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Using a section corresponding to Ltischer's bundle, we develop a method for computing the 
second Chern number of SU(3) lattice gauge fields. A key ingredient is gauge fixing, which ensures 
a smooth section, so that the (numerical) evaluation of winding numbers is reasonably fast. We 
employ the algorithm on 4 4 and 5 4 lattices and present first results for the topological 
susceptibility Xt. 

1. Introduction 

Recen t  numer ica l  calculat ions  [1-4]  of  the topologica l  suscept ibi l i ty  

X t = ( a 2 ) / V  (1.1) 

(where  Q is the  topologica l  charge, or  the second Chern  number ,  of  a gauge field 

conf igura t ion ,  and  V is the volume of  the space- t ime mani fo ld)  in SU(2) la t t ice  

gauge  theory  have led to a semi-quant i ta t ive  resolut ion  of  the  UA(1 ) p rob lem.  I t  is of  
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urgent interest to extend these calculations to the physically relevant gauge group 
SU(3). For the SU(3) topological charge there is no combinatoric algorithm though, 
and the computation of Liischer's charge [5] requi res -  as it s t a n d s -  too much 
computer time. 

One might be tempted to seek short cuts such as "cooling" [6]. The validity of 
such a procedure is, however, dubious since topological charge disappears during 
the cooling process. (Even semi-classical arguments suggest that meron pairs, and 
not instantons alone, drive confinement [7]. Meron pair configurations do not 
minimize the action and hence are unstable under cooling. For recent work 
indicating that the vacuum is indeed more complex than just a dilute gas of 
instantons, see ref. [8].) 

In this paper we rewrite Ltischer's bundle [5] in terms of a section. Combined 
with appropriate gauge fixing, the section allows us to determine Q (on small 
lattices) reasonably fast. Since we deal directly with the second Chern number, our 
computation of X t is (in the context of numerical simulations) manifestly correct. 

Our calculations are based on a hypercubic lattice. This is defined by 

A =  (s  ~ Tals.  E Z, / t  = 0 ,1 ,2 ,3} ,  (1.2) 

where the 4-torus T 4 is covered by hypercubes, 

T 4 =  U c ( s ) ,  (1.3) 
s E A  

with 

c ( s ) =  { x ~ T 4 l s u < x , < s , +  1}. (1.4) 

In each hypercube we transform the gauge fields into a nonsingular gauge by 

A; = wS( Aix -.[- O~)( wS) -1 (1.5) 

The maps w" define a section on the boundaries 0c(s) of the hypercubes. Following 
ref. [41 we derive 

Q = Y~. Q, ,  (1.6) 
s E A  

with 

1 
Qs = 24rr 2 fOc(s)d3°~e,,ooTr[(ws)-lO,wS(ws)-lOowS(ws)-lOowS] • 

Since Q, is the winding number of w' on 0c(s), i.e. 

Q, ~ ~r3(SU(3)) = z ,  

(1.7) 

(1.8) 

Q is the sum of local integers. 
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Under  gauge transformations g the gauge field A~ transforms as 

X ~ , = g ( A ~ , + 8 ~ , ) g - ' .  (1.9) 

Bringing . ~  into the same nonsingular gauge as before requires a gauge transforma- 
tion ~s, 

- - '  - -~ , (1.10) 

where 
~ ' =  wSg -1 . (1.11) 

By inserting w e=  ~ g  into eq. (1.7) one finds that  the (total) charge Q is gauge 
invariant, while its local terms Q, are not. 

In SU(2) the integral in eq. (1.7) can be done analytically, which requires locating 
the gauge singularities of the 1-cochain [4, 9,10] only. On a simplicial lattice one can 
use geometrical methods to do so, which has led to the fast combinatoric algorithm 
of Phillips and Stone [11]. In SU(3) one can proceed along the same lines: an 
analogous expression for the 1-cochain has been given in ref. [12]. However, it has 
not been possible to locate its gauge singularities geometrically, mainly because of 
the complicated geometry of the SU(3) group manifold. Instead, we shall evaluate 
eq. (1.7) by numerical integration. 

An alternative to the section is to describe the bundle in terms of transition 
functions 

v,.~ = w ' - ~ ( w ~ )  - '  , (1.12) 

which are defined on the faces 

On the plaquettes 

f(s,  #) = c(s)  N c(s - / ~ ) .  

p(s ,  t~, v) = c(s)  n c(s - /2 )  n c(s - ~) 

they obey the cocycle condition 

v~_f,.,v,.~ = v,_~.~vs.~ 

and lead to the expression for the charge [5, 4] 

O 

(1.13) 

(1.14) 

(1.15) 

1 [ 3 - 1  - 1  - 1  d x E  Tr v 8 v  v 8 v  v 8 v  

v, zOpvj.~vZ_!O ~Oov, ~ ~] . .16) +3fp(,.,.~)d2x,,e,~ooTr[ . . - .  - .  } (1 

In contrast to eq. (1.7), Liischer's charge (1.16) yields an integer only after summing 
over all hypercubes. 
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The rest of the paper is organized as follows. In sect. 2 we construct the section 
for Liischer's bundle. Sect. 3 shows that the charge (1.6) is gauge invariant. In sect. 4 
we prove that our and Liischer's bundle are indeed the same. A necessary ingredient 
to our calculation is fixing the gauge, which we discuss in sect. 5. In sect. 6 we 
describe the method of integration and our results. The integrand involves powers of 
SU(3) matrices, which are computed by the algorithm outlined in the appendix. 
Finally, in sect. 7 we conclude with some remarks. 

2. Construction of the section 

On the lattice the gauge fields are represented by the parallel transporters U(s,/2). 
Following Liischer [5] we transform the gauge fields to a nonsingular, complete axial 
gauge by 

- for y = x +/2, u; ,  - w (x)U(x, 

U~y = (Uj~)-1 for y = x - / 2 .  (2.1) 

The gauge transformation is given by 

wS(x) = U(s,i)Y~U(s +yli,2) Y=U(s + y l  I +y22,3)Y3U(s +yl i +y2 ~ +Y33,4) y4 , 

(2.2) 

where 

4 

x = s + E y /2, y. {0 ,1}  (2.3) 
#=1 

are the comers of the hypercube c(s). 
For the computation of eq. (1.7) the section w s, which by eq. (2.2) is only given at 

the comers of the hypercube, needs to be interpolated throughout ac(s). The latter 
consists of 8 faces, f(s, #) and f(s +/2, #), which are cubes extended in directions 

a < fl < y ~  { 1 , 2 , 3 , 4 } \ { # }  (2.4) 

complementary to the direction #. The comers of the hypercube are labelled 

s~ - l ,  s + 8 ~ 2 ,  s + / 3  ~-3, s + k + / ~ 4 ,  

s + ? ~ 5 ,  s + d + ' ~ 6 ,  s + /3+ '~  ~ 7, s + ~ + / ~ + ~ 8  (2.5) 
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Fig. 1. Labelling of the comers of the hypercube. 

353 

as shown in fig. 1. W e  take the fol lowing in te rpo la t ion  of  the sect ion for x ~ f(s,  #)  

w.(,o.S, .x.)=(,~l)y.[u¢,w.( ,o. . , .s .  + 1) w.(.o. ~,.,.) ~]'~w.(,o. s,...). 

wt(s~ + 1.sp. xv)=(U6t2)" [ U~6wt(s~ + 1.s,.sv + 1)wt(s~ + 1.s~. sv)-x] y* 

x,,,'(,,, + 1, s~,,~,), 

wt(s~,,s~ + 1,xv)=(U;3)YY[U;Twt(s,,,s~ + 1,sv + 1)wt(sa,s p + 1, sy)-'] x~ 

xw'( ,° , ,~  + 1 , , 0 ,  

w ' ( , o + l , , ~ + l , x , )  = (u~, )"  [u~w'(,o + 1,,~ + 1, , ,  + 1) w'(,o + 1,,~ + 1, ,~ ) - ' ]  ;' 

Xwt(s(, + 1, s o + 1, sv) ,  

w,(.o,x,,x~)-[::.(x,)-']"[::.(xO~,(.o,., + i, ~) w,(.., s,, ~.)-q" 

xw'(s,,,s#,x~,), 

w'(s° + 1, x/~,x,)=[gJj,(x,)-']Ya[gJ,~,(xv)wt(s. + 1,s, + 1,xv) 

xwt(s,, + l,s#,xv)-']Y'wt(s. + l,sp,xv), 

w.(x~. ~,~. x~) = [ ~;.,(x~. x , ) ] ' -  [ ~;.,(x,~. x, )  w.(,o + 1. x, .  ~,) 

X w ' (s~ ,xa ,x r ) - ' ]Y°w ' (s ° , x /~ ,x , ) ,  (2.6) 

where  y = x - s and  t = s or  t = s - / 2 .  Eq. (2.6) in te rpola tes  first  in the y, then in 
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the/3, and finally in the a direction using interpolating functions [5] 

t t Yv t t t t Yv t t 
f s , ~ ( x y ) = ( U 5 1 )  (U15U57U~3U31) U13(U37) yv , 

g~,~,(xr) = (U~2)Y, trz,  rrtrr, tr, ~Y,,,, [ t r t  ~Y, 
\ ~ ' 2 6 " 6 8 ' J  84"-'42 ] ' - '24 I. " 4 8  ] , 

h 's , . ( xy )  = t r r ,  ~Y~trT' rr ,  l l ,  l r ,  ~Y. lr ,  t r r t  ~Y. 
I . " 5 1 1  \ ~ 15 L ' 5 6 " 6 2 " 2 1  / " 12 \ "-'26 ] 

~' . ( x . )  = ~ , .  ~y.t,~t,,t,,,,rt ~y.,,, (u~)y. 
~,~73 ] \ ~ 3 7  ~" 7 8 ~ 8 4 ~ 4 3  ] ~"34 

t - 1  t t t - 1  t - 1  

t t X Y~ Xh~,~,(x~)[g,,~,( 7)] ' (2.7) 

which ensure gauge invariance of the topological charge Q, as we show below. As 
one can easily check, the section w~(x) is continuous on Oc(s). Below we also show 
that it leads to the correct continuum limit of Q. 

By virtue of eq. (2.1), eqs. (2.6) and (2.7) simplify to 

wt(sa,  S o , Xy) = wt(sa,  Sly, $7) [ wt(Sa, Sfl, $ 7 ) - l w t (  Sa, Sfl, Sy -I- 1 )U + (1, ~) ]  .vv [U(1,  "~) 1"~, 

-1 t w'(s,, + l , s~ , xv )  = w ' ( s .  + l , so , s . ) [  w'( s~ + l,st~,sv) w (s,~ + l ,s#,sv + l)U+ (2, 9 )] v~ 

× [ u ( 2 , ~ ) ]  -v~ , 

-1 t wt(s,~,s¢ + l,x.e) =wt(s,~,sa + l,s~,)[wt(s,,,sn + l,s~,) w (s , . s#  + l,s./ + l)U+ (3,'~)] v" 

x [ u ( 3 , ~ ) ]  y ,  , 

wt(st, + l,sB + l , x , )  = wt(s,~ + l,sll + l ,s. t)[ Wt(sa + l,sB + l , sv)  -1 

×w'(s~, + I, S o + 1,s, + 1 ) U + ( 4 , ' ~ ) ]  Y ' [ U ( 4 ,  .~ ) ] .v , ,  

wt(s,~,xB,xv)=wt(s,,,sO,xv)[wt(s,,,sO,xv)-'w(s,,,sB+t 1,x~,)F+ (xv)]VO[F~.~,(xv)]va, 

-1 t w'( s. + l , x , . x . )  =w'(s .  + l , s , , x . ) [ w ' ( s .  + l , so ,x . )  w (s.  + l,so + l , x , )G  + tx d ''~ s ,~ , .  7zJ 

x [ < . ( x ~ ) ]  -~" , 

w t ( x . , x a , x v ) = w ' ( s . , x # , x v ) [ w t ( s . , x O , x v ) - l w t ( s , ~  + 1,xts,xy)L[~,(x#,x~,)] v" 

× [ L~., (x~. x,)]-"-. (2 8 )  
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with 

Fs,~(xv) = [U+ (1, "~)] Yv [U(1, "~)U(5,/3) U+ (3, "~)U+ (1,/~)] YvU(1,1~)[U(3, "~)] Yv, 

Gs,~,(xv) = [U+(2, ~)] Y' [U(2, ~)U(6,/~) U+(4, $)U+(2,1~)]Y'u(2,  I~)[U(4, 9)] Y', 

Hs,~,(xr) = [U+(1, "~)1 y' [U(1, ~)U(5, 8)U+(2, q)U+ (1, 8)1Y'U(1, ~)[U(2,-~)1Y*, 

Ks,I.L(X.y ) = [0+(3, ,~)1Yv [U(3, "~)U(7, 6)U+(4, "~)U+ (3, 8)] Y'U(3, a)[U(4,  ~)] Yv, 

Ls,~(xv)  = [r+ (xv)]Yo[rs,~,(xv)Ks,~(xv)G+~(xv)n+~,(xv)]  yB 

X ns,l~( X.y)[ Gs,l~( Xy)] y" (2.9) 
This is the expression used in the numerical work. 

3. Gauge invariance 

The section w s constructed above leads to a gauge invariant topological charge. 
Under gauge transformations the link matrices transform as 

U(s,  #) = g ( s ) U ( s ,  [t)g(s + #) (3.1) 
This implies the following transformation properties of the interpolating functions 
(2.9): 

ffs,~,(xv) = g(s,,, sl~, xr)F,,~,(xv)g(s, , ,  s/~ + 1, x v ) - 1 ,  

G ~ , . ( x v ) = g ( s . +  1, s~ ,xv)G~,~, (xv)g(s .+ 1,sB+ 1, x v ) - ' ,  

L~, . (xa ,  xv)  = g(s . ,  xa, xv )Ls ,~(x  ~, x v ) g ( s .  + 1, xp, xv)-1,  (3.2) 
with 

g(s~,sl~,xv ) =g(s~,s~,sv)[g(s . ,  -1 sa,sv) g(s , ,sa,sv+l)U+(1,~,)]Y'[u(1,~,) l  y" , 

g (s .  + 1, sB, x . ) = g ( s ~  + 1,sB,sv)[g(s,~ + 1 ,sB,sv)- lg(s .  + 1, sB, s , + 1)U+(2, ~)]v. 

× [ U(2, ~')l Y', 

g ( s . , s  B + 1 ,xv)=g(s~ , s  B + 1 , s . ) [g ( s . , s  B + X,s.)- lg(s~,sB + X,s. + 1)U+(3, ~)]Y' 

X [ U(3, ~')1 y' , 
g(s,, + 1,sB+ 1 , x v ) = g ( s  ~ + 1,s# + 1,sv)[g(s  . + 1,s# + 1, s~,) -1 

× g(s~ + 1, s o + 1, sr + 1)U + (4, ~)] .v. [ U(4, "~)] y' 

g(,~. ~,. x,) = g(,o. s~. x,)[ g(~o.,~, x,) 'g(,o. s~ + ~. x,) ~;.,(~,)] y~ 
× [ z , . ( ~ . ) ]  ~' , 

g( s,, + 1, x ,  , xv ) = g( s . + 1, s~ , xv ) [ g( s ~ + 1, s~, xv) -1 

Xg(s. + 1,s~ + 1, xv)G: .  ( xv)] Y' [ G~..( xv)] '~ , 

g(xo. xo. x,) = g(,o. x,.  x,)[ g(,o. x,. x , ) - 'g( ,o  + 1. x,.  ~,) ~ , ( x , .  x,)] ~° 

× [ L.,~( x¢, y,)] .v~ (3.3) 
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These formulae determine the transformation law for the section: 

~'(x. ,  x~, x,) = g(;)w'(x. ,  x~, x , )g(x. ,  x~, x,) -~. (3.4) 

Eq. (3.4) has exactly the form (1.11) apart from the constant factor g(s), which is 
the gauge transformation at the origin of c(s), and it drops out in the expression 
(1.7) for the topological charge. 

4. Equivalence to Liischer's charge 

The section w" defines transition functions 

~, ,Ax)=w' -~(x )w ' (x )  -~ (4.1) 

on the faces f(s, ~t). They carry the same topological information as w'. From eq. 
(2.6) we derive 

vs.~(s ~, s~, xv) = vs,u(s ~, s~, st) [ v..~(sa, st~, sv)-lvs.~(s~, st3, s v + 1) U~a ] Vv(U{5)Y~, 

v~.~(s,.+ l , s# , x s )  =o...(s~ + l ,s#,sv)[os. . (s~+ l , s# , sv ) - zv . , . ( s .  + l ,s#,sv + l)UZz]Y~(U{e) y~, 

vs,~,(s,~, s~ + 1, x , )  = v;,~.(s., slj + 1, s,)[v..~,(s,~, s/~ + 1, sv)-ll)s.t~(Sa, S B + 1, s v + 1)0-]3 ] y' (U3~7) y, 

v,.,( s,, + l.sz + l , x , )  =v. , . (s .  + l,s~ + l , sv ) [  v. , . (s.  + l,s~ + l ,s~) -1 

Xvs,t.(s~, + 1, s# + 1, .y + 1) UsS4 ] Y'(U,~8) yr , 

o... (s°, x a, x . )  = ,,... (s., sa, xO [ v.,. (so, .~,, x . ) - ' o . , .  (s°, s a + 1, x , ) # , .  ( x O - '  ] y~ [ / : , .  ( xO ]  y~ , 

v. . . (s .  + l , x a , x . ) = v . . ~ ( s .  + l ,sa,xr)[v. .~,(s .+ l , s a , x . )  ' 

Xo.,~(s. + 1, s# + 1, xr)g:,~(xv) -1] y" [gS~,~(xy)]Ya, 

v~,.(x~, x~, x~) = Vs..(s., xt~, x~)[ v,.~(s,, x~, x~)-1 

XOs,lL('¢~ + 1, x]3, xT)lS /x(xs, xy) -1] Ya [lSs.l~(x~, x],)]y. (4.2) 

It is tedious but trivial to verify that expressions (4.2) fulfill the cocycle condition 
(1.15). 
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A straightforward manipulation of eq. (4.2) gives 
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Os,l~(Sa, SO, X.[) = (U~l-~)Y~os,p~(sa, SO, s~)(U~5) yv , 

s-ft -1 Vs,,,(s,~,xo,x~,)= [f;,,, (x~) ]Y%.,,,(s.,so, xO[f:,,,(xO] y,, 

Os,,(Xa, XB, Xy)= [ISs~'(Xo, Xy)-l]Y°'vs,,(Sa, Xo, XT)[IS,,(Xfl, Xv)] y', (4.3) 

which immediately leads to 

with 

s - /~  - 1  s v,,~,(x., x O, x , )  = S;,. (x~, x O, x , )  v,,~(s., so, sv)S;,~(x., x O, x , )  (4.4) 

YO t Y~ s:,,(xo, It.(/ , ,  x,)l (4.5) 

This is exactly Liischer's definition of the interpolated transition functions, which 
proves that our section w s defines the same bundle as Liischer's. Moreover, the 
equivalence shows that w ~ has the correct continuum limit. 

5. Gauge fixing 

In order to be able to integrate eq. (1.7) numerically with a minimum of mesh 
points, we have to make the section w s as smooth as possible. This may be achieved 
by gauge transforming the original gauge fields into a lattice Landau gauge. 
Quantitatively, this means minimizing 

T =  ~.~ {1 - ~ReTr[U(s,/~)]  } (5.1) 
s,p, 

by gauge transforming the link matrices. This is done iteratively by going to each 
lattice point and constructing a gauge transformation g(s). First choose an SU(2) 
subgroup characterized by the indices 

k , l ~  {1,2,3}, 

such that 

g i j ( S )  = ~ t~ij 

with 

[gkk(s) 

g(~(s) = 1 g , , (s)  

. z (5.2) 

fori, j ~ { k , l }  (5.3) 
otherwise, 

g~,(s) ) 
gt,(s) ~ su(2). (5.4) 
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Fig. 2. T per link versus successive gauge fixing iterations for a typical gauge field configuration. 

If we write 

( Ukk(S, 
v(2 (s' = u , k ( s ,  )) 1 (5.5) ]' 

the variation of T under the gauge transformation (5.3) is 

A T =  - E ~ReTr[g(2) (s )U(2) (s ,~)  + U(2)(s - ~ t , f t )g(2)(s ) - l ] .  (5.6) 

To obtain g(2)(s) one simply has to minimize AT, which is elementary, and the steps 
will be omitted here. Minimizing T requires covering all SU(2) subgroups and 
sweeping through the lattice several times. In fig. 2 we have shown the history of T 
under successive gauge fixing iterations. 

In the continuum limit this procedure reduces to 8 .A = 0, hence the name 
Landau gauge. On larger lattices and at higher values of t ,  Landau gauge fixing 
is critically slowed down. However, Fourier acceleration [13] can mitigate this 
problem [14]. 

6. Method and results 

We integrate eq. (1.7) numerically by covering the faces with a regular mesh of 
points at which we compute the section w s, and then apply standard methods to 
obtain the integral. The computation of the section requires raising SU(3) matrices 
to powers between 0 and 1. This is done using the Cayley-Hamilton method [15], 
which is described in the appendix. We treat each hypercube separately and increase 
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TABLE i 
Compilation of a4xt from this work 
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fl V a4x t 

5.5 44 (4.07 4- 2.12) X 10 -2  
5.6 44 (4.22 _+ 2.26) X 10 -3 
5.6 54 (8.40 4- 4.48) X 10 -3 
5.7 4 4 (0.66 4- 0.66) x 10 -3  
5.7 54 (2.00 4- 0.40) X 10 -3 

the number of mesh points until we can uniquely identify the integer Qs- We 
emphasize that it is vital for our computation that the integral yields integers for 
each hypercube. In practice the integral converges very fast for most of the 
hypercubes, increasingly so as /3 increases, thanks to the gauge fixing. This al- 
gorithm demands about as much CPU time as it took to compute Liischer's charge 
in SU(2) [1]. This is not especially fast, but it is sufficient for a first calculation of 
the SU(3) topological susceptibility. As in ref. [1], we are limited to small lattices, 
but the topological foundations are sound. 

We have computed the topological susceptibility o n  4 4 and 5 4 lattices at/3 = 5.5, 
5.6 and 5.7. Our results are presented in table 1. Each entry is the average over 12 
gauge field configurations. In fig. 3, we plot a 4Xt as a function of/3. The curve is 
the 2-loop renormalization group formula for the lattice spacing a, 

--I + 8 2 ~51/121 - 
a = A  L [33~r/3) exp[-~3rr2/3), (6.1) 

raised to the 4th power and normalized to the V = 5 4, /3 = 5.6 value of a 4 X t. We 

a 4 X t  

t~ Z, ~ 

t • 5 ~ 

lC)2 

10-~ ) 
10 -z' . . . .  I . . . . . . . . . . .  , 

5.4 5.5 56 5.7 58 

Fig. 3. The topological susceptibility a4xt  as a function of ft. 
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find the fl and volume dependences in agreement with what one expects on small 
lattices: the scaling violations are stronger than those seen in the string tension 
simulation [16]. With some reservation we finally offer the topological susceptibility 
in physical units. Using the V=  54, fl = 5.6 result, the string tension calculation of 
ref. [16] and v~- = 400 MeV we obtain 

28 MeV) 4. X t -~- (247 ___ 43 (6.2) 

This value is of the anticipated order of magnitude and in close agreement with the 
SU(2) result [4]. The latter is maybe not really surprising. 

7. Conclusions and outlook 

Two years ago the computation of the topological charge of SU(2) lattice gauge 
fields was barely feasible, and that of SU(3) was clearly beyond reach. Since then 
there has been remarkable progress for both gauge groups. In each case use of the 
section, i.e., eq. (1.7), rather than the transition functions, eq. (1.16), proved crucial. 
For  SU(2) the problem has been reduced to combinatorics [11], making possible 
large scale studies [3, 41. Lacking the analogous algorithm for SU(3), however, forces 
us to tackle eq. (1.17) essentially with brute force. Previously, we [10, 4] and others 
[17,18] have expressed the hope of applying reduction of the gauge group from 
SU(3) to SU(2). Unfortunately, the section is defined, here and in ref. [11], in terms 
of the link matrices, and interpolations based on reduction conflict with the gauge 
transformation law of the link field. Since this finesse fails, we instead exploit the 
gauge freedom, somewhat similarly to ref. [2], to construct an especially smooth w s. 
Then the numerical integration of (1.7) is accurate even with a coarse mesh. At least 
on 44 and 54 lattices, Landau gauge yields considerable gains. 

On the technical side the computation of the integrand of eq. (1.7) requires 
fractional powers of SU(3) matrices. We optimized this using the Cayley-Hamilton 
method. The method has, of course, more general application, which we should 
emphasize because it does not seem widely recognized by the lattice gauge theory 
literature. 

These developments have enabled us to present first results for the topological 
susceptibility of SU(3) gauge theory. Our algorithm is unfortunately not fast enough 
to attain the statistics of ref. [4] without a supercomputer, but it studies topology 
directly in the quantum vacuum, and it is gauge invariant. Thus, it provides, 
perhaps, a basis for future progress in understanding the vacuum of gauge theories. 

It is a pleasure to express our gratitude to C. Schleiermacher for useful discus- 
sions and numerical assistance. M.G., M.L.L., and U.J.W. would also like to thank 
R.D. Peccei for hospitality during visits to DESY. 
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Appendix  

For computing a power of an SU(3) matrix U we first diagonalize it by a unitary 
transformation V, 

A. 1 0 0 

D = V-XUV = •2 0 , (A.1) 

0 ~'3 

then 

with 

U x = ( V D V - 1 ) x =  VDXV-1 ' (A.2) 

~o[X~ o o } DX=[0 X~ 0 , (A.3) 
0 X~ 

where (N.B.: the eigenvalues are, in general, complex) 

h~ = e ~ 1= x , .  ( A . 4 )  

The logarithms In X k are uniquely determined by 

Y'.ln ~,  = 0 ,  
k 

[ln X,  - In )~t[ ~< 2~r. (A.5) 

A particularly simple method for determining the power of U is that of Cayley- 
Hamilton [14]. Consider the characteristic equation of U: 

3 

E a,,~.~ = 0, (A.6) 
n=0 

which in matrix form reads 

By using (A.1) one finds 

3 

Y'~ a , D " = O .  (A.7) 
n=0 

E a.V" = O, (A.8) 
n=0 

i.e. each matrix U fulfills its own characteristic equation. As a result only the powers 
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U °, U 1 and  U 2 are linearly independent .  In part icular,  it follows that  

UX~ 
2 

Y'.L(x)U 
n=0 

(A.9)  

where  

fo( ) = - 
~X2X 3 )~x2 ~ 3 X 1 X%XlX 2 

( x 3 - x , ) ( x , - x 2 )  (X 1 - X 2 ) ( X 2 - X 3 )  (x2-x3)(x - xl) ' 

X (X2+X3) 
fl(x) = (X 3 - Xl)(X 1 - -  X2) 

Xx2(x3 + Xl) X~(X 1 + X2) 
+ + 

(X 1 -- X2)(X 2 -  X3) (X2-- X3)(X 3 -  Xl) ' 

= _ x3 
- -  i 

(X3-- X1)(Xl-- X2) ( x , -  x2)(x2-x ) ()k2 __ X3)()k3 __ )kl) " 

( A A 0 )  
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