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Abstract. We calculate the two-jet cross section in 
2 in the framework of massless perturbative order ~t~ 

QCD, using for jet resolution the jet mass. We derive 
results for two different approaches. One approach 
is based on the singularity structure of the various 
contributions. The other one is adjusted to the meth- 
ods used in three- and four-jet calculations so that 
the total cross section can be reconstructed. 

1. Introduction 

Much experimental [1-6] and theoretical work [7-  
18] has been carried out to analyse the O(~)  correc- 
tions to differential three-jet cross sections in e+e - 
annihilation. Differential and integrated four-jet cross 
sections have been calculated in [19]. The integrated 
three-jet cross section is studied in [-20]. 

In this paper we present the calculation of the 
two-jet cross section. This is an integrated cross sec- 
tion by definition, depending only on the resolution 
parameter that defines the jet. Although simpler in 
concept and although the O(es) two-jet cross section 
has been given as early as 1977 by Sterman and Wein- 
berg 1-21] the O(e~ z) corrections have not yet been 
calculated. To know the two-jet cross section up to 
O (e2) is useful for several reasons. First it can be used 
to determine the coupling constant % or the scale 
parameter A by comparing the resolution dependence 
with experimental two-jet rates obtained from a clus- 
ter analysis of e + e -  annihilation data [22]. Second 
it is important  to know for consistency that the sums 
with the integrated three- and four-jet cross section 
yields the well known O (e~) correction of o-to t, which 
has been obtained independently via the optical theo- 
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rein from the imaginary part of the vacuum polariza- 
tion of the photon already some time ago [23]. 

One wants to calculate gluon corrections to Fig. 
1. In this lowest order the two-jet cross section is 
identical to the total cross section 

47~c~ 2 
o-0 Q}. (1.1) 

because only the two-parton diagram Fig. 1 contrib- 
utes (e is the fine structure constant, N~ the number 
of colours, QI the flavour charges and the momenta 
are defined in Fig. 1). 

In higher orders gluon radiation comes in and 
makes three- and four-jet events possible. However, 
qualitatively one expects these to be suppressed by 
powers of % compared to two-jet events. 

The higher order contributions to the two-jet 
cross section have ultraviolet, infrared and collinear 
singularities. All these are regularized by going to 
n = 4 - 2 e  dimensions. The ultraviolet singularities 
will be removed by renormalization in the 
MS-scheme, while infrared and collinear singularities 
cancel in the sum of real and virtual contributions. 

All calculations have been done in the Feynman 
gauge of massless QCD and in the one photon ap- 
proximation. Also all correlations with the incoming 
beam have been integrated out. To define a jet one 
can use (e, 6)-cuts, i.e. a cut for the energy and inde- 
pendently for the angle [21, 9]. We worked with an 
invariant mass cut defined as follows: Let su=(p  i 

e+(P+ ) q(Pl) 

e-(p_) Cl (P2) 
Fig. 1. Lowest order diagram for e+e - ~q~ 
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..}_pj)2=2p~pj be the invariant mass of two partons 
i, j. Normalized to the energy, it is 

Yij = so/q z. (1.2) 

Then we say that i and j are in one jet, if y~j is less 
than a given number y. One can easily see that this 
is both an energy and an angle cut. 

The region of allowed y values is quite small: 

0.02 < y < 0.06. (1.3) 

The lower limit comes from the fact that perturbation 
theory breaks down for very small values of y. One 
would have to take into account the radiation of an 
arbitrary number of gluons. 

The upper limit is dictated by an additional ap- 
proximation we are working with, namely we neglect 
terms of order y. 

The outline of the paper is as follows. In Sect. 
2 we will review briefly the derivation of the Sterman- 
Weinberg formula (two-jet cross section up to O(e,)). 

In O(c~ 2) one has three classes of diagrams. There 
are two-parton diagrams which fully contribute to 
the two-jet case (Fig. 3). Here one has to do two 
virtual integrations. These diagrams are discussed in 
Sect. 3. Then one has three parton diagrams, where 
one virtual integration has to be done (Fig. 4). These 
diagrams only contribute to the two-jet cross section 
in case the outgoing gluon is soft or collinear with 
one of the quarks. This is discussed in Sect. 4. In 
Sect. 5 the renormalization is explained and the coun- 
terterms are derived. 

Finally there are the four-parton diagrams which 
are tree level diagrams. They have to be integrated 
over those regions of phase space, where the four par- 
tons make up for two jets. In Sect. 6 and 8 we present 
two different approaches to handle them. In Sect. 7 
and 9 we discuss the final results for the two ap- 
proaches respectively. 

To streamline the paper we have published many 
technical details in a separate paper [24] which we 
will often refer to. 

> 
Fig. 2. a One gluon bremsstrahlung corrections to Fig. 1; b virtual 
one gluon corrections to Fig. 1 

tribution, because there is no y12-pole in the matrix- 
element (2.2).) 

o-(2) 
d z - -  (2.1) 

%~g - F(1  - ~) 

where 

z s ( a  z) 
2n Cv T(y13, Yz3) dPS(3). 

2y12 T(y13, y23)=( y'3 + Y ~ z a ] ( 1 - e ) + - -  2e. (2.2/ 
\Y23 Y131 Y13 Y23 

Here Yl z = 1 - Yl 3 - Y23 from energy-momentum con- 

servation and o-(21=ao/4rg/'t2~ F(2--e)  \ ~ - }  F ( Z - Z e ) i s  the lowest 

order cross section in n dimensions. CF =4/3 and # 
is the up to now arbitrary mass parameter on which 
the coupling constant depends if one wants it to be 
dimensionless also in n dimensions. 

dPS(3) qZ(4n/q2) 2~ 
27723 F(2--2e) O(1 -Y13 --Y23) Yl~Yf~ 

.(1--y13--yz3)-~dy13 dy23 (2.3) 

is the three-particle phase space element in n dimen- 
sions. To get (2.3) one has to integrate over the angles 
with respect to the e +e- -beam direction. 

In Fig. 6 we have marked the two-jet regions of 
this phase space. Integrating over the two strips one 
gets poles to up to second order in e and powers 
of In y up to second order. A typical integral is 

2. Order ~ Two-Jet  Cross Section 

In order to elucidate the main steps in the higher 
order calculation we outline in this section the com- 
putation of the two-jet cross section in 0 ( ~ )  with 
invariant mass cut resolution. The relevant diagrams 
are shown in Fig. 2. The real diagrams yield the differ- 
ential three-jet cross section to O(a~) and contribute 
to the two-jet cross section only in case the gluon 
is collinear with one of the quarks or soft. (The region 
where the two quarks are collinear gives an O (y) con- 

Y Y 1 
j" dyx3 yi-3 ~ j" dy23 y;~ - -  -Y-2g/e2 (2.4) 
o o Y13 Y23 

The ~ singularities are removed by adding the result 
of the virtual diagrams Fig. 2b and one can do the 
limit e -~ 0 and obtains [29] 

a2_jet=ao 1+27n Cv(--2 ln2y--3  In 

- 1 + ~ 2 / 3  + o (y))]. (2.5) 
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Table 1 a-e. a 0 (y) corrections to the integrated three-jet cross sec- 
tion in the region {Y13>y, yz3>y} (see Fig. 6). b Integrated cross 
section in the region {ylz<y} (see Fig. 7). e Leading terms of the 
three-jet cross section in order cq (cf. (2.6)). The numbers in Table 1 

Ns 
are normalized to a0 Cr ~ .  The error is less than 1 in the last 
decimal 

y a b e 
O(y)3 -jet oYlz <y o-3 -jet 

0.05 0.640 0.212 8.172 
0.02 0.331 0.186 18.082 
0.01 0.194 0.119 27.807 
0.005 0.111 0.043 39.454 
0.002 0.052 0.021 57.809 
0.001 0.029 0.012 73.921 

Our aim is to extend this Sterman-Weinberg type for- 
mula to O(e2). There one expects powers of fourth 
order in in y and all powers of lower order including 
constants. Also one expects true nonabelian contribu- 
tions (~Nc) and contributions from fermion loops 
which are proport ional  to the number of flavours 
ny=2T R. Before we continue to do this let us note 
that one can get the O(y) correction to (2.5) easily 
by integrating over the three-jet region (Y13>y, Y23 
> y). Analytically one gets for the integrated three-jet 
cross section to order e~ [29] : 

- (  O'3-jet ~-- O'0 2 ~  CF 2 ln2y + 3 lny 

5 2 O (y)~. +~-~/3+ / (2.6) 

There are no singularities in the three-jet region. So 
one can integrate numerically including terms of 
order y. Taking the difference with (2.6) one gets the 
numbers of Table 1 a. 

The physical two-jet cross region should also con- 
tain y12<y. In this region the two quarks are in one 
jet and the other jet is a pure gluon jet. The contribu- 
tions from this region are also order y, because there 
is no ylz-pole in (2.2). For  convenience they are given 
in Table lb.  

In Fig. 9 we have drawn the Sterman-Weinberg 
formula including order y corrections for a wide range 
of y values (for e~=0.12). One sees that for yN0.01 
the perturbative result is not useful, because the cor- 
rections to the tree level produce a change by more 
than a factor 2. For  very small values of y one gets 
negative cross sections. For  higher values of cq the 
situation is even worse. 

The higher order corrections in the "partial  frac- 
t ioned" and in the "physical" scheme will show a 
similar behaviour. They lead to negative cross sec- 

tions already for y~0.01.  In the singular scheme (see 
Sect. 6) we shall find smaller corrections to the Ster- 
man-Weinberg formula (see Fig. 10a and the discus- 
sion at the end of Sect. 8). 

Note  that by adding (2.5) and (2.6) one gets the 
total cross section to order cq, which can be calculated 
independently from the imaginary part of the vacuum 
polarization of the photon via the optical theorem. 
All y dependence should drop out from the total cross 
section. So from Table 1 one can read off the O(y) 
corrections to (2.5), too. 

In the order ~ the structure of the q~g cross sec- 
tion (2.1) with (2.2) is such that all the terms propor-  
tional to In y and the constant terms in (2.5) come 
from the integration of the pole terms in (2.2). The 
terms O(y) which are neglected in (2.5) come from 
the strip y12<y and from taking into account exact 
kinematics. We see from Table 1 that the O (y) terms 
are fairly small even for y--0.05 as compared to the 
dominant terms in o-3qet. They approach zero for 
y ~ 0 whereas the dominant terms diverge. 

2 we can proceed analogously. The total In order as 
cross section O-to t as calculated by the authors of [28] 
is obviously independent of y. In terms of jet cross 
sections we have 

O-to t = O'2_je t 71- O-3_je t -'}- G4_je t (2.7) 

(since we go only up to O(c~2)). Therefore it is an 
important  check for these jet cross sections that the 
y-dependence in the sum cancels. So far this check 
could not be done since only three- and four-jet cross 
sections had been calculated. Actually to calculate 
o-2_jet including all O(y) terms seems to be an unsur- 
mountable task. Therefore we try to compute az-~et 
up to O(1) terms. Then this O(e 2) o-2_j~t is still a good 
check on the y-dependence of o-3_~ t and o-,_j~ t. The 
calculation of these cross sections will be presented 
in [20]. It turns out that they can be calculated with 
all the O (y) correction terms although some parts only 
by numerical integration. Then after having checked 
that the ln"y (m= 1, ..., 4) terms cancel in the sum 
(2.7) and that for very small y the constant terms 
in the sum reproduce the known O(a 2) terms in O'to t 
one can calculate the exact 0-2_je t (with all 0 (y) terms 
included) from the difference O-2_jet=O-tot--O-3_jet 

-a4-jet with O-3_je t and o-4_je t taken from [20]. 

3. The Two-Parton Diagrams 

We want to calculate the contribution of the diagrams 
in Fig. 3. The techniques to calculate all the integrals 
needed have been presented in [24]. Also the results 
for all scalar diagrams are given there. So here it is 
enough to present the final results and to make some 
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Fig. 3a-n. Virtual two gluon corrections to Fig. 1 

general remarks: First the general form of the contri- 
bution of diagrams like Fig. 3 to the cross section 
is [29] 

2rcct 2 [4rc/,2~" r(1-e) 
dtre+e--+q~- q6 \ q2 ] 2 F ( 2 - 2 e )  

(3.1) 

where H u~ is the hadronic tensor of those diagrams 
q2 

and - ~ - g u ~  comes from averaging out initial state 

effects. Second the self energy insertions Fig. 3a-g  
can be consistently set to zero [9] *. This has already 
been done for the two self energy diagrams of Fig. 
2b. 

So we are left with the diagrams in Fig. 3h-n  
to be multiplied with Fig. 1. In addition there is the 
square of the vertex diagram in Fig. 2b, which will 
be called D. Including the lower orders we have 

-- 0"(2) f l  ' '  ~s(112) (-~U-)4n/'t2 *A1 
Ge+e- 1-~ -~ q q ~ -- g ~ ~ F ~ - ~  

[ ~ ( ~ ) ] 2  [4n#212~ a "l (3.2) 
+Cv k 2rc J k q2 ] ~2f" 

* One can think of ultraviolet and infrared divergencies cancelling 
one another. One can calculate the ultraviolet divergence in princi- 
ple by setting p2 + 0 

F 2 ( 1 - e ) r ( l + 5 ) /  2 1 +6 z-5 

+ 3(2 g--  8g) (3.3) 

is the lowest order result Fig. 2b (including terms 
of order e which we shall need for renormalization 
later). 

A 2 = C F D +  NcSl-q- TRS2-2(Cv-~)$4+2CFS5 

-N~G+CrL+ICI~'~-J K. (3.4) 
\ z !  

TR = n j-~2 comes from the diagram involving the fer- 
mion loops. Note that the q2-dependence of all dia- 
grams is universal (A 2 only depends on e and the 
group parameters). The result for the single diagrams 
is 

L = Re ( -  1)- 2~r3 (1 - e) F(1 + 2e)/2F(1 - 35) 5-4 

�9 [1 + 5 + ( 9  + 2(2) 52 + ( ~ - -  2(2 + 26(3) 53 

+(4@9--9(  2 -b 100(3 + 45(4) e4]. (3.5) 

R e ( - 1 )  -2" comes from the fact that q2 is timelike 
(see [24]). 

K = Re ( -  1)-2"F 3 (1 - e )  F(1 + 2g)/2F(1 -3~) e -4 

. [1 + 3e+(12--6(2)  e 2 + (42 - -6 (  2 -- 30(3) ~3 

+ (146 -  30(2 - 54~3 - 67(4)/~4]. (3.6) 

F3(1-e)F(l+2e)[ 1 e 5 2 
G = R e ( - 1 )  

/63 \ 3 /517 4 - ( 3  ~ 
-~-t--4~--(2) g - ~ 8 - - - ( 2  ] /~4]. (3.7) 

(9 ) 
2e3F( l_38 )  [ 1 +  - 2 ( 2  

/693 --9(4) e3]. + ~ - - -  31(z-- 7(3 (3.8) 

r 3 (1 - r(1 + 
S s = R e ( - 1 )  -2~ 2e3F(l_3e) 

39 2 249 3 ] 
(3.9) 
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SI=Re(_I)_2~F3(1-e)F(I+2e)[ 5 61 
213F(1-31) 6 18 e 

/1530 5 \ 2 /31351 61 5 \ 31 l 
(3.10) 

s2 = Re ( -  1)-  2~ r3  (1 - 8) r ( 1  + 2~) 
2e 3 F(1 - 3e) 

[-2 22 

/5423 44 4 
-~- ~ - ~ -  -I- ~ -  (2 "~- ~ (3) e3]. (3.11) 

r4(1 -e )  r2(1 + ~) 
D= 414F2(1_21 ) [4+81+2912 

+ 7113 + 17614]. 

From this we find 

(3.12) 

A2= 
r3(1-e)r(1+21) { [24  

r(1-3~) cr ~+~ 
29/2-12(2 1/281 

+ 12 f - ~ T - 2 1 ( 2  

) 1 4 1 3 1 5 1  ] 
+6(3 q- 16 2 (2+42~3+67(4 

+N~[ 11 1(133 (2~ 1/3133 
12e 3 e z 2J--e \  216 

26 ~ ) 4025 
3 (2-- (3 81 

+61- ~ ~2+~3 ~ ( 3 - ~ - ( , ]  

[- 1 11 1/269 10 \ 5423 
+ TR[3~3 +9e2e2 + e / ~  3 (z)~t 324 

110 2 ] }  
9 ( 2 + 5 ( 3  " (3.13) 

A few remarks concerning (3.13) are in order here. 
First one notes that the Cv-contribution carries the 
leading singularity ~ e-4. The leading singularities of 
the Arc and TR-term are of order e-3 and their coeffi- 
cients are proportional to the zeroth order approxi- 
mation of the /?-function. This is not accidental. In 
fact the e -4, e-3 and e-2 contributions of our result 
can be generated using exponentiated expressions ad- 
vocated by the authors of [25]. The coefficients of 
these poles are universal in the sense that knowing 

Fig. 4. Three parton contributions in order ~2 

Fig. 5a,  b. Four  parton contributions in order aft 

them for one process (e.g. ours) one can deduce them 
for other processes (e.g. deep inelastic scattering). 

Gonsalves [-26] has published a result for A 2 

which agrees with our (3.13) only in the leading singu- 
larity (i.e. e -4 and e -3 terms respectively). His result 
does not have the mentioned universality property 
[25]. In addition the cancellation of infrared singular- 
ities with the diagrams of Fig. 4 and 5 would not 
be possible with his result. With our result (3.13) we 
will be able to cancel all singularities to get a finite 
two-jet cross section. 

We shall postpone the discussion of renormaliza- 
tion to Chapt. 5, after all virtual integrations have 
been done. 
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4. Three Parton Diagrams 

Consider the one-loop corrections to the process 

e + (p +) + e-  (p_) --* q (p~) + q(P2) + g(P3) (4.1) 

shown in Fig. 4. They have to be multiplied with 
the tree level contributions Fig. 2a*. This as well as 
the virtual loop integrations has been done by several 
groups [7-9, 16, 17], who have calculated differential 
three jet cross sections to O(82). 

We are interested in integrated cross sections. So 
we have to do a phase space integration over the 
n-dimensional 3 particle phase space (2.3). This phase 
space is drawn in Fig. 6. We are not interested in 
the total cross section - we are interested in the sepa- 
rate two- and three-jet contributions of the three par- 
ton diagrams. So we have marked the two- and three- 
jet regions in Fig. 6. In fact Fig. 6 was already needed 
for the Sterman-Weinberg formula. 

The result of the virtual integration of the dia- 
grams in Fig. 4 is at most of order 8- 2. In the two-jet 
region the additional phase space integration can pro- 
duce an additional 8 -2 singularity. This means: we 
need the result of the virtual integrations including 
terms of order e 2, whereas for calculating differential 
three-jet cross sections (thrust distributions etc.) terms 
up to O(1) in e were needed only. The exact basic 
loop integrals without e expansion have been given 
in our earlier work [10], so that only the trace calcu- 
lations had to be repeated. The following formulas 
give the result of the virtual integrations including 
terms of O(8 2) 

C~s(#2) CF [47Z#2\~  
dr~e+e- ~qrto=-t7(2) 2re- ~qU-) dy13dy23 

�9 Yl-f Y2-~ ( 1 --Y13--Y23)- ~ O ( 1 - - Y I 3 - -  Y23) 

" T(y13, Y23)/F(1--~) 

{ C3(l-e)r(l+e)(4-nq~-2fRe(-1) -~ 
�9 1 + F ( 1 - 2 e )  

e~(#2)2n CF X}  (4.2) 

where 

/ N~\F--4+2A~+2Az 1 - 2 A 2 - - 2 A I  
k 

- 5 - 8 e -  1682 + 2 1 ~  (y ~_d + Y[-~ + y~_d)] 

* Once again diagrams with self energy insertions in outgoing par- 
ton legs can be consistently put  to zero 

Y23 

coltinear 

Y 

7 
infmred 

I Y13 
collinear 

Fig. 6. Three particle phase space for e + e-  --* qqg. It is divided into 
a two-jet region which contains the singularities and a three-jet 
region free of singularities 

y21  
] Y Y~3 ~ 

Fig. 7. Three particle phase space for e+e----, q c]g. It is divided into 
the physical two-jet region and the physical three jet region 

N~[2 1- -2A 3 ] 
+ 2 - [ ~  (A3-  1)q e 5--88--1682 

N~ + T 1,,13, q (4.3) 

Here 

l=kya2Ya3+Y23 ] 2 1 k -  yx2Y13+Y23 ! 

- - k ~ ]  2 1 YI3+Y23] 

(y 2y 3  8 y23 1 --kY~22 ~Y23] 2 ak-- , --8,1--e, y12 + Y23 ] 

Ae =A1 (1'- '2) 

A3 =Ax (1 --*3, 3 ~ 2 ,  2--* 1). 

Y13 Y13] 

�9 ( 1 - A l - y d - y ? ~ ) + ( l ~ 2 ) }  

(4.4) 

1 
+ ~  {8 + N ( - -  1, 2, - - 4 ) + 4 ( 2 + w )  w(1 -- y;-D} 
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+4+2A1 + 2 A 2 . 4  Y13 ( I _ A 0 _  4 Y23 (1 -A2) 
Y23 YX3 

+8w2+12w+N(-1, 5, -3 )  

+4y1~(l + Y13 + Y23--2w2--2w) 
\ Y23 Y13 

+y~-~(-- 1 Y12 Y23 F4Y13 Y23 ] 
Y13 Y13 Y23 Ylz+YE3/ 

+y2~ ( _  1 Y12 Y13 F4Y23 );13 1 
Y23 Y23 Y13 YlEWY13/ 

+ e ~ 4 + 2 A  l + 2 A  2 - 2 y 1 3 ( 1 - A 0  t Y23 

- 2  Y23 (1 - - A 2 ) + N ( - - 2  , 5, - 5 ) +  16w2 +24w 
Y~3 

+ 2y?~(Ya~+ 223+ 2] 
\Y23 Y13 / 

+Y13e(2Y13 Y12 Y23 ] 
Y23 Y13 Y12+Y23] 

Y13 Y23 Y12+YI3]) 

+e2 {16+N(--4,  8, --12) 

+ 32w 2 (1 -- y~-~) + (48 -- 32y12 ~) w 

+ y i - ~ ( _ 5 _ 2  Yt2 Y23 2 Y23 ] 
Y13 Y13 Y l ~ Y 2 3 ]  

+Y23~(_5_2 Y12 Y13 2 Y13_ .];. 
Y2a Y23 YI2+Y13]) 

(4.5) 

1 
RN= ~ {6A 3 +2(1 +y~+yz~)+N(-- 1, 4, --4)} 

+2+2Aa+y;~(l+Y12_~ Y23 Y23 ] 
Yla Yla Y1~-Y23] 

+ N ( - 1 ,  5, - 3)+ yy~(l + Y12 + y~3 
\ Y23 Y23 

Ya2+Y13] 

+yl-~ ( _ 2 d  Y12 Y23 / 
Y13 Ylz+Y23] 

+y2a~(_2q Ya2 Y13 _)} 
Y23 Y12 + Y13 

+ez{8+N(- -4 ,  12, --12) 

+ y ~ - ~ ( _ 3 + 2 Y 1 2 2  )223 1 
Y13 Y12+Y23/ 

Y23 Y12+Y13 
(4.6) 

2 1 2  w .'= . (4.7) 
Y13+Y23 

N(a,b,c)=(l_yx3)-~[ ay13Y23 bY13 
(Y12+Y23) 2 q Y12+Y23 

+ Ya2 +Yza c y 2 ~ a  ] + (1~--~ 2)" (4.8) 

First we want to integrate this over the two jet region 
which can be written as 

Rz_je t dy13 2 ~ dyz3-  ~ dy23 
0 0 0 -) 

(4.9) 

because of symmetry properties. (4.9) is valid only 
to order 1 in y. Working in this approximation one 
has to look for poles in Y13 in (4.2-8). 

Most of the integrals are elementary. The terms 
with denominator (Y13 +Y23) -~ can be integrated by 
splitting the yz3-integration into 

Y Y13 Y 

dy23 = ~ dy23+ ~ dy23. (4.10) 
0 0 Y13 

The only difficulty lies in integrating the hypergeo- 
metric functions in (4.5). They originate from the box 
diagrams in Fig. 4. In Sect. 3 of [24] we have shown 
how to treat such hypergeometric functions by inte- 
grating the scalar box diagram. The box diagrams 
of Fig. 4 can be reduced to scalar box integrals and 
certain vertex integrals already at the virtual level 
[7]. This is why the hypergeometric functions in (4.2) 
show up only in the combination (4.4) which is typical 
for the scalar box diagram [24]. 

What is needed of (4.4) for our integration neglect- 
ing terms O (y) is collected in Table 2. The integrations 

Table 2. Approximate formulas for certain hypergeometric functions 
as explained in the text 

Yla<Y, Yz3> y 
A1 ~ --y~-~(1 --yz3)-~2Fl(--e, --e, 1 --e, Y23) 
A2 ~ 1--(1--y23)-~--y2~ 

A3~ ya3Y232Fl(--e, --e, l--e, 1--Y23 ) 

Yla<Y, Y2s<Y 
A1, A3 as above 

A2"~ --Y2f 
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can then be done straightforwardly after expanding 
the hypergeometric function 2F1 ( - e, -- 8, 1 -- e, "). The 
final result for the two-jet contribution of the three- 
parton diagrams is: 

, - , a ( z )  .-, o~,(/~ z ) { 4 n # ~  ~ 

['__ 0~s (]-,l 2) [4~#2V _ "1 
(4.11) 

F2(1-e)F(l+8) f ~ 1 
B~-  F(1-28) + + 4 - 4 ( 2  

- 3  t n y - 2  ln2y+g(7--8~3 +~2 

+(4~2--4 ) l n y +  7 ln2y+2 ln3y)}. (4.12) 

B~ is the order e, contribution which we have in- 
cluded for convenience�9 

r (1-e)  r(1 +0  
B2 - -  r ( 1 - 2  0 

�9 C F g4 83 8 2 

1 - 30G- 36~3) -~-+  128G-35~ 

6 lny+l(22_16(2)lny+~ln2y +j  

1 ln2y_4  ln3y+(65_20~2_ 56(3 ) lny 
8 

71nZy--ln3y+72 ln4y] 

[1 11(  ) 
-}- Ne 284 8 3 82 7 (2 

_ _  55 0 1 ( 6 _ 5 ( 1 + 8 ~ 3 ) _ ~ +  1 (2+11(3_21( ,  
8 

3 l n y + 5  2 2 5 2 + •  l n y + ~ l n  y - ~ l n  y 

- - -  lnay+(12 - 12(2 + 16(3) In y 

--(5 +4(2) ln2y+6 l n 3 y + ~  ln4y]}. (4.13) 

Let us also discuss the contribution of the three-par- 
ton diagrams to the integrated three-jet cross section. 
For one this can give us a check on all the logarithms 

in (4.11), since in the sum of the integrated two- and 
three-jet contributions all y dependence should can- 
cel. This way we get also the contribution of the three- 
patton diagrams to the total cross section which is 
perhaps interesting by itself. 

In the three-jet region of Fig. 6 all the phase space 
integrals are finite. This means that we can take the 
result from [7, 9] without the terms He instead of 
(4.2) as integrand. Just as at the end of Sect. 2 one 
can do the integrations both analytically (neglecting 
O (y) contributions) and numerically. For the analyti- 
cal integration we rewrite the result in I-7, 9] as 

1 1 --Y13 ( 

Svir tual= I dy13 I dyE3 ~T(y13, Y23)(Y13 Y23 Y12) -" 
y y 

�9 [ -- 2 Cvy ?fie 2 -- N~ (y 12/Y 13 Y23)~/8z - 3 CF/8] 

N~ 
+ T(yla, Y2a)(4(2(CF+~-)-8Cr+ N~(ln2 Y12 

YI 2 In (yl 3 Y23) + in yx 3 In Y23)) In 

+F(y13, Y23)}" (4.14) 

The function F which is independent of e is defined 
in [7, 9]. 

For the terms in (4.14) containing e-poles one has 
to keep e#0. Despite this they lead to elementary 
integrals. The other terms which can be integrated 
in 4 dimensions, can all be taken from standard tables 
[-27]. The final result is 

0 -(2) ~s(]/2) 4n# 2 ~ 
~ 2n ( ~ - )  cF 

5 
�9 21n2y+3 l n y + ~ - 2 ~ / +  

rz(1 -8) r(1 + 8) 
V ( 1  - 2 8 )  

"(~22) "Re(-1)-= es(Pz)2n a(3)}" (4.15) 

where 

A(3)= - ( l~  Nc+7Cv) ln4y+(C~-6N~ 

5Nc+Cv 4Cp+2N~] z 
+ ~  ~- ] In Y 

+[(2(2 + 56(3-65) Cr + (3 (2 -16(3 -12)  Nc 
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- -1  (5Nee + ( 2 2 - 1 6  ~2) Cv)-~z (3Nc +6Cv) ] ln y 

+ 24( 3 -- 38) Ce] + (20(2 

+ N~(~ (2 +4~3+ 19(4--75) 

+ CF (81 (2 + 90(3 + 31 (g -- 195). (4.16) 

One can see easily that in the sum (4.11)+(4.15) all 
logarithms drop out and one is left with the contribu- 
tion of the three-parton diagrams to the total cross 
section: 

a~ 2) ~s(/~ 2) 4re# z"  
at~ 1--e 2re 

f F (1 -e )  [2  1 13 \ 
' e(F~--Z i-e~ ~p- + ~ + ~- - -  4(2 ) 

F 2 ( 1  - - g )  F(1 +e) /4n#2V c~s(# 2) 
+ 

" [-~(4CF+~)--~(SCF+ N~' 

e12 ((6~92 - t6(2) Cv +(5--3 (2) Nc) 

+ 1  ((26(2 + 60~3 - 2~223) Cv +(6(2 - ~ )  N~ ) 

/241 11383 ) + ~ -  (2 + 90(3 + 101(4 Cv 

+(28~2 + 15~ 3 - - ~  (4-- ~-25 ) Nc] }. (4.17) 

NOW we come to the numerical analysis of (4.14) in 
the three-jet region. We report only the O(y) correc- 
tions to the various terms in (4.16) which we write 
a s  

+(-Q/~ +Q~/~+ f'~) N~ (4.18) 

Q can be obtained from Table 1 since it is the result 
of the integral over T~= TI~= o. The other numerical 
results are found in Table 3. 
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Table  3. O(y) correc t ions  to the three-jet  con t r ibu t ions  of the dia-  
g r ams  in Fig. 4 
Order  y cor rec t ions  for the three p a r t o n  d i a g r a m s  in the three-jet  
region = - o r d e r  y correc t ions  for the three p a r t o n  d i a g r a m s  in the 
two je t  region 

y Q~ Q~ fc fN 

0.05 - 6.1886 - 6.4066 - 13.260 --40.843 
0.02 - 3 . 8 9 1  - 4 . 2 0 2  - 9.728 --34.101 
0.01 - 2 . 6 1 2  - 2 . 8 5 4  - 7.537 --27.65 
0.005 - 1.695 - 1.681 - 6.05 --21.60 
0.002 - 0 . 9 2  - 1 . 0 1  - 4.52 - 1 5 . 1 7  
0.001 --0.59 - 0 . 6 2  - 3.40 - 1 1 . 5  

The  errors  are  one un i t  in the las t  digit.  
Al l  the con t r ibu t ions  go to 0 for y --+ 0 

Now we meet a surprise. In contrast to O(es) the 
0 (y) corrections are rather large here, especially for 
the N-term (~  30% at y = 0.05). Therefore we should 
be prepared that the O(e 2) contributions to the Ster- 
man-Weinberg formula (2.5) which we are going to 
derive will have non-negligible corrections for larger 
y's, y =0.05 say, caused by O(y) terms. 

5. Renormalization 

We have now calculated all virtual corrections of 
2 So it is reasonable e § e- ~ QCD-quanta to order as. 

to do the renormalization. 
Renormalization commutes with all the phase 

space integrations. So it is similar for differential and 
for integrated cross sections. (We shall concentrate 
on the two-jet case.) 

Because of chiral invariance our massless theory 
gets no mass renormalization. So our final expression 
(3.2) +(4.11) is renormalized by using the renormal- 
ized coupling gR instead of the naked coupling gb : 

gR = l//~a Z2/Z1 gb. (5.1) 

In (5.1) Z1 is the renormalization constant for the 
quark-antiquark-gluon vertex, Z 2 for the quark field 
and Z3 for the gluon field. We need these quantities 
only to order gs, because the 0 (as) Sterman-Weinberg 
formula gets no contribution from renormalization. 

Many schemes have been discussed on what to 
absorb into the coupling constant (5.1) [263. We 
worked in the MS scheme which is most standard, 
technically the most convenient and which also seems 
to lead to the smallest higher order corrections in 
most cases*. It is defined as follows: 

* Fo r  a d iscuss ion see [29] 
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One absorbs only terms proportional to e -1 
+ In 4 n -  ~ into the coupling constant, i.e. terms which 
are proportional to the pure ultraviolet singularity 
plus certain constants which are an artefact of dimen- 
sional regularisation. These constants compensate for 
the factor (4To) ~ and certain F-functions in (3.2) and 
(4.11). The ultraviolet singularity of (3.2) + (4.11) is 
mixed up with the infrared singularities in our proce- 
dure. However, from the structure of the renormaliza- 
tion constants one can deduce that it is only a weak 
singularity ( ~  e- 1) compared to the infrared singulari- 
ties. This is the reason why no In 2 (4re) etc. terms enter 
the MS prescription. 

In fact one can produce the counterterm to 
(3.2) + (4.11) by inserting 

2 ~sR 1 
O~sb-.~O~sR { 1 - - ( ~  N~-~  TR) ~ - ( e  + ln  4r~--7) } (5.2) 

into the Sterman-Weinberg formula (2.5) keeping the 
2 Here ~ N~ - 2  TR is the first order terms of order cq. 

approximation to the/?-function. As (2.5) is finite one 
sees at once that the counterterm is of order e- 1. 

One should note that because of the singularity 
HE-~ one needs the Sterman-Weinberg formula in- 
cluding terms of order e. These can be calculated by 
the same methods by which one arrives at (2.5). We 
have given these order e corrections to A 1 and B~ 
already in (4.12) and (3.3). 

Using (5.2) one gets for the counterterm 

acr a(2) ~ /~(#2)\2[4~#a~2~ 
 ot- ) 

/11 2 \ / 1  \ 

+(4~2--4ff3-- 1) e+2~2-- 1]. (5.3) 

If one adds the counterterm (5.3) to the result (3.2) 
+(4.11) obtained so far one knows that the sum is 
free of ultraviolet singularities. All remaining 
singularities must be infrared and collinear ones and 
they must be cancelled by the two-jet contributions 
of the diagrams in Fig. 5, to which we turn our atten- 
tion now. 

6. Four Parton Diagrams: The Singular Approach 

In this section and the following sections we describe 
the integration of the four-parton diagrams (Fig. 5) 

over such regions of phase space corresponding to 
unresolved two- and three-patton configurations. 
Based on our experience with e+e --+3 jets [-9, 12, 
13, 17] we approximate the four-parton matrix ele- 
ments by their singular contributions which are re- 
sponsible for the infrared/collinear singular terms 
~ e - "  (n= 1-4) .  The motivation for proceeding in 
this way is that the four-parton matrix elements in- 
volve so many terms of very complicated structure 
that we want to prove the cancellation of all singulari- 
ties ~ " first before we try to evaluate the exact 
matrix elements. We also might hope that the result 
obtained with the singular terms already gives us a 
reasonable good approximation to the final result. 
However, this is not the case, cf. Sect. 9. The diagrams 
of Fig. 5 stand for the processes 

e+(p+)+e-(p_)~q(pl)+gl(pz)+g(p3)+g(p4). (6.1) 

and 

e+(p+)+e-(p_)~q(pO+~l(P2)+q(p3)+gt(p4). (6.2) 

The 4-dimensional matrix elements for these pro- 
cesses can be found in several papers [,,19, 7]. They 
are finite in the four jet region (all y i j> y), so for four 
jet cross sections the 4 dimensional expressions are 
sufficient. For two- and three-jet cross sections one 
has to extend some of the terms to n dimensions, 
namely those which yield singularities when integrat- 
ed over the two- and three-jet regions. In the three-jet 
case these n-dimensional corrections are very simple. 
There the singular terms factorize into a tree level 
type amplitude (Fig. 2 a) and an Altarelli-Parisi kernel, 
the generalization of both factors to n dimensions 
being very well known [7]. In the two-jet limit there 
are other n-dimensional corrections which we shall 
present in the following. 

The integration of the four-patton diagrams over 
the two-jet region is rather involved. One has two 
topologically different kinematical configurations de- 
pending on whether three partons are collinear (e.g. 
y134<y), the second jet then consists just of one par- 
ton, or whether both jets are made of two partons 
(e.g. Y13<y and yz4<y). Neglecting order y terms 
the second configuration can be neglected for most 
of the diagrams (e.g. for the q ~q cT-diagrams). 

The techniques of how to do the phase space inte- 
grations are discussed in our paper [-24]. However, 
the difficulty comes in not only through the phase 
space integration. In addition one has to be careful 
to integrate over any region of four-particle phase 
space at most once. For example if one has to inte- 
grate over the two regions Y134<Y and yz34<y  one 
cannot simply add the two results but has to subtract 
the overlap contribution. This problem already ap- 
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Y3/.. I 

Y 2-J~t '///_/L//A 
3-Jet 

] Y Y/Y134. 1-Y13z. [+Y) 1 Y23z. 

Fig. 8. Four particle phase space in a 34-system for fixed Y~34- It 
is divided into the regions {Ya34<y}, {Y34<Y, y~a,,>y} and {Y3~ 
>y} 

pears at order ~ (Fig. 6) where it is easily manageable 
because oniy one region of overlap exists. In our case 
however there are four two-jet configurations* and 
lots of overlaps exist�9 In this section we shall take 
care of all these overlap regions. However, we will 
only calculate the singular terms of the two-jet contri- 
butions of the four-parton diagrams proving the infra- 
red cancellations and including only those finite loga- 
rithms and constants that arise out of these singulari- 
ties. Thus, for example, - - 2 1 n y  arises from 

y 
y-2~/~=__2 ~ d y 1 3  4 - 1 - 2 ~  Y~34 , where the singularity 

0 
Yi~4 comes from the matrix elements. We are not 
sure whether there are constants or even logarithms 
in the nonsingular parts of the matrix elements. To 
examine this question would be rather cumbersome 
because of the appearance of terms of order y/e. These 
make it impossible to integrate the nonsingular parts 
of the matrix elements numerically. 

To avoid overlap and O (y/e)-terms in the three-jet 
case the authors of [7] have used partial fractioning 
of the matrix elements. With this method they have 
calculated inclusive cross sections where all 3- and 
4-parton contributions are summed. In [-20] we have 
carried through this approach also for the integrated 
three-jet cross section. In order to check all these cal- 
culations it would be good to have an independent 
calculation of the two-jet cross section in this ap- 

* {Y134 < y} 

U {Y234 < Y} 

u {y~ <y, y~4 <y} ~ {y~ <y, y,~ <y} 
This can be read offdirectly from the singularities of the propagators 
of the 4-parton diagrams 
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proach to see whether the total cross section can be 
reconstructed. Such a calculation will be done in Sect. 
8. 

But let us return to the singular approach. As 
long as one is interested in the case that (at least) 
pat ton 1 and 3 are going in one jet, the following 
formula for the n-dimensional four-particle phase is 
most convenient E7] 

dPS{4) =go dy123 dy134 dy13(Y12a Y I 3 4 -  Y la) -~Y~ 

�9 (Yx3 + 1 -Ya23 -Y134)-~O(Yla) O(Y123 Y134--Y13) 
�9 O(Y13 + 1 --Y123 - Y134) dvv-~( 1 - v) -~dO' 
�9 sin- 2e 0 t (6.3 a) 

{4zc] 3~ Sq4F(1 - e )  . (6.3 b) 
g ~  21 2 ~ + 2 ~ 6 r ( l _ Z ~ ) y ( 2 _ Z e )  

Here S is a statistical factor, S = 2  for (6.1), S=4 ,  for 
(6.2). P2 has been put along the z-axis here and p~ 
+p 3 =0 -  The phase space can almost fully be de- 
scribed by invariants (Yuk"=Yu + Yjk + Y~k) with the ex- 
ception of the azimuthal angle 0' of PI and the vari- 
able v which contains its polar angle 0 with the z-axis, 
v:=�89 - c o s  0) (0 < 0 '<  n, 0 <  0 < ~). 

Exchanging the roles of the partons one can derive 
other phase space formulas from (6.3) which are useful 
if other jet configurations are considered. 

The combination y13+l--yaz3--Y134 which ap- 
pears in (6.3) is just Y24, as momentum conservation 
shows. This means that (6.3) is not only suited to 
implement the two-jet condition (y~34<y) but also 
the condition (Y24 < Y, Yl 3 < Y). 

We remind the reader how one treats (6.3) in the 
three-jet limit (Y13 <Y, all other yu>y) .  To get differ- 
ential distributions one can interpret Yt23 and Y134 
as effective three-particle variables of an effective 
three-particle phase space ( I = l  +3,  I I=2 ,  I I I=4) .  
Then one only has to integrate over v, 0' and Y~3. 
If one neglects order y contributions one can restrict 
oneself to the poles ,-~y~-3 t in the transition probabili- 
ties. Then one has to consider only a few terms, be- 
cause all the invariants reduce very much in this limit, 
e.g. 

y14=(Y13,,--y~3) (v(1 --7)+7(1 --v) 

- 2 cos 0' ]//v (1 - v) 7 (1 - 7)), (6.4) 

where 7 :=Y13 Yz4/(Ya34--Ya3) (Yaz3--Y13), reduces to 

Y14 ~ YI hi" f)- (6.5) 

We find a strong reduction of the matrix elements 
also in the two-jet case (y13<y, y z 4 < y )  where only 
terms , ,~y;~yf2 are important, if one neglects order 
y contributions�9 Such terms only come from the plan- 
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ar and nonplanar QED type contributions* and only 
in the C~ contributions and are of the form 

CF 
M(Y13-~ 0, 2 2 4 - + 0 ) - -  - -  

713 224 
P~(v) P~q (1 -Y~34), (6.6) 

where P~qis the generalization of the Altarelli-Parisi 
function to n dimensions 

n V 
P~q (v)=2 TZT_ v + (1-8) (1  - v ) .  (6.6 a) 

In (6.6) and in the following we leave out the factor 

(6.6) has to be integrated over that part of (6.3) 
where y~3<y, Y24<Y, 2134>Y. (We will consider 
Y134<Y later.) For  Y13 ~ 0  and Y24~0  (6.3) reduces 
very much so that the integration is easy. One has 

y 

pS{41(Y13<Y, Y24<Y, 7134>Y)=g0 ~ dy13 YI-3 ~ 
0 

y I 1 

�9 ~ dy24 Y2,~ ~ d7134 Yl-3~4(1 -Y134) -~ ~ dvv-~(1-v) -~. 
0 y 0 

(6.7) 

In contrast to this and to the three-jet case config- 
urations with three-partons in one jet are more in- 
volved. One reason is that a formula like (6.4) is still 
quite complicated in the region y~ 34 < Y. (In the region 
Y234<2 it is appropriate to choose another coordi- 
nate system.) In this region one has to look for double 
poles (--, yi-3z4) in the transition probabilities. One can 
work with the approximation 

lim Y14=v(l--z)+zY24(1--V) 
Y134 - '~0 2134 

- 2  cos 0' l/v(1 - v) z(1 - z )  224 (6.8) 

In our technical paper [-24] we have described how 
to integrate a term with Y14 in the denominator, be- 
cause this is a rather characteristic case. This case 
occurs for four types of contributions 

(A) The planar QED type contributions of Fig. 
5 a ( ~  Cv) 

(B) the nonplanar QED type contributions of 

Fig. 5a ( ~  CF--~-  ) 

(C) the interferences of QED diagrams with dia- 
grams involving the three gluon coupling in Fig. 5a 
(~  N J2) 

(D) the nonplanar contributions of Fig. 5 b. 

�9 We use the same classification of transition probabilities as in 
[7] 

All other contributions contain at most poles in 
2234 and Y34 besides Y134-poles. Instead of using the 
"13-system" which leads to (6.3) in this case it is ap- 
propriate to use a "34-system" for them, which one 
can get from the "13-system" by interchanging par- 
tons 1 and 4. (This strategy is useless for the Y14-poles, 
because they appear in combination with 
Y13, Y23, Y24 or 234.) 

Let us begin with these simpler contributions: 
First there are planar contributions of Fig. 5 b which 
pick up a factor T R = n:/2 because of the additional 
fermion loop involved. In the limit Y134--~ 0 they re- 
duce to 

2 F 2 (1 - e) 
Mr(Yla4 ~ 0 ) = ~  TR F(2_2e) y234 

(1  / 7 13 \ 7 

8 2 2 4 3 2 - - 7 e + e e  +~ve  

q" y234 Z 

8 2 2 - 2 + ~ e - _ ~ 8  ~ .  
+ (6.9) 

Y234 Z ) 

(6.9) has been written down in a 34-system. The 0'- 
integration, which is trivial here, and the v-integration 
have already been carried out. A variable z 
=Y34/2134Y234 instead of Y34 can be introduced as 
integration variable, which has the advantage that 
it is integrated between 0 and 1. 

(6.9) should be integrated with 

i { 1  Y 4 }  R34 = d2134 2 SdyE34-Sd223  
0 0 0 

1 
1--2e 1--2e'4 ~ dzz-'(1 (6.10) "Y134 Y234 1, I--Y234) -~ --Z) -~" 

0 

In (6.10) the factor 2 is the contribution from the 
region (Y234<Y) and the contribution from the over- 
lap region (Y134<Y, Y234<Y) is subtracted in order 
that it be not counted twice. 

(6.9) can be integrated with the measure (6.10) 
quite easily. So it is not necessary to give the result 
here. It will be included as the TR-term in (6.25). We 
only note in passing that it contains poles of at most 
third order in the dimensional parameter e. (There 
is one 8 -1 for Y34--~0, and one for Y134--~0 and 
Y234 ~ 0, respectively.) This gives just what one needs 
to cancel the TR-part of (3.4) and (5.3). 

The second class of simple contributions comes 
from the "pure Q C D "  transition probabilities in Fig. 
53. Topologically they have the same structure as 
the T R contributions. Analytically they lead to an ex- 
pression similar to (6.9). 
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5 r 2 (1 - -  g) 

M p ( y l 3 4  ~ 0 ) = ~  N c r (2 - -  2a) y234 

14 1 /  
] . ~ f - - l + ~ s e + 7 "  1 14 ~2\ I 

1 ( 2 4 )  
+ - - 2 -  e -  e2 

Y234 z 

1 ( 2 4 2 8 3 \ )  + 2+g  

(6.11) 

This is integrated just like (6.9) and gives part of the 
N~-contribution in the total result (6.25). Let us now 
come to the contribution of type E, i.e. those nonplan- 
ar transition probabilities of Fig. 5b which survive 
Furry's theorem. In a sense they are still simpler than 
(6.9) and (6.11). The reason is that in their sum all 
yo-poles drop out. Therefore they give order y contri- 
butions in the three-jet regions. 

However, they have singularities in one two-jet 
variable Y~jk, say Y134- So from the two-jet region 
Y134 <Y one expects a 1/e singularity after integration. 
In fact in the limit y~34--+0 the matrix elements 
squared read 

Cv--Nc/2 f l  (1--Y14/Y134) ME(y134 ~ 0 ) =  y234 ~z v 

. [Y234 ((V --  g) Y234 d- 1 --  2v) 
[Y124 

+1 --,9, q-(V--Vg q'-,gZ) Y234] 

_[. Y234 (y234(V+Vg__V2__g) 
Y124 Y14/Y134 

q- Y234(t - 2v8 + g ) -  1) 

Y14/Y134--V 
-- 2 (1 - e) + 2y 234(e + g2_ 2) 

z 

1 
-t [1 -- e -F y234.(1 -- 2vg-b g-- e 2) 

Y14/Y134 
+ y~34 (v (1 + ~ - e 2) 

+ v z (1 -- e)-- 2g + e 2 - 2z (1 -- e))]}. (6. 12) 

The expression has been written in such a way that 
the absence of a pole in z is explizit. Just as in (6.9) 
and (6.11) we have worked in a 34-system here. This 
means that Y14/Y134 should be approximated by (6.8) 
with Y24 replaced by Y~2 ~ 1-Y234- (v and z of course 
change their meaning.) Y124 can be approximated by 
y 1 2 4 ~  1--Y234(1--V).  

The details of the integrations in (6.12) have been 
described in our technical paper [24]. There we have 

devoted some care to describe how terms with Y14 
in the denominator are treated. Such terms will also 
be important in the following where they occur in 
connection with stronger poles in ~. 

Concerning (6.12) one should note that there is 
no overlap problem because there is no such term 
as y;24y224 or y;24y;24. So one can integrate with 

y 1 
R34=2 5 a- .1-2~ '*Y134Y134 j" dy234 y132~(1- Y234) -~ 

o o 

1 1 

" I d z z - ~ ( l - z )  -~ 5 dvv -~ ( l - v )  -~ 
o o 

�9 ~ dO' sin-2~O'/No ,. (6.13) 
o 

The result is 

C v - N J 2 [ 1  [ 13 ] 113 
Z ~ = N .  F 2 ( l _ e  ) [ 7 ~ - T + 6 r  + ~ - -  12~2 

+ 50~3--75~4 +(13-- 12~2 + 8~3) In y], (6.14) 

where N :=  0"{2) (~s/2~)2 (4~Z #2/q2) 2~ C F . 
Now we come to the remaining contributions of 

Fig. 5a in the limit y134--+0. In a 13-system (z 
=Y13/Ylz3 Y134) they are 

1 1 
M ABc(Y134-+O)=~134 {CF[7(1--g)(1--v) P~(Y123) 

2vyaZ23 2Vy}z3(1 +Yz4) 
+(1--e)Zvy123-+ 

zY24 Y234 Y234 Y24 YI4/Y134 
2Vy123 1 --e 

4 4 
(1-v)y2~y~dy~4 y~dy~34 

+ C F -  2 ( 1 - v ) z  Pqq(Y123) 

2vy223 2v yZ123( 1 -}-224) 
t-2g(1--e) Ya23 q 

zY24 Y234 Y234 Y24 Y14/Y134 
[ Y123 v3 Y123 
~y~4(1--~v) e Y24 v(1--v)+(1--e)(--eY24Y~23 

+(1 +e) vy24 Y~23-1 + Y~23 v2) Ya4/Y~34 

- v - e  +e) zy14/Y~3,, Y~23(1-e) 1 - v  + l ~ - v  (1 
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n r  2v 
+5 

2vy223 
zY234 Y 2 4  

2t /Y123 R" 4 
zY34/YI34 kY234 qq (Y123)-- 2 +]~T-- V -- 2(1 --e) V 

( + ( 1  --~) y24 1 -t-V-- 

Y24 V-- "~ ~ 34. 
+ 

�9 2 ( l - e )  + (2(1-e)+2v2(1-e)+4w) 
Y24 

4 
+4e+v(4-8e)-4v2(1-e) 1 -v  

+ yz4(-4e-8v(1-e)+ 2v2(1-e)+ l~v)  

+ Y~4(1 -- e) ( 4 v - - ~ _  v))] } �9 (6.15) 

Here the term ~ Cv corresponds to the planar 
~kT 

QED type contributions A, the term ~ C F -  2 to 

the nonplanar QED type contributions B and the 
term ~Nc to the interferences C. In all three cases 
the most singular terms containing a pole in z have 
been written down first. All the other terms can be 
arranged in such a way that poles in z drop out 

(t ,=2 cos 0' ~ /v(1-v)  z ( 1 - z )  YZ4)" This means that 
poles in z never occur in conjunction with poles in 

Y14 or Y34. 
In (6.15) lim Y34/Y134 can be determined from 

Y 1 3 4 ~ 0  

(6.8) by remembering y34=y13,-yt3-Y14. For  Y123 
one can use the approximation Y123 = 1-Y24. There 
are no poles in Y~23, but in Y24. In this sense the 
situation is asymmetrical compared to (6.10). For  Y234 
one can use the approximation yz34=l-vy123 . 
There are many cancellations in the terms ~ Y~4 of 
(6.15), as will be demonstrated in our three-jet work 
[-20]. This does not mean however, that there is no 
contribution from the region Y234 <Y- There is an ex- 
pression symmetrical to (6.15) with 1 and 2 inter- 
changed. One can also see from (6.15) that there must 
be an overlap contribution from terms like 
1/(y2134z(1-v)yz4), if one remembers that Y23 
=(y123--Y13)(1--v). 

For  the contribution ~ N~ it would be equally rea- 
sonable to use a 34-system instead of a 13-system, 
because the typical denominator  contains Y3, Y~ 3 Y24. 
Then either Y13 or Y24 would be a complicated vari- 
able of the type of (6.8). 

In Sect. 8 we shall pursue a different strategy (at 
least for the N-term of (6.15)). There we shall use 
a different phase space system for each single expres- 
sion to be integrated. For  instance a term with de- 
nominator  Y34 Y13 Y24 can be treated in a 13-system, 
where the role of 2 and 4 is interchanged compared 
to the 13-system we are using here. In this way one 
can avoid a complicated if-integration for all but a 
few terms. But let us come back to the integration 
of (6.15). Most of the technical details of the integrals 
have been presented in our paper [24]. Therefore we 
concentrate here on the treatment of the overlap re- 
gions. 

As can be seen from (6.6) the N-term has no con- 
tributions from the overlap region (y13<y, yz4<y,  
y134 <y)  and (Y23 <Y, Y14 < Y, Y134 <Y) �9 Thus we could 
use (6.10) if we were working in a 34-system. In a 
13-system the condition yz34<y (which is part of the 
overlap condition) is nontrivial, because Y234 is not 
an integration variable, Y234 = 1 - -vy123  +O(Y134).  
But for the integration measure one can write 

y 1 1 

2 S dyI34Yl~2"S dzz-~(1-z)-~ dy24Yz'~(1-y24)-~ 
0 0 0 

1 

dvv_~(l_v)_~ i dO' sin- 2 ~ 0' 
o N~ 

y y 1 

- ~ dyt34Ylf~ ~ ~ dy234Y~3-42~ f dzz-"(1-z) -~ 
0 0 0 

1 ; dO' , 
o ~ dvv-~(1-v)-~ o J ==-'N0 's in-  0 (6.16) 

where it is assumed that the second term acts on the 
N~-part of (6.15) given in a 34-system. No, is defined 
after (B.7). 

For  the second term one needs only the infrared 
singular contributions of the N-term (gluons 3, 4 in- 
frared). These are 

MBc(IR gluons) 

N~ 1 [ 1 1 
2 Y~34 [-(1--v)y13/Y13,~ t-v'ya4/Y134 

1 1(11 
+v(1--v)y~3/Y~3aYI4/Y~34 z v 1 2 

-t-zyljY134 1 -t'-zY13/Y134 1+ . 
(6.17) 

The terms without poles in z come from the diagrams 
of class B, the terms with poles in z come from dia- 
grams of class C. Y13 and Y14 can be approximated 



G. Kramer and B. Lampe: Two-Jet Cross Section in e +e -  Annihilation 511 

by 

Yl 3/Y134 = V(1 - -  Z) q- Z(1 - -  V) 

--2 cos 0 ' / v ( 1  -- v) z(1 --z) 

y14/Y134=(the same with w--,1-v,  

cos 0'+-* - c o s  0'). 

(6.18) 

Therefore (6.17) can be reduced very much by symme- 
try arguments: 

Mnc(IR gluons) = Arc 1 [ 8 
2 y234 zya4/Y134 

2 
- k z ( l _ v ) y l 4 / Y l 3 4  1 ( 1 -  1 2 v) ]  

(6.19) 

The 0'-integration can now be done using [24] 

~ dO' sin-2~0 ' 

o No, Y14/Y134 

=(s+/2)2~rS1-2~2F 1 e, --2e, l --e ,  , 

where 

(6.20) 

s+=r+ +_r_ and r + = l v ( 1 - z ) + z ( 1 - v ) l .  

The examples described in [24] all refer to the first 
region of (6.16). In contrast to them here the hyper- 
geometric function may not be approximated by 1. 
Instead one should use the full series representation 

2e z 
2F1 ( - - G  --2~, l - -e ,  x )=  1 -t r (1 --2e) 

.~ r ( k -  2 e ) k  ! (k -- e) xk" (6.21) 

The series in (6.21) is nonleading, so it can be integrat- 
ed term by term using suitable approximations. After 
the integration one ends up with a series which can 
be summed by standard methods. 

The integrals with the first term in (6.21) can all 
be integrated by standard techniques. One of them 
will be needed in Sect. 8, so we include its result for 
convenience here: 

1 1 
d z z - ~ - ~ ( 1 - z )  -~ ~ dv~-~(a-~)  -~-~ 

0 0 

�9 { O ( z - ~ )  z 2 ~ ( 1 - ~ ) ~ ( z -  ~) - 1 - ~  

+ o (v - ~) v ~ ~ - z) ~ (v - z) -1 - 2 q 

3 
--  e2 1012 -- 26( 3 e -- 11.514 e 2. (6.22) 

Note that there is a factor y-4~/4e2 in front coming 
from the y~ 34- and yz34-integration which fully decou- 
ple from all other integrations. (6.17) then leads to 

Nc y - 4 Z  [- 1 3' 
Z d ~  B, c (IR gluons) = N --2 ~ - -  [ - ~ -~ e 3 

1 / 2 1 1/29 

q - ~ - 7 3 - - 4 ( 2  y - -  1 - - 2  ~ 2 

37 3 5 
-2  +q- h+~  G+r ~+4[~ ~-~-~ G 

29 2 1 41 
3 [ 3 7 + 2 7 - ?  + 3 7  ]" (6.23) 

For the CF-terms of (6.15) the overlap structure is 
more complicated than (6.16), because one also has 
to prevent the regions (Y13 <Y, Y24<Y, y134<y) and 
(Y14 < Y, Y23 < Y, Y134 < Y) being counted twice. Using 
the symmetries of the matrix elements one can derive 
the following formula (see Appendix A): 

y 1 1 
2 ~ dy134y l ; :  ~ ~ d z z - ~ ( 1 - z )  -o ~ dy24 y;2(1-y24) -~ 

0 0 y 

1 rc dO' 
�9 ~ d v v - ~ ( 1 - v )  -~ o o No' sin-2~0' 

y y 1 
~ _ ~  1--2e ay134 Y134 ~ dyE34 y~;:~ ~ dzz-~(1 --z) -~ 

0 0 0 

1 
�9 d o '  

o o ~ sin- 2~ 0' (6.24) 

where, just as in (6.16), the first term has to be read 
in the usual 13-system (z=Y13/Y134 Y123, 
v=Ylz / (Y lz3-Y13) . . . )  and the second term in the 34- 
system (z = Y34/Y134 Y234, "" ")" 

All the integrals can be calculated with the meth- 
ods described in [-24]. Adding all contributions gives 

O'2_jet (q q g g  , qFtqYt) = N/((1 - e) F2(1 -- e)) {C~ Fc 

+ Nc F~ + r R FT} (6.25) 

Fc = 2/e 4 + 4/~ 3 + (15 -- 12~2)/e 2 

+ (307/8-- 9(z-- 30~3)/e 

+ 5335/48 -- 261/4~2-- 7[3 -- 10~4 

+ In y(--  6/e z --(22-- 16(J/e--  251/4 + 17(2 

+ 44(3) + lnZy(-- 4/e 2 + 1/e + 10-- 6(2) 

+ In 3 y (4/e + 7) -- �89 In 4 y (6.26) 
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F~= 

F~= 

1/(2e 4) + 23/(12e 3 ) + (223/36 --~- (a)/e 2 

+ (4033/216-- 10(~ + (3/2)/e + 434561/7776 

-- 27(2-- 625/12(3 + 781/16(4 

+ In y(--  3/~ 2 -- 21/(20 + 58/3 (z -- 10(3 -- 403/12) 

+ In 2 y(--  2/e 2 + 4/(3 e) + 121/8 + 6~2) 

+ In 3 y(4/e + 4/3)-- 14/3 ln4y. (6.27) 

-- 1/(3 ea) _ 11/(9e 2) -- (233/54 -- 2(z)/e -- 18092/1296 

+ 16/3(z + 16/3~3 + (23/3 -- 8/3(2 + 2/0 In y 

+ (4/(30-- 10/9) In 2 y--  8/3 In 3 y. (6.28) 

7. Result and Discussion of  the Singular Approach 

The sum (3.2) + (4.11) + (5.3) + (6.25) is finite for e ~ 0. 
All the terms in the sum have been derived by 

expanding expressions of the form y-k~/e,, 
k, n = 0, 1, 2, 3, 4. (Some finite logarithms may still be 
missing in (7.2), see the discussion at the beginning 
of Sect. 8.) The cancellation of the singularities can 
best be understood in terms of these quantities. For  
instance the leading singularity is cancelled in the fol- 
lowing way 

lim C F ~- 4 {2 + 4y -  z~_ 8y-~ 
e ~ 0  

+ 8y-  2 ,_  8y-  3~ + 2y-  4,} ___ 2CF ln4y. (7.1) 

The first term in (7.1) comes from the two-parton 
diagrams, the next two terms come from the three- 
parton diagrams and the rest from the tree diagrams. 

The right hand side of (7.1) will be the leading 
logarithm of our two-jet cross section (7.2). Thus we 
see how the leading singularity generates the leading 
logarithm. Analogously the nonleading logarithms 
are generated by the nonleading singularities. The re- 
sult is 

+ ~s(q2) Cv(-2 l n 2 y - 3  In y-k- 2(2-- 1) a2_j~t/ao = 1 

+ (%(q2)~z Cr (Cv Z~ + N~ Z~ + T a Z~r) (7.2) 
\ 2 n ]  

l n4y+6  l n 3 y + ( ~ - - 6 ( 2 ) l n Z y  Z ~ = 2  

+ --3(2--12~3 l n y + g - - ~ - f f z + l l ~ 3 + 4 ~ 4  

11 a / 169\ lnZy+(6(3_547) Z n = ~ -  In y + ~ 2 ( z - ~ )  lny  

31 32 1 3 ~ 3 + ~  +~-+~- ~ -  (,. 

(7.3) 

(7.4) 

41nay+l~ lnZy+51ny+l---~--3~ ( 2 (7.5) z~= - ~  

In (7.2) we have included the Sterman-Weinberg con- 
tributions 0(%). 

We have identified the arbitrary parameter #z 
2 with the energy of the virtual photon. In order % 

this can be justified by renormalization group consid- 
erations [29]. 

The coefficients of the cubic term in (7.4) and (7.5) 
are such that they can be absorbed into the running 
coupling constant by going from %(q2) to 

%(yq2)=~(q2)(1 ~(q2)2n 

�9 ~ -  N ~ - ~ / I I  2 TR ) ln y + O ( ~ ) ) .  (7.6) 

This is a necessary condition for the exponentia- 
tion properties of our result which we will discuss 
now. There is a conjecture by Smilga [30] that the 
leading and even the next to leading logarithms of 
the two-jet cross section exponentiate to any or- 
der in ~,. This means they can be generated by 
writing the leading and next to leading logarithm 
of the Sterman-Weinberg result into an exponential 

exp Cv(-2 l n 2 y - 3  In y) . Note that it is impor- 

tant here to choose % = % (y q2), because otherwise one 
could never generate a N~ or TR-Contribution. 

2 We can prove Smilga's conjecture to order %, 
which means we can generate all quartic and cubic 
terms in lny  in our result (7.2)(7.5)*. It should be 
stressed however that the nonleading logarithms do 
not exponentiate. One has to add a correction factor 
to take them into account 

[%(yqZ) y)] 
O'z_jet/fr O = exp [ ~  CF(-- 2 In z y--  3 In 

. { l+%(Yq 2 ) . ~  tz;2 - 1) Cv 

2 

\zn] 

~ r = ~  z /17 4 \ 19 38 
In y+[~---~(2) Iny+-~---~-(z (7.8) 

Zc = -2~z  ln2y--(3--3~z + 12~3)lny 

1 51 
+ ~---~-  (z + ll~a +4(4  (7.9) 

�9 This is in agreelnent with earlier leading logarithm calculations 
for the off shell quark form factor [30] and the two-jet cross section 
for massive quarks [32] 
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- / 367\ 2 ( ~  6ffa--~23)ln ZN=~2~z--~)ln Y+ ~2+ Y 

+ 391_+~ ~ 2 53 - 13G + ~ -  if4. (7.10) 

Formulas (7.2) and (7.7) are identical, if one neglects 
3 terms of order as. 

The corrections (7.8~(7.10) typically contain 
squares of logarithms. 

In Fig. 9 we have drawn the Sterman-Weinberg 
result and our two formulas (7.2) and (7.7) for a wide 
range of y values and for ~(q2)=0.12. In this plot 
also the order ~ y contributions of table 1 are taken 
into account. The region of physical y-values is on 
the right half of the diagram. 

z contribution is of the order In that region the ~s 
of 10% which is reasonable for a perturbative result. 
In the physical region (7.2) and (7.7) practically give 
the same result. Only for small y the exponentiated 
version improves the result. One can see this from 
the fact that for y ~ 0 the Sterman-Weinberg formula 
and our naked result (7.2) become negative. This is 
an indication for the breakdown of perturbation 
theory. The exponentiated curve remains positive. 
The exponentiation sums up multigluon radiation at 
leading logarithmic level. 

Instead of calculating 0"2-~eJ0-o one could have 
given the two-jet multiplicity 0"2-jet/o"tot, where [23] 

_ G(q 2) /G(q2)\ 2 

. [ 3  CF q_ (4~3 _ ~ )  TRq_(l~3 11 if3)Nc]}" 

(7.11) 

This will be done in Sect. 9, where we shall compare 
(7.2) with the result of the partial fractioning ap- 
proach, which will contain all finite logarithms and 
constants and all order y corrections. 

8. Four Parton Diagrams: The Partial Fractioning 
Approach 

It is the purpose of this section to go beyond the 
approximations applied in Sect. 6, where we took into 
account only the singular terms in the four-parton 
cross section, which are responsible for the infrared/ 
collinear singularities. This means we must integrate 
the complete four-parton matrix elements over the 
two-jet region. This task seems impossible due to the 
fact that the four-parton terms are too complicated 
to allow an exact integration over several variables 
in n-dimensions in analyticform. In addition we want 

to define the two-jet region in such a way that the 
integration over its complement in the four-parton 
phase space yields the three- and four-jet cross sec- 
tion. In our complementary work on integrated three- 
and four-jet cross sections [20] we describe how 
through partial fractioning of the four-parton matrix 
elements we separate the singular contribution in such 
a form that it is integrable analytically in n-dimen- 
sions and the remainder is finite and integrable in 
n = 4  dimensions which can be done partly numeri- 
cally. These singular terms are also suitable for inte- 
gration over the two-jet region. But the terms which 
are non-singular in the three-jet region have still 
singularities in the two-jet region. Nevertheless we 
accomplish to integrate them analytically although 
only approximately, neglecting contributions O(y). 
For an exact integration with all terms O (y) included 
further partial fractioning would be necessary. In the 
partial fractioned expressions we have presented [20] 
one avoids y/e terms only in the three-jet region. In 
the two-jet region O (y/e) terms prohibiting numerical 
integration are still present. 

Our result which is valid up to terms O(y) can 
be added to the integrated three- and four-jet cross 
section [201. This sum should yield the O(~) terms 
in 0-tot at least for very small values of y (y< 10-3). 
We shall find rather big O(y) contributions for the 
N~-term Gust as in Table 3). Once the total cross sec- 
tion is reconstructed one can be quite sure that the 
differential and integrated three- and four-jet cross 
sections are correct (even including terms of order 
y). Then the exact two-jet cross section can be calcu- 
lated via the sum rule 

0"2 --jet ~ O'tot -- 0"3 -jet -- 0"4 -jet- 

In the partial fractioning approach (PF approach) 
the contributions (6.9), (6.11) and (6.12) remain un- 
changed. The reason is that there is not more than 
one pole in any Yij at a time, so no partial fractioning 
has to be done. (The variables Yijk are not subject 
to partial fractioning.) In the PF approach only the 
expression (6.15) is changed. The matrix elements 
squared contributing to (6.15) are rewritten as [20] 

M = r e  [ ~ R  +(1'-~2) + (3"~4) + ( l [ Y 1 3  ~ 2, 3~4)] 
[ S T 

+Nc[ + +(1+-.2)+(3<-->4) 
LY34 Y13 

+ (1.--~2, 3 +--~ 4)] (8.1) 

where R, S and T have the property that they remain 
finite for any one Yi~ going to zero. This property 
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can be achieved by partial fractioning. Consider for 
example the equation 

1 1 

21322a 213(Y13+Y23) 
t- (1 ~ 2). (8.2) 

The first term on the right hand side has a singularity 
only for 213 ~0 .  

The partial fractioned expressions in four dimen- 
sions are given in our three-jet paper [20]. Here they 
have to be supplemented by the n-dimensional correc- 
tions that are singular when integrated over the two- 
jet regions. 

The partial fractioning can be chosen in such a 
way that the "13-terms" R/Yla and T/yt 3 give finite 
or order y contributions when integrated over the 
two-jet regions (Y234<2,21~4>y, y13>y) and (Y14 
<y, 223<y, Y134>2, y13>y). Analogously the 34- 
term S/234 gives finite or order y contributions in 
the regions (Y13<Y, 224<Y, Y134>Y, 2234>Y) and 
(214<Y, Y23<2, Y134>Y, 2234>Y). These regions 
have been integrated over numerically and for the 
time being treated together with the finite three- and 
four-jet contributions in [20]. So for R and T we 
define an "unphysical" two-jet cross section with the 
help of the region (Y134 < Y) w (Yl 3 < Y, 224 < 2) and for 
S with the help of the region (2134<Y)W(213 
<Y, 224<2) and for S with the help of the region 
( 2 1 3 4 < 2 )  U ( 2 2 3 4 < 2 ) .  This is sufficient for the recon- 
struction of the total cross Section. To get a physical 
two-jet cross section one should disentangle the finite 
two-jet contributions from the three- and four-jet 
cross section. This is done in [20] and the result is 
summarized and discussed in Sect: 9. 

In fact the singularity structure (poles in e) of this 
"unphysical" two-jet cross section in the PF approach 
will turn out to be the same as the singularity struc- 
ture of (6.25). The difference is in the finite terms 
(ln 2 y, In 2 and constants). 

To understand the core of the matter let us recon- 
sider the example (8.2). If one wants to integrate 
1/y13(Y13-t-223) over the two-jet region of Fig. 6 one 
can first integrate over the stripe (213 < Y) thereby get- 
ting all e-singularities. The (finite) contribution from 
the region (213 > Y, 223 <Y), which is ~ (2, can be cor- 
rected for afterwards. 

Now why can we restrict our attention to the 13- 
and 34-terms of (8.1) and (8.2)? The reason is the 
following: Because of symmetry 

(full phase space) [CF R 

1 
= ~  (full phase space) M. (8.3) 

For the Y13-terms (full phase space) can be divided 
into four disjoint regions: the here for convenience 
called four-jet region (y13>2), the three-jet region 
(Y13<Y, Y24>Y, 2134>Y) and the two-jet regions 
(Y134<Y) and (213<y, y24<y, yla4>y ). (All are un- 
physical in the sense described above.) For the 
234-term the division is as follows: the four-jet region 
is (234>Y), the three-jet region is (234<y, y134 
>y, Y234>2) and the two-jet regions are (2134<Y) 
and (2234 < Y, 2134 > Y)" 

Let us start now with the two-jet contributions 
to the Cv-term. We begin with the region (Y13 
<2, Y24<2, 2134>Y)*, for which we had a very sim- 
ple approximation of the matrix elements in Sect. 6. 
Here we have to integrate 

M~(y13 ~0, Y24 ~0)= C~ ~ (1 -Y,~4) 
213(Yi3 +224) 

-(2 Y13-t-Y232123v ~-(1--e) ( l - -v))+AKr+Is .  (8.4) 

AKr and IN will be defined later. We use the 13- 
system of Sect. 6 here. In (8.4) the first term corre- 
sponds to the old approximation (6.6). However, inte- 
grating it with the methods described in our technical 
paper [24-1 gives a very different result as compared 
to the result of integrating (6.6). The difference is al- 
ready in the leading contribution (which is e-3 here, 
because Y134 is not allowed to approach zero). The 
appearance of this difference is not astonishing. As 
a consequence of the partial fractioning the various 
contributions are distributed in another way. Only 
in the final result the singularity structure should be 
the same. To be definite let us shortly describe how 
one integrates the term 1/(y13(Y13+Y24)(213 
+ Y 2 3 )  Y134)" In the 13-system 223 = ( Y 1 2 3 - - Y 1 3 )  (1 - -V) .  

Then the v-integration yields 

I 

dvv-~(1-v)-~(yla + y23) -1 
o 

1[  2,1 1 ] 
- - 2 1 2 3  er(1--2e) ~-~r(1--e)F(l+e)yl~y]23 

+0(213). (8.5) 

It is a characteristic feature of the PF approach that 
the approximation (y13+Y23)-1~2K~ cannot be 
made here [7, 24]. 

With (8.5) the Y134-integration becomes simple. 
Then the 213- and y24-integrations can be done by 

* We should have noted already in Sect. 6 that the proper upper 
limit for the y13-integration is Y13<min(y, Yla4Y123). However, 
here we have yl 23 ~ 1 - y  t 34, so y > y~ 34 Ya 23 only for y 134 <~ Y, which 
is excluded, or for Y123<Y, which gives an order y contribution, 
because there is no pole in Y123 
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expand ing  (Y13+Y24) -1 around Y13=0 for y13<Y24 
and around Y24 = 0 for Y13 > Y24. 

Now we come to the correction terms K r and 
IN in (8.4). 

IN =4y12  Y123 Y124/((Y13 +Y24) (Y13 +Y14) 

�9 (Yl 3 + Yz3) (Y14 + Y24)) 

gives a finite though nonnegligible contribution 
here*. It is the only integral for which we found no 
analytical expression. However, it can be integrated 
numerically because it is finite. The numerical result 
can be fitted by 4(0.28-1.47 lny)**. It will be in- 
cluded in the final results (8.19) and (8.20) for the 
Cv-term. 

AKT=y@3(Y'34(1--o+Yl~231Y134/ 

[Y~34 ( V Y123 t �9 -+  - -  . 

Yla+Y24 Yla + YE3] 

] 
(Y13 +Y24) (Y13 + y23)J 

(8.6) 

gives a leading contribution ,-~ln y/e. It contains those 
y13-Yz34-pole terms that are not absorbed into the 
terms singular for Y13~0 since their sum is finite 
for Ya3 ~ 0. Without approximation AK r reads 

AK - 2 ~. y14(1--y24 ) 

Y12 f_ Y14 (l--e) 
Y134 Y234(Yl 3 +Y24) Y134 

YlE(1+Y134) YlEY123(l+y34) + 
Yt34Y234 YI34 Y234(Yla + Y23) 

Y12 Y14( 1 - e )  Y12 

Y234(Y13+Y23) (Y13+Y24)(Yla+Y23) 

. (Y134(1--~) q- Y123--2ya3-]~. 
Y134 ] )  

(8.7) 

In (8.6) Y234 can be approximated by 1 - v  + Y24. With 
this AK r can be integrated analytically. In fact the 
v-integration is very similar to (8.5). For  the terms 
conta in ing (Y13 +Y23) Y234 in the denominator one 

* Is will also give contributions in the regions Y134<Y which are 
even singular. For these we shall be able to offer analytical results 
** One gets this fit from the numerical integration of 

1 1 ln(xy) ln(1-x+z) 
4 ~o dX ~o dz ~ , 

which is the relevant approximation of IN in the region (Y13 
<Y, Y24 <y, y134 >y) 

should write 

1 1 

l - - v +  Y13~(1--v+y24) Y24-- Y13 
Y123] Y123 

1 1 ) (8.8) 
l - v +  y~2-3 1-v+Ya4 

Y123 

Y13- and ya4-integration can then be done by expand- 
[ Y13 ~-1 

ing IY24-- y~23) 

Now we come to the contribution of R/y13 in the 
region Y13, <Y. First we have the terms singular for 
Y13 ~ 0  which in the limit YI34 ~ 0  read 

C F 1- 1 --Y24 ] 
~r~t PF -- 2 - - -  2 - - - -  Y24 J 
A A r s i n g  - -  ] + (1 - e) 

Y134 Z(1 ~ y 2 4  ~ I Y13 +Y24 

1 --Y24 ] 
�9 2 2 + ( 1 - e )  (1 - v )  . (8.9) 

YI3+Y23 

Once again the expression is written in the usual 13- 
system and again one must not use (y13+Y24) -1 

Y2~ and (Y13 + 223)- 1 ~ Y231 here. However, the Y24- 
and v-integration can be done with the help of a for- 
mula similar to (8.5)�9 The result is 

~- Cv / 2 
I~,~ g = ~ [c  + -  F(1  + e) F(1  --  e) z - ~ y ]  34 ] Y134 Z \ e 

,SX Z-e e '~ ) y13.], (8.10) 

F ( 2 -  r ( 1 - e )  F ( 2 -  0 
c = 2  0 F ( - 0 + ( 1 -  0 (8.11) 

F ( 2 - 2  0 r ( 3 - 2  0 ' 

d = 2  r ( 2 - 2 0  r ( - 0  r ( 2 - 0  r ( 1 - 2 0  "8 12" 
r ( 2 - 3 0  + ( 1 - 0  . t .  

The Y134- and the z-integration are then straightfor- 
ward. 

From the terms nonsingular for Y13 ~ 0  ("three- 
jet-finite") only a few survive in the region Y13a <Y. 
In the usual 13-system they are: 

)~lfi . . . .  IV --(1 -- V) 224 Y23 ~2 
PF = t l  -- e) [ ?  12-~4 (i  --~Z4) Y,3Y1,*Y24Y,34 

[Y12 + 2  Y24]]+e 

+ I N + K { I + A K c .  

~2 

Ya3 Y14 Y134 

(8.13) 

Here e 2 =Y14 Y23 +Yl3 Y24-Y12 Y34 and 
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2 $ = 
K`*I y234 

2t 
2/) Y24 --/)  (1 --  V) -]- I)y24 (1 -- v) --  Y24 + - -  (v q- Y2̀ * -- v Y24) 

z 

, [ Y1,* (Y24 + Y13)~y13,* -]-zY123)(1--V-[-zY134) 
(8.14) 

Most of the terms in (8.13) give O(e-1), only I N and 
AK I contribute O(e-2). The integration of IN over 
the region (Y134 < Y) has been described in our techni- 
cal paper [24]. 

To integrate the terms in (8.13) containing e2 one 
should use a 13-system, where the role of partons 
2 and 4 is interchanged. In this system 

g2 = 2yl 23 Y a 3,* [z Y2,* V -'1- COS 0 ' / V  ( 1 --  V) a(1 - -  Z) Y24] 

+ 0(y123`*), (8.15) 

Yt,* = Y13,*( 1 --zY123) V, (8.16) 

so that the 0'-integration becomes trivial. 
In the same system one should integrate part of 

K4Yl . (For that purpose (8.14) has to be transformed.) 
We will not go into the details of this calculation. 
We only note that in intermediate steps poles of sec- 
ond order in e appear. Also one has to subtract and 
add many pole terms before one can apply such for- 
mulas as (8.5). The final result is 

. - - 2 ~  / 7" 

2 . - - 3 ~  

+ ~  ~7--(1 -- ~3) + 5.957. (8.17) 

The bracket (y ~ 34 < Y) means that part of the 4 particle 
phase space, where Y134 < Y. 

To calculate AK I we return to our old 13-system. 
In the limit of small y~ 34 (8.7) reduces to 

4 

AKy - Y134 Y234(Y13 -k Y23) (YI3 -l- Y24) (8.18) 

The approximation Y234, '~1--vY123 c a n  again be 
justified. So one has a denominator of the form 
(1 - -y123(1 --zY134) ) (1 - - v ( l  --ZY134)) (1 - -Ylz3  V). Be- 
fore one can apply (8.5) to the v-integration one has 
to do a partial fractioning. The y~za-integration can 
then be handled similarly. The result one finally ob- 
tains has the same singularity structure as the CF-term 
Fc in (6.25). Only the finite contributions differ. 

PF 2 + 4 + e 1 ( 1 5 _ 1 2 ~ 2  ) 
F ~ =  7 

1 307 
+ ~ ( ~ - - -  9{2-- 30~3)-- 6-920 

6 1(22_16~z)+33.118 ) + l n y -  --e-~- ~ 

- z  / 4 1 y [-V+7+10-8r 

In y - - ~ l n  y. (8.19) 

This changes Z c of (7.3) to 

z~F=2  ln4y+ 6 l n 3 y + @ - -  8~2) ln2y 

-- 2.094 In y + 5.218. (8.20) 

The finite contribution 4. (0.28 - 1.47 In y) from I N is 
included here. Therefore the finite simple logarithms 
and constants have numerical coefficients. 

For small y the most prominent change of (8.20) 
as compared to (7.3) is the term -2~2 ln2y. One 
should stress that with this new result the term 

~2 ln2yCF still does not exponentiate (cf. (7.9)). 
For  physical values of y the In y-term in (8.20) 

is just as important. It has changed strongly as com- 
pared to (7.3). 

Now we come to the No-term. What  is left is to 
calculate the contributions of class C. All other contri- 
butions can be either taken from Sect. 6 or they are 
hidden in (8.4), (8.9) and (8.13) where the class B terms 

N~ 
must be multiplied with C ~ - ~ -  instead of CF. 

In total the No-contributions of (6.15) are to be 
replaced by 

(U1 + Uz + Ur-- �89 W1 - �89 Wr) No. (8.21) 

Here Ux, U2 and (Jr come from the class C contribu- 
tions and will be defined below. W~ are the contribu- 
tions from class B in the region (Y134 < Y): 

Y23 g2 
W 1 =(Y134<Y)  K4Y~--(1 --e) Yla Ya4 Y24 Y134 

+e(1 --e) yt2 + 2Yz4 2Ya2 
- Y~a4 t Y~3(Y13+Y23) 

[\Ya3 +Y24 Y134] Y134(Yts-t-Y24 
'~ ~2 +_ ~ 2ya2 Y123 ; 

+2(l+g)  YtaYlgY134 Yt3(Yla+Yza)Yta4Y234) 

(8.22) 
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WT are the contributions from class B in the region 
(Y13 <Y, Y24<Y, Y134>Y) �9 Remember that for the sin- 
gular approach of Sect. 6 these contributions can- 
celled against those of class C in the same region 
(compare (6.6)). This is no longer true here. 

WT=(Y13<Y, Y24 <Y, Y134>Y) 

2y12 Y123 

�9 Y13 Y134(Yla +Y23) (Y13 +Y24,) 

2y12 } q 
Yla Y234,(Y13 +Y23) P~ (1 --Y134) - (8.23) 

The bracket (Y13 <Y, Y24, < Y, Y134, > Y) stands for inte- 
gration over four particle phase space with the addi- 
tional restrictions Yl3<Y, y24,<y and Y134>Y. The 
finite contribution 4(0.28-1.47 ln y) from I N is not 
included here, but will be included later. 

The integrals in W1 and Wr have already been 
done in connection with the Cv-term. 

For the Cv-term we have used the explicit decom- 
position of R/Y13 into terms singular for Y~3 ~ 0 and 
into three-jet-finite terms. For the Nc-contributions 
of class C we will not use such a decomposition but 
instead will make contact with the strategies of Sect. 
6. 

We begin with the terms to be treated as 34-pole 
term (i.e. two-jet region=(Y134<Y)w(y234<y, y134 
> y)). Again we include the n-dimensional corrections, 
wherever necessary. We leave out those terms which 
give order y contributions after integration. In the 
region (Y234 ( Y, Y 134- < Y) 

1 
Uz=(Y134,<Y, Y234, < Y) - -  

Y34 

~_ Y12 Y12 
o ~ x  

1.2(y34, + Y13)(Y34 + Y24,) 2y234 

Y12 Y123 -+ 
(Y13 +Y34) Y234 

Y~4Y134(l-e) Y~2 #). 

-]" (Y13+Y34) Y234 Yla4Y234) 
(8.24) 

are the relevant terms. 
Both the 34- and the 13-terms have to be integrat- 

ed over (Y134<Y). Therefore they can be treated to- 
gether. This means some of the partial fractioning 
can be undone, so that the integrations are less in- 
volved. Finally the following expression has to be in- 
tegrated over the region y134 < Y: 

Y12 
Cl = (y134 < y) 2y34(y~3 + y34) (y24 + y34) 

Y12 -k 
Y,3 (Yl 3 +Y24) (Y13 +Y34) 

Y12 + 
(Yl 3 + Y24) (Y13 + Y34) (Y24 + Y34) 

Y12 Y123 1--e 

Y34 Y13 Y234 Y34 

Y14Y134+ Y14Y24 b Y13] 

[Y13 Y234 Y13 Y134 Y~a4J 

Y12 Y12 + - -  
Y34 Y13 Y34 Y134 Y234 

Y12 Y123 3ya2 

YlaY134Y234 2y34 Y134 

1 - e  
-~ (5y24 "}- Y23 -- 1) 

2y34Ya34 

el [ 5 - 3 g  (1--e)y23 

-[ Y134[ ~ - - ~ -  2y24 Y13 Ya4 

+ Y23(3 -- e) + Y24 (1 
(8.25) 

Here gl=Y14Y23--Y12Y34--Y13Y24 annihilates the 
singularities for y~ 3 -~ 0, Y34 -~ 0 and Y24 "-> 0. (This 
is the reason why no partial fractioning is necessary 
for the terms proportional to ea). 

The contribution of the 13-terms of class C in 
the region (y13<y, yE4-<y, Y134)Y) will be called [Jr. 
Only a few 13-terms are relevant, namely 

Ur=(Y13<Y, Y24 <y ,  Yx34 >Y) 

�9 ~ Y12 

{.YIa(Y13 +Y24) (Y13 + Y34) 

Ylz + 
(Y13 +Y24) (Y13 +Y34) (Y24 + Y34) 

Y12 +Y14 Y134(l-e))  
+ ~ i t _ ~ 3 4 ) Y 2 ~ 4 - j - . )  (8.26) 

It is important that the decomposition into 13- and 
M-terms presented here is the same as in our three-jet 
calculations [20]. Otherwise the parts of phase space 
over which the terms are integrated would not sum 
up to the total phase space�9 One would not be able 
to reconstruct the total cross section�9 

Of course it is still possible to take advantage of 
the symmetries of the integration regions�9 For in- 
stance the region (Y134 < Y) is symmetrical under 3 ~ 4 
exchange. So the term Y12/Y13 Y134 will yield the same 
as YlZ/Y14 Y134 in this region etc. Note however that 
the region (Y134<Y) has no (1~--~2, 3*-+4)-symmetry. 
This is the reason, why the first three terms of (8.25) 
cannot be interpreted as y~2/2y~3 Y24Y34, although 
they have been constructed out of this by partial frac- 
tioning: 
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Y12 ~-(1 ,--~ 2)+ (3,---~ 4)+ (1 ~--~ 2, 3,--~ 4) 
2y13 Y34 Y24 

Y12 

2y34 (Yl 3 + Y34) (Y24 q- Y34) 

Y12 .+ 
Yi3 (Yl3 +Y34)  (Y24 +Y13) 

Yi2 q- 
(Yl 3 q- Y24) (Yl 3 "q- Y34) (Y24 "4- Y34) 

+ (1+--~ 2)+ (3.--~ 4)+ (1 ~--~ 2, 3 +--~ 4). (8.27) 

Most  of the integrals in (8.24), (8.25) and (8.26) 
are standard by now. Because of the appearance of 
Y34 in the denominator one should work either in 
a 34-system or in a 13-system, where Y34 = (Y~ 3,1-- Y l 3) 
( l - v )  is simple. In this way the 0'-integral can be 
made trivial in all cases. The integrals are then typi- 
cally of the form 

1 
I ( k , l , m , n , a , b ) = ~  k-2e dy123 Y123 (1 --Y123)/-e 

0 

1 
�9 ~ d z z"  ~(1-z)  "-~ 
0 

1 
�9 ~ d v v a - e ( 1 - v )  ~-~ 

0 

( 1 - v ( 1 - z y ~ 3 ) )  -~  

k ,n ,a=O,  1,2, . . . ,1, m , b = - l ,  0, 1 . . . . .  (8.28) 

Ways to integrate (8.28) have been described in [24]. 
So instead of giving further details let us present the 
final result for the No-term, the analogue of equations 
(8.19) and (8.20): 

F PF 1 23 /223 3 \ z 

, 
10~ 2 q- ~ ~3)/g -~- 11.56 

) + l n y  e 2 2e 17.16 

[ 2 4 121 +4~2 ) 
+ ln2y t - ~ -  + 3~-e + ~ 8 -  

/4 4~ 19 4 
+ln3y ~ + ~ ) - ~  - l n  Y (8.29) 

Z~F= 1 ln4y+~_ lnay_~69  ln2y 

-- 10.4 In y +  51.29. (8.30) 

1 

0.5 
b o 

-0.5 
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Cts=0'12 _J 

~ ' ~ J  r t I - t  i i I I J i 

- 1  I I I 1 1  i I I I  I I I I I I [ 
10-3 10-2 - -  y - - - ->  10-1 

Fig. 9. Two jet cross section of the singular approach as a function 
of y in units of ~o for a~=0.12. O(~ z) is according to equations 
(7.2-5). O(~) is the exact lowest order result including all non-lead- 
ing terms in y and "exponentiated" is according to (7.7-10) 

The contribution - 4 ( 0 . 2 8 - 1 . 4 7  In y) is also included 
in (8.29) and (8.30). 

The most prominent change in ZPs v as compared 
to Z s is the appearance of a ln4y-term although with 
a rather small coefficient. This makes it impossible 
to exponentiate the partial fractioned result. We can 
see from Fig. 9 that exponentiation is important for 
y<0.01.  (e~=0.12). Therefore for physical applica- 
tions our final result is useful only in the region 
0 .02<y<0.05 .  This conclusion is supported by the 
fact that for y < 0.01 our physical two-jet cross section 
is smaller than ~ of the O (es) Sterman-Weinberg re- 
sult (see Sect. 9). Perturbation theory breaks down 
in that region. For higher values of 0~ perturbation 
theory breaks down already for higher values of y. 

The origin of the additional in 4 y-term lies in the 
different treatment of the term (8.27) in the two ap- 
proaches. So let us compare them: In the full singular 
approach the left hand side of (8.27) was integrated 
over the region 

(Yi34<Y)+(Y134>Y, Y234 <Y)  

+(Yl3 <Y,  Y24 <Y,  Y134 > Y, Y234>Y) 

+(Y14 <Y, Yz3<Y, Ya34>Y, Y234>Y, 

Y l3>Y  o r  y z 4 > y ) .  

This is just the sum of the phase space regions (6.24) 
and (6.7) written differently (see appendix A). It was 
shown that the last two regions in this expression 
do not contribute to the N~-term. However, for the 
PF approach the region (y13<y, yza<y ,  y134>y) is 
essential (at least for the 13-terms). It even contributes 
to the singuiarities. In the singular approach, how- 
ever, the No-terms coming from the contribution of 
type B) and C), as defined in Sect. 6, compensate each 
other in the region (Yl3 <Y, YE4<Y, Y134>Y) �9 The re- 
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Table 4. O(e~ z) corrections to the two-jet cross section in various schemes. The normalization of these corrections is as in (7.2). Also 
given are the two-jet multiplicities in O(e~) and in O(e~ z) for the various schemes for %=0.12 

8__ PF Z~hys Z S zPF z~F mPF y Z T - -  Z T Z~ hy$ Z s Z~, hys mz (~,) m s m~ ~y~ 

0.05 27.00 30.03 17.49 -48.50 -10.91 - 56.06 - 64.97 -104.12 0 .789  0 .762  0 .708 0.670 
0.04 36.20 38.87 31.47 -42.44 - 1.76 - 80.14 - 95.10 -133.88 0 .739  0 .696  0 .629  0.594 
0.02 74.(14) 75.85 121.27 20.70 65.22 -179.44 -218.90 -255.14 0 .551 0 .466  0 .348  0.322 
0.01 128.28 129.39 317.57 187.16 240.46 -321.44 -395.95 -430.33 0 .315  0 .214  0.0285 0.012 

gion (Yla4>y, y234<y, y13>y) (for the ya3-term) 
which gives finite contr ibut ions  is left out  here. It  is 
included in our  calculat ion of  the 3- and 4-jet cross 
section and  appears  there as a finite cont r ibut ion  to 100% 

0"2--jet [203. 
In  summary  the singular terms p ropor t iona l  to 80% 

e -"  in the two approaches  are quite distinct in inter- 
mediate  steps, but  agree in the sums (8.19) and (8.29). 60% 
The finite terms are different however.  

9. Results and Conclusions 

40% 

20% 

With  (8.20) and  (8.30) we have obta ined  the two-jet 
cross section in the PF-scheme (cf. (7.2) and remember  a ) 
that  the TR-term is the same for bo th  methods).  How-  
ever, this is no t  a physical  cross section. Some finite 
two-jet  contr ibut ions  have no t  been t reated here (e.g. 
(Y12 <Y, Y34 <Y)" Ins tead they have been called three- 
and four-jet temporar i ly  in our  paper  [-20]). This is 

100~ 
correct for the reconstruction of the total cross sec- 
tion, if only every cont r ibu t ion  is counted  exactly 50o/' 
once. To  get the physical  two-jet  cross section one 
should disentangle those finite contr ibut ions  f rom the 
three- and four-jet numbers.  This way  one gets the 60~ 
exact physical three- and four-jet cross sections. Sub- 
t ract ing them f rom the total  cross section (7.11) one 40% 
is led to the exact physical  two-jet  cross section. This 
all has been done  numerical ly  in [20]. Here we only 20% 
quote  the numbers  for the physical  values of  
Z r ,  Z c ,  Z N  (cf. (7.2)) and compare  them to the corre- 
sponding  values obta ined  with the singular app roach  b) 
and PF  app roach  respectively (Table 4). We give these 
numbers  only in the reg ion*  0.01 < y < 0.05. F r o m  Ta- 
ble 4 one concludes that  the O(~ 2) correct ions differ 
in the two schemes. 

In  Table 4 m s ,  mP2 F and m~ hys are the two-jet mul- 
tiplicities in the singular, partial  fract ioned and physi- 
cal scheme. One  gets them by  dividing by the total 
cross section of  (7.11). F o r  m2(~s) we have divided 
by %(1 +~Jzc). In  the physical  two-jet  multiplicities 
m2 phys all order  y correct ions are included, especially 
correct ions of  order  y- ~, (see Table  1). In  the PF  and 

* c f .  the discussion at the end of Sect. 8 

O'2_je t l q o  ~ Cts = .12 
I I I I I 

phys 

�9 1 '  I I I r 

001 0.02 0D3 00& 0.05 y 

~2-jet/Rot 
l I I 1 I 

o r s  = ,16  

//,, 
0.01 0.02 0.03 0.04 0.05 y 

Fig. 10. a Comparison of the two jet multiplicities in the various 
approaches for G=0.12.  O(c~s) is the lowest order result according 
to (2.5). "Sing"  is the result of the singular approach (7.2-5), " P F "  
is the result of the partial fractioned approach equations (7.2), (7.4), 
(8.20) and (8.30) and "phys"  is the final physical result of [20]; 
b. physical two jet multiplicities for various couplings cq = 0.12, 0.14, 
0.16 and 0.18 

singular multiplicities m~ F and m~ they are not  in- 
cluded. We worked  with es=0.12.  The numbers  are 
d rawn  in Fig. 10a. 
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Table 5. Physical values for the two-, three- and four-jet multiplici- 
ties according to [20] for cq=0.12. For comparison we have also 
included the numbers one receives in O(~) including the 0 (y) correc- 
tions of Tables 1 a and b 

y ra2 (c~s) m3(~3 m2 m3 rn~ i 

0.05 0.789 0.211 0.670 0.326 0.005 
0.04 0.739 0.261 0.594 0.397 0.009 
0.02 0.551 0.449 0.322 0.637 0.041 
0.01 0.315 0.685 0.012 0.871 0.117 

From Fig. 10a we conclude that the PF and physi- 
cal results give a larger correction to the Sterman- 
Weinberg formula than does the singular result. This 
feature already appeared on the level of differential 
three-jet cross sections and gave rise to some discus- 
sion [7, 9] there. For the three-jet case we have re- 
solved it in [-20]. 

As a sort of summary in Table 5 we have given 
the physical results for the two-, three- and four-jet 
multiplicities as given in [20]. As noted in [20], an 
abelian theory (Nc abel = 0 ,  T/~ bel= 3 .nl ,  C ~  bel : 1 [29]) 
would lead to quite distinct results, because the 
N-contributions are large in the case of QCD. For 
the abelian version of the theory in the MS-scheme 
and with the q2-scale in c~ s no value of ~s exists, such 
that m3 > 5% at y=0.05, which is a strong contradic- 
tion to experimental results (see [29] for a discussion). 

Let us repeat that with the PF values of Table 
4 the total cross section can be reconstructed, if one 
adds the results of the PF three- and four-jet cross 
sections [20] and goes to the limit of small y (y 
< 10-3). In this sense the numbers in Table 4 are 
cross checked. In Fig. 10b also the e~ dependence 
of our physical result is shown. The coupling con- 
stants used are 0.12, 0.14, 0.16 and 0.18, which corre- 
sponds to Ags=86, 215, 420 and 710MeV at qZ 
= 34 GeV, respectively. We see that a measurement 
of the two-jet rate with an error less than 10% would 
determine A ~  quite accurately. 

Thus the two-jet cross section is a possibility to 
test the structure of higher order QCD matrix ele- 
ments. After having done a cluster analysis of the 
hadronic final states it should be possible to obtain 
two-jet multiplicities in a range of cuts between 
y = 0.01 and y = 0.1 and so check via the y-dependence 
our higher order QCD calculations and to determine 
Agg. 

Appendix A 

Two Jet Phase Space for Symmetrical Matrix 
Elements 

We want to derive the equations (6.7) and (6.24) of 
the full dressing approach. 

In the following we denote by ( ) subsets of four 
particle phase space which are thought to operate 
on the matrix elements (with the appropriate n-di- 
mensional integration measure). 

In the singular approach the integrand is symmet- 
rical in (1 +-~2), (3+-+4) and (1 +-.2, 3+->4). 

Originally the two-jet region is 

Rs2-jet=(Y,34 < Y)+(Y234 < Y, Y134>y) 

+(Y13 <Y, Y24 <Y, Y134 >Y, Yz34>Y) 

+(Y14 <Y, Y23 <Y, Y134 >Y, Y234>Y) 

--(Y14 <y,  Y23 <Y, Y13<Y, Y24<Y, Y,34>Y, Y234 > Y). 
(A.1) 

Here the last region gives an order y contribution 
for every term in the matrix element. So we leave 
it out. Using the (1 +--~2)-symmetry we find 

Rs2_j~t = 2(y134 < Y)--(Y13,, < Y, Y234 < Y) 

+2(y13<Y, Y24<Y, YI34>Y, Yz34>Y) �9 (A.2) 

Now one has 

(Y13 <Y,  Yz,,<Y, Y l a a > Y ,  Y234 >Y)  

=(Ylz <Y, yz4 <Y, Y134> Y) 

--(Y13 < Y, yx34 > y, yz34 < Y) (A.3) 

because Y234 < Y implies Yz4 < Y. 
Also 

(y13 <y ,  Y134> Y, Y234 <Y) 
= (Y134 < Y, Y24 <Y)  --(Y134 "< Y, Y234 < Y) (A.4) 

because of (1~--~2,3.--~4) symmetry and because 
Y234<y implies y24<y. Inserting (A.3) and (A.4) into 
(A.2) one gets 

e s - -  2 - j e t - -2 (y l3  <Y,  Y24 <Y,  Y134>Y)  

+ 2(y134 < y)-- 2(y134 < Y, Y24<Y) 

+ (Yt 34 < Y, Yz34 < Y) (A.5) 

which is the content of (6.7) and (6.24). 

Appendix B 

Phase Space Formulas 

The phase space for j massless state particles in n 
dimensions is 

PS~ = (2re) ;+"(* -J) S H d"pi 6 + (pZ) 

- p , .  ( B . 1 )  
\ i = i  
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For  j = 3 and q2-channel processes it can be fully ex- 
pressed by the invariants  213,223: 

p s  (3) = q2(47c/q2) 2e ] dy13 Y ~  
1287r3F(2-2g)  o 

1 - -YI3  

I d 2 2 3  2 2 ~ ( 1 - 2 1 3 - 2 2 3 )  -~. (B.2)  
o 

For  j = 4  two angle variables 0, 0' are needed�9 They  
are defined as follows�9 One chooses a system, where 
Pl + P3 = 0 and where P2 [I ez [7]  

Pl =�89 s~13(1 . . . . .  sin 0 cos 0', cos 0) (B.3) 

S123 - -S13  
P 2 -  2] s//~3 ( 1 , . . . , 0 ,  1), (B.4) 

P3 = �89 s~13(1, ---, - sin 0 cos 0', - cos 0), (B.5) 

S 134 
P 4 -  2 ~  (1 . . . .  , sin fl, cos fl). (B.6) 

Setting v = �89 (1 - cos 0) one gets 

p s  (4) : 
q4(4n/q2)3~ 

2048 ~r 5 F ( 2 - -  2e) r ( 1  -- e) 

"I  d y 1 2 3  dy134 dy13(Y134 2123-213) -~ 

"(213+1--Y123--Y134) 213 (Y13) 

�9 O ( 2 1 3 4 2 1 2 3 - - 2 1 3 )  [ 9 ( 2 1 3 q - 1 - - 2 1 3 4 - - Y 1 2 3 )  

1 i dO' 
�9 j No, sin-  0'" (B.7) 
0 0 

N 0, = 2 2ercF(1 - 2e)/F 2 (1 - e) is the normal iza t ion  of 
the if- integration.  Fo r  integrat ions over  full of phase 
space a representa t ion of PS (4) is useful, where all 
integrat ions are between 0 and 1: 

q4(4n/q2)3~ 
ps(4) _ 

2048 zd F ( 2 -  2e) F(1 - e) 

1 1 
�9 ~ dy134 2132~( 1 --Y134, ~2-3~ J C ds s , -2 , ( l _ s ) -~  

0 0 

1 
�9 ~ d z z -~ (1 - z ) -~ (1 - zy134 )  -z+2~ 
0 

1 
-~ dvv-"(1 _v)  -~ 
0 

"~0 dO' s in-  2, 0'. (B.8) 

Here  z=yt3/(2~342123) and s=2123(1-zy134)  / 
(1-y134) ,  The  invariants  Yu may  be expressed with 

the help of  variables appear ing in (B.8): 

Y12 = (1 - -  Yl 34) SV, (B.9) 

Y23 = (1 --y134) S(1 - -  V), (B.10) 

Y14 = Y134(1 --zY123)(0(1 - -7 )+7(1  --v) 

- -2  cos 0' l /v(1 --v) 7(1 --y)), (B.11) 

Ya4 =Y134( 1 --ZJ123) ((1 --  V) (1 -- 7) + 07 

+ 2  cos 0' Vv(1 - v ) 7 ( 1  - y ) ) ,  (B.12) 

Y24 = (1 - -  y t  34) ( l  - -  S), (B.13) 

where 7 '=zY24/((1 - - z Y 1 2 3 )  (1 - -  zY134)  ). 
In the main  text we are concentra t ing on the re- 

gion Yla4<Y. There  the invariants may  be approxi-  
mated  by 

2 1 2 = Y 1 2 3  V, 

2 2 3 : 2 1 2 3 ( 1  - -V) ,  

Y24 = 1 - -  2123 ,  

Y14 = Y134(0(  1 - -  Z) + z(1 - v) 224  

- -2  cos 0' Vv(1 - v )  z(1 --z) 224), 

Y34 = Y134((1 --v)(1 - -z )+vzy24 

+ 2 cos 0' ~/v (1 -- v) z (1 -- z) Y24). 

(B.14) 

(B.15) 

(B.16) 

(B.17) 

(B.18) 

The  phase space in this limit is 

p S  (4) = 
q4(4g/q2)3~ y 

0~dl ,  1 - 2 e  2048~5 F (2 - -  2e) F(1 --e) uy134 2134 

1 

�9 f dy24Yz2( 1 - - 2 2 4 )  I - 2 e  
0 

1 I 

�9 I dzz- ( l-z)-" I -o) 
0 0 

~ dO' 2~ , 
�9 o ~ s in-  0 .  (B.19) 

If one exchanges the role of particles 2 and 4 in (B.7) 
and evaluates the limit 2134--*0 one gets back (B.19). 
However ,  v now has a different meaning and the 
structure of the invariants differ f rom (B.14)-(B.18) 
(apart  from 2,-~4 interchange):  

Y 1 4 = Y 1 3 4 ( 1 - - z Y 1 2 3 )  V, (B.20) 

234 = Y134( 1 - 22123) (1 - v ) ,  

Y24 = 1 - -Y123"  

(B.21) 

(B.22) 
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Y123 
(V (1 --  Z) + Z(I  - -  V) Y24 Y12= 1-zY123 

- 2  cos O' l/v(1 -v)  z(1 -z)  Yz4). 

Y123 ((1--v)(1--z)+zvy24 
Y23-- 1 - - zY123  

+2 cos O' ]//v (1 --v) z(1 -z )  Y24). 

(B.23) 

(B.24) 

References 

1. CELLO Collab. H.-J. Behrend et al.: Phys. Lett. 138B, 311 (1984) 
2. JADE Collaboration, W. Bartel et al.: Phys. Lett. l19B, 239 

(1982); Z. Phys. C - Particles and Fields, 25, 231 (1984) 
3. MARK-J Collab. A. Adeva et al.: Phys. Rev. Lett. 50, 2051; 

(1983) Phys. Rep. 109, 131 (1984) 
4. PLUTO Collab. Ch. Berger et al.: Z. Phys. C - Particles and 

Fields 28, 365 (1985) 
5. TASSO Collab. M. Althoff et al.: Z. Phys. C - Particles and 

Fields 26, 157 (1984) 
6. H. Aihara et al.: Z. Phys. C - Particles and Fields 28, 31 (1985); 

E. Fernandez et al., Phys. Rev. D31, 2724 (1985) 
7. R.K. Ellis, D.A. Ross, E.A. Terrano: Phys. Rev. Lett. 45, 1225 

(1980); Nucl. Phys. B178, 421 (1981) 
8. J.A.M. Vermaseren, K.J.F. Gaemers, S.J. Oldham: Nucl. Phys. 

B187, 301 (1981) 
9. K. Fabricius, I. Schmitt, G. Kramer, G. Schierholz: Phys. Lett. 

97B, 431 (1980); Z. Phys. C - Particles and Fields 11, 315 (1982) 
10. B. Lampe, G. Kramer: Physica Scripta 28, 585 (1983) 
11. Z. Kunszt: Phys. Lett. 99B, 429 (1981); Phys. Lett.: 107B, 123 

(1981); A. Ali: Phys. Lett. l l0B,  67 (1982); B. Barreiro: Phys. 
Lett. l lSB, 155 (1982); Nucl. Phys. B236, 269 (1984) 

12. F. Gutbrod, G. Kramer, G. Schierholz: Z. Phys. C - Particles 
and Fields 21, 235 (1984) 

13. G. Kramer, B. Lampe: Commun. Math. Phys. 97, 257 (1985) 
14. H.H. Schneider, G. Kramer, G. Schierholz: Z. Phys. C -Particles 

and Fields 22, 201 (1984) 
15. T.D. Gottschalk, M.P. Shatz: CALT-68-t 172 (1984) 
16. J.G. K6rner, G. Schuler: Z. Phys. C - Particles and Fields 26, 

559 (1985) 
17. J.G. K6rner, G. Schuler, G. Kramer, B. Lampe: Z. Phys. C - 

Particles and Fields 32, 181 (1981) 
18. T.D. Gottschalk: Phys. Lett. 109B, 331 (1982) 
19. A. Ali et al.: Nucl. Phys. B167, 454 (1980) 
20. G. Kramer, B. Lampe: DESY 86-119 (1986) 
21. G. Sterman, S. Weinberg: Phys. Rev. Lett. 39, 1436 (1977) 
22. H.J. Daum, H. Meyer, J. Bfirger: Z. Phys. C - Particles and 

Fields 8, 167 (1981); J. Dorfan, Z. Phys. C - Particles and Fields 
7, 347 (1981); A. B~icker, Z. Phys. C - Particles and Fields 12, 
161 (1982); W. Barrel et al.: Phys. Lett. l19B, 239 (1982) 

23. M. Dine, J. Sapirstein: phys. Rev. Lett. 43, 668 (1979); W. Cel- 
master, R.J. Gonsalves: Phys. Rev. Lett. 44, 560 (1980); Phys. 
Rev. D21, 3112 (1980); K.G. Chetyrkin, A.L. Kataev, F.V. Ta- 
chov: Phys. Lett. 85, 277 (1979) 

24. G. Kramer, B. Lampe: DESY 86-038 (1986) 
25. J.C. Collins: ANL-HEP-PR-84-36 and the earlier literature giv- 

en there 
26. R.J. Gonsalves: Phys. Rev. D28, 1542 (1983) and the earlier 

literature given there 
27. R. Gastmans, W. Troost: SIMON STEVIN 55, 205 (1981); A. 

Devoto, D.W. Duke: Tallahassee preprint FSU-HEP-83 1003 
28. W. Celmaster, R.J. Gonsalves: Phys. Rev. D20, 1429 (1979) 
29. G. Kramer: Springer Tracts in Modern Physics, Vol. 102. Berlin, 

Heidelberg, New York: Springer 1984 
30. A.V. Smilga: Nucl. Phys. B161, 449 (1979) 
31. J. Frenkel, R. Meulderman, I. Mohammad, J.C. Taylor: Nucl. 

Phys. B121, 58 (1977) 


