have chosen free boundary conditions, as a result 
of which the Hamiltonian depends upon 7 SU(2)- 
group elements (after the usual procedure of gauge 
fixing). Results are encouraging in two respects: a) 
focal points do exist and b) they are closer to the 
origin than in the two-plaquette model. We feel 
tempted to speculate that in larger lattice models they 
move even closer to the origin and may become acces- 
sible to some kind of analytic treatment. 

Secondly, the appearance of caustics seems to be 
connected with the nonabelian nature of our lattice 
model. As we have pointed out at the end of Section 
IV, no caustic is found if we restrict ourselves to the 
U(1)-part of the configuration space (~01~-q )2=0  , 

01 =0,  02=0  or ~). In order to have caustics we ap- 
parently need the freedom to leave the U(1)-part*. 
On the other hand, the most singular part of the caus- 
tic lies in U(1)-subspace: this is because this part of 
configuration space is left invariant under a special 
set of gauge transformation, namely the rotations in 
q~2. Since this argument can easily be generalized to 
larger lattice models, we may speculate that this en- 
hancement of the U (1)-part of field configurations will 
be more general, too. 

We conclude with a few words on future steps 
of this program. Clearly the next most obvious task 
is to locate caustics in larger lattice models and to 
determine the behavior of the wave function in their 
vicinity. Taking an optimistic point of view one may 
hope that caustics will exist already in the region of 
small fields. One then might try to use some kind 
of perturbation theory for solving classical equations 
of motion. It will only be after knowing the caustics 
in some detail for a large lattice model that we can 
hope to understand which r61e the caustics play in 
the dynamics of confinement. It may very well turn 
out that we also will have to explore the behavior 
of classical solutions at times long after they have 
left the origin. In the compact group space classical 
trajectories will circle around, and some of them will 
come back into the neighbourhood of the origin. After 
a while some regular pattern of motion may emerge 
which could be of importance. Altogether we feel that 

* This does not  necessarily imply that compact  QE D has no caus- 
tics at all: for a complete analysis of the ground state wave function 
we have to follow the classical trajectories beyond the region IOll 
<~z, fO21 <n .  All we can say is that, if caustics exist, they lie outside 
the region 1011< ~, 1021< ~, i.e. at much  larger distances from the 
origin than in the nonabelian case 

the application of modern methods of classical me- 
chanics provides a promising tool for studying the 
weak coupling limit of lattice gauge theory models. 

Acknowledgements. We are indebted to Professor John Bronzan for 
helpful discussions. One of us (TTW) wishes to thank Professor 
Hans Joos, Professor Harry Lehmann, Professor Roberto Peccei, 
Professor Paul S6ding and Professor Volker Soergel for their kind 
hospitality at DESY. He is also grateful to the Alexander yon Hum- 
boldt Foundation for a Humboldt Award. 

Appendix A 

In Sect. 3, the one-plaquette case with free boundary 
is found to reduce to a one-dimensional problem after 
using gauge fixing and overall SU(2) gauge rotation. 
If the same procedures is applied to the one-plaquette 
case with periodic boundary condition (i.e., U t = U3 
and U2 = U4 with reference to Fig. 2), three variables 
remain. Thus the one-plaquette case with periodic 
boundary is roughly comparable in complexity with 
the two-plaquette case with free boundary. 

In this Appendix, we discuss briefly another one- 
plaquette case that reduces to a one-dimensional 
problem. The boundary conditions are chosen to be 

UI=U3 -t and U2=U4 -1 (A.1) 

With these boundary conditions, the magnetic energy 
is, from (3.1), 

2 
V = ~  tr E l -U 1  U 2 U 1U2]. (1.2) 

This is invariant under the gauge transformation 

Ut ~AU1B and U2--~B-aU2 A-1, (A.3) 

where A and B are arbitrary elements of SU(2). If 
U2 is put on the gauge tree, then only one variable 
is left. Using the variables of Sect. 3 the result is 

4 
V= ~ (1 - cos 2 O). (1.4) 

This differs from the corresponding V of Sect. 3, e.g. 
(3.3), by merely the factor of 2 with O. 

This factor of 2 makes an important  difference. 
While for free boundary V= 0 only at O = 0, for the 
present case V = 0  at both O = 0  and O = m  These 
two points, 0 and re, are distinct in the sense that 
they cannot be transformed into each other by (A.3). 
Consequently, unlike that of Sect. 3 the ground-state 
wave function is symmetrical under 

O --* r e -  O. (A.5) 

There is an excited state, with exponentially small 
excitation energy E1--Eo,  which is anti-symmetrical 
under (A.5). 
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There is some arbitrariness in choosing the electric 
energy. A natural choice is 

g2 
T=T[(:~2(U1)-']-#Z(u2)+c~2(U3)q--~c2(U4)-]. (A.6) 

With this choice, the Hamiltonian is 

02 O 0 H=-g 

4 
+ ~  (1 - c o s  20).  (1.7) 

The electric part agrees with that of Sect. 3. If we 
argue that /53 and U4 are really not distinct from 
U 1 and U2, then the electric part is simply 

gZ 
5 -  FC(U0 + ff~ (U~)]' 

which is half of the T of (A.6). Some rescaling with 
21/4 is then needed. 

Following exactly the same procedure as that of 
Sect. 3, the ground state energy Eo and the energy 
E1 of the first excited state are found to be 

2 

6 - ~ -  21~ 7z - 1/2g- 3 e-  16/g2. (A.8) Eo, 1 

where the upper (lower) sign is for Eo(EO. Therefore 
the excitation energy is 

E1 - Eo ~ 211 re- 1/2 g -  3 e-  16/g2. (A.9) 

A purist may question the meaning of the second 
term in the right-hand side of (A.8). After all, there 
are also corrections in powers of g2. In contrast (A.9) 
has a rigorous meaning: it is an asymptotic expression 
in the sense of Poincar6 for g --, 0. 

Throughout this paper, we have concentrated on 
the very simplest cases of two-dimensional lattices. 
It is interesting to note that the present case has a 
natural extension to the cube, as shown in Fig. 12. 
The generalization of the boundary conditions (A.1) 
is 

U1= U,l.= U71= Ulo 1 

U2= Us= U8-1= Ul-11 (A.10) 

U3=U6=UEl=U121. 

The Hamiltonian is invariant under 

U ~  AU~B, (A.11) 

where i=  1, 2, 3 and A, B are arbitrary elements of 
SU(2). Therefore, after gauge :fixing and overall gauge 
rotation, three independent variables remain. This 
problem of the cube is rougMy comparable in com- 
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Fig. 12. The cube as the 13 SU(2) lattice 

plexity with, but has a larger discrete group of symme- 
try then, the two-plaquette problem of Sect. 4. Indeed, 
the electric part is essentially the T of (B.3) with 

e=�89 (A.12) 

The corresponding V is zero at the following four 
points: 

U, = Uz = U3 = I 

u1=-1, u2= V3=l 
U 2 = -  1, U3-~U1 =1 (A.13) 

and / 5 3 = - 1 ,  Ul=U2--1.  

These four points are distinct in the sense that they 
cannot be transformed into each other by (A.11), 
which is the most general gauge transformation. 
There are therefore three linearly independent excited 
states with exponentially small excitation energy. 

Appendix B 

For the two-plaquette problem studied in Sect. 4, one 
of the most symmetric points of the caustic is the 
tip of the cusp in Fig. 5. This point is characterized 
by O1 = 02 and 0 = 0. It is the purpose of this Appen- 
dix to show that it is located at 

01 = 02 ~ 2.388704014. (B.1) 

In terms of the variables O1, 02, and 0 together 
with their conjugate momenta Po,, Po2, and po, the 
Hamiltonian is given by (4.5). It is convenient to gen- 
eralize (4.5) slightly in the form 

H =  T +  V,, (B.2) 

where 

1 2 [,o2 2 T = ~ g -  o~+po --2~po~Po2 COSO 
L 

2[ 1 1 \ 1 
+ p ~ ~ + ~ ) + 2 o ~ p ~  sinO1 sinO 2 

�9 (cos O1 cos 02 cos 0--sin O1 sin 02 ) 

+2~p~ sin O(Pol ctg Oe +Po2 ctg O1)] (B.3) 
J 
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and 

V = 4 g - 2 ( 2 - - c o s  O~ - c o s  02). 

When 

(B.4) 

~=�88 (B.5) 

this Hamiltonian reduces to that of (4.5). This factor 
of k is due to the fact that there is one common link 
(7 of Fig. 3) out of the four links of each plaquette. 

The classical trajectories of interest are all in the 
classically forbidden region. Thus the rapidly varying 
exponential factor is e x p ( - g - 2 S ) ;  see (2.3) and the 
last sentence of Sect. 2. Another way of describing 
this situation is to say that the time in the classical 
equations of motion is purely imaginary. This purely 
imaginary time is conveniently avoided by reversing 
the sign of V. We therefore start with the Hamiltonian 

T--  V. (B.6) 

With (B.6) the classical equations of motions are 

~)1 =Po, -C~Po~ cos 0 + a p a  sin O ctg 02 

02 = Po~ - apo, cos O + c~pa sin O ctg O1 

1 1 

cos O1 cos 02 cos 0 - s i n  O1 sin 6~ 
+2c~p~ 

sin 1~1 sin O 2 

+~ sin O(P01 ctg 02 +P02 ctg O1) 

2 cos O 1 2 ctg O 2 
Po~ =p~ ~ + ~ p ~  ~ cos ,9 

sin 
+C~po ~ p ~ + 4  sin O1 

cos 02 2 ctg 6}1 
/)o~ = P~ ~ + c~ p~ ~ cos 0 

sin 8 
+apo~ p o ~ + 4  sin 02 

Po= -c~Po~ Po: sin O+ep 2 ctg O 1 ctg O 2 sin ,9 

-c~ps cos O(po~ ctg 0 z +Po~ ctg O1). (B.7) 

In order to locate the tip of the cusp it is necessary 
to study the classical trajectory with O1--02 and ,9 
infinitesimal. The point (B.1) is determined by the lo- 
cation on this trajectory where ~ = 0. Therefore 

ol  = o2 po, =po~, (B.8) 

and (B.7) reduces to 

(~1 = (1 --  ~) P01 

POl = 4 sin Ot 

2 
, 9 = p o ~ ( 1  + ~  cos 201)+2c~,9p~ ctg O 1 

pa= - e p g ,  ,9-2apapo , ctg O1. 

(B.9) 

The initial conditions a r e  O 1 ~ 0, Po ,  ~ 0, and ps ~ 0 
as t--+ --  o(3. 

The solution of the first two equations of (B.9) 
is 

O1 = 4. tan-1 (exp [2 ]/1 - c~ t]), (B. 10) 

where we have dropped an additive constant to t 
without losing any information. At t - '0 ,  (B.10) gives 
Ot =02  =n,  which corresponds to the "south pole" 
in both B1 and B u .  Therefore t remains negative in 
the range of interest. 

In order to treat the last two equations of (B.9), 
a convenient variable is 

= cosh [4 (1 - c 01/2 t]. (B. 11) 

Then 

d4 
1 

+ w ~  E(4+ 1)~ + ~(4 ~- 144+ 17)] 

+ 4c~(1 - a)- 1/z (4 -- 3) (42 -- 1)- 1/2 ,9 = 0 

and 

(B.12) 

4]~~dpo 32e  1 
d4 1 - ~  ~+1,9 

--4a(1 --  ~ ) -  1/2 (4 - -  3) (42- -  1) -  1/2 ps-~ 0. (B.13) 

If (B.13) is used to express ,9 in terms of ps, and the 
resulting expression is substituted into (B.12), pu is 
found to satisfy a known second-order ordinary dif- 
ferential equation with the solution 

+(r=# iF(a, V; (B.14) 

where F is the hypergeometric function, 

b = l [ 1  + 2 [  1 -'~ ~1/2 .~_[ 1 + 15c~] 1/2] 
a, 

c 

2 
and ] -  ~+ 1 - � 8 9  O1). 

(B.15) 

(B.16) 

(B.17) 
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The tip of the cusp on the caustic is determined 
by setting 0 = 0. Thus it is given by the value of O1 > 0 
where 

d l r  /1+~\1/2~ ~ 1--23]  
3 d 3 + 2 [ 1 + [ 1 - - #  ]-~ 1 - ~  ] - ~ - f  

F(a, b; c; 3)=0. (B.18) 

Alternative forms of (B.18) can be obtained by apply- 
ing the quadratic transform of hypergeometric func- 
tions. 

There are three values of ~ for which (B.18) can 
be solved exactly. They are: 

(i) If e = 0, then z = 1 and O 1 = 0 2 = g ; 

(ii) If a - s , -  3 then z = 2., and 
(iii) As e ---, 1 - ,  z ~ �89 and O~ = 02 --'~ +.  

Numerical calculations have', been carried out for the 
following three cases: 

(iv) If ~=1 ,  then z~0.951707 and O1=O2 
2.698464; 

(v) If e = l ,  then z~0.864858405 and Ot=Oz 
,-~ 2.388704014 [This is the results (B.1)]; and 

(vi) If ~=�89 then z~0.714005919 and O1=O2 
~2.013088107. 
Note that O1 = 02 decreases as e increases. 
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