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Low-lying energy values of SU(3) gauge theory in a L ~ periodic box are calculated for small 
volumes using Luscher's effective hamfltoman The lowest particle state is the 2 ++ Mass ratios 
exhlbat smooth volume dependence m the domain of vahdlty of the perturbation expansion m 
parucular M(0 +4 )/M(2 ++ ) remmns practically constant at - 1 23 up to M(2 + ~)L - 2 

1. Introduction 

It  is general ly beheved that pure S U ( N )  gauge theory has a mass gap m and  

possesses a rich low-lying spectrum of stable parttcles and resonances - the glue- 

balls  The calculat ion of this spectrum is not  only a challenging theoretical problem 

in  its own right but  one of phenomenolog~cal interest since in Q C D  we antlc~pate 

the existence of low-lying resonances which may be interpreted as glueballs Despite 

the fact that  rmxlng effects wall certainly distort the quanti tat ive relatmnshlp 

be tween  the spectra of glueballs in the pure and full theories it is expected that 

quahta t lve  features such as q u a n t u m  numbers  will survive Experimentally,  there are 

at present  resonances (L (1440), 0 (1690)) which do not  seem to fit into a pure quark 

model  framework, bu t  their in terpreta t ion as glueballs remains controversial  [1] 

In  the inf ini te-volume con t inuum Yang-Mll ls  theory the glueball masses m, are 

p ropor t iona l  to the l ambda  parameter  A ~  

m,  = c ,A  Ms (1) 

The  de te rmina t ion  of the numbers  c, is a non-per turbat lve  problem Attempts  to 

calculate the spectrum in this framework are all senu-phenomenologlcal  [2], or 

invoke  other ad hoc assumptions [3] which make the control or est imation of 

systematical  errors practically impossible and lead to varying results Reasonable  
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model independent qualitative considerations by Jaffe, Johnson and Ryzak [4] 
favour j?c quantum numbers 0~+,2++,0 ~,2 ~ for the lowest states, and it is 
generally argued that they should be narrow compared to mesons with valence 
quarks 

Probably the most promising approach to the problem to derive results from first 
principles is the numerical Monte Carlo (MC) method applied to the theory 
formulated on a fimte L3T lattice Most of such simulations m the past [5], 

however, suffered from a poor signal-to-noise ratio because of the high dImensmn of 
operators used as interpolating fields for the glueballs In a recent calculation Berg, 
Blllolre and Vohwinkel have obtained significantly better statistics bv measuring 
correlations of spatml Polyakov loops in the adjolnt representation In both SU(2) 
[6] and SU(3) [7] their analysis favours 2 ++ to be the lowest state for all volumes 

In MC analyses, as in real experiments, one must mcorporate sufficmnt theoreu- 
cal Input to extract reliable predictions from the raw data In particular In MC 
simulations one must understand and isolate the cut-off effects 

In the scaling region, for sufficiently large correlation length the dependence on 
the lattice spacing a for mass ratms is supposed to be of the form 

Dll  ~l 

DI 2 C 2 
+ O( a2m 2 ) (2) 

The O(a  2) corrections are non-umversal, 1 e depend on the lattice action used 
These effects should be fitted or one can attempt to suppress these effects by using 
Symanzik improved actions [8] 

In an important paper Luscher [9] has proven* a umversal formula whmh 
expresses precisely how the stable particle masses M,(L) m a finite volume ~lth 
periodic boundary conditions, exponentially approach their mfimte volume limit 
m, = 34,(0o) For low-lying scalar glueballs, for example, the leading term is gwen 

by 

(M,(L)-m,)/m, ,-C,(mL) le-¢~mL : 
l ~ o c  

t3) 

and where C, is the appropriate trxple-glueball couphng (in the mhmte  volume 
theory) 

Lattice strong coupling (SC) expansions have been made b) Munster for the 
glueball spectrum [10] and for the trIple-glueball coupling [11] Extrapolating the 
results to regions of smaller coupling suggest 0 +* to be the lowest state w~th strong 
interactions C ~ 100 [11] This order of magnitude for C is consistent with MC 
calculations by de Forcrand et al [5] and would mean non-neghglble finite volume 
corrections despite the exponential fall-off 

* The proof is to all orders of perturbation theory, but thought to be of general ~ahdltv 
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As a further check compansons of MC results should be made with analytical 

calculations in domams where the latter can be performed. These are the regions 

where either the ultraviolet cut-off a i or the infrared cut-off L are small in units 

of m The former is the SC expansion mentioned above 
In a finite volume the spectrum is discrete and moreover for small volumes the 

spectrum can be calculated perturbatlvely since then the running coupling constant 

is small In another pioneering work, Luscher [12] showed that the lowest-lying 
energies of the SU(N) theory on a torus have an expansion* 

1 ~=lek~  ~ ~.= [ g ( A ~ s L ) ]  2/3 (4) E = ~  = 

and that they are exactly equal to the elgenvalues of an effective quantum mechani- 

cal hamlltonian H '  acting on wave functions in the space of constant gauge 
potentials 

c~, k = 1 ,2 ,3 ,  a = 1, , N 2 - 1 

H '  has an expansion 

w i t h  

H' = - -  X~H~', (5a) 
L t*=0 

1 0 2 
t _  _ _  1 f a b e ~ ' e c d  a b ~ d 

H ° -  2 Oct, Oc~ ' + ~J J c,c]~c,c, . 

= K l C  t C t , 

H ~ = 0 ,  

a b c d a  b ,  a -  .h,ar~, . b ,  a 3c%%'cM; ; ; 71 H ; =  ,,2Hd + ~ 3 s  c , c , c ; c  5 ~- - , K 4 S  [ 2 ) ( . t C t C z ¢  , 

where the numerical constants K, are given by 

N 
KI 4~r × 1 89153165, 

l l N  
K 2 - -  9(4~)2 × 0 409052802, 

2 

K 3 -  1 5 ( 4 ~ ) 2 ,  

1 
~4 5.4.~() × 0 619331710 

(5b) 

(5c) 

* Mos t  of the equa t ions  in tins paper  can be found in the works  of Luscher  we include them to make  
the p a p e r  se l f -conta ined 
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f~m are the SU(N)  structure constants and s "h'a the totally symmetric invariant 
tensor defined by 

s.b~a = ~N(  d.bed~,a + d"~d<ba + d,,J~d¢h, ) 

(6) 

Luscher and Munster [13] calculated the eigenvalues of H '  for the case of SU(2) 
Among their results they found that the 2 ++ was the lowest state m the perturbatlve 

region, however, the mass ratio m (0 + + )/m(2 * +) decreased with increasing volume 

In this paper we report on the analogous calculation for the phenomenologically 

interesting case of SU(3) During the course of completion of our work the MC 

computations [7] were made and hence enable a comparison 

2. Aspects of the Rayleigh-Ritz variational calculation 

The physical states of H '  are gauge mvariant 

q'(Rc) = ' / ' (c ) (7) 

for R in the adjolnt representation of SU(N) These states are classified according 
to their transformation properties under symmetries of H', (c a = X"~ ~). 

panty t ~ - c  a, 

charge conjugation ~ ~ - (c~)*.  

cubic rotations c~ ~ c~Sza, S ~ 0 

Note that in fact H i is invarlant under the full rotation group SO(3) and its 
elgenstates can be classified by J, the angular momentum The SO(3) is only broken 

down to the cubic group (9 by H 3' As pointed out by Luscher and Munster [13] this 
symmetry at small ~ is "accidental", and the rotation symmetry which is restored at 
large L may put states which have different J into the same muluplet The 

scrambling of the lowest lying states is however hnuted by the cubic symmetry 
The method we used follows exactly that of Luscher and Munster* First, the 

elgenvalues of H i are determined by applying the Rayleigh-Ratz variational method 
using a basis of harmomc functions of the form 

g ' (c)  = Q ( c ) e x p ( - 1  . . 5¢OCaCa ). (8) 

* The  s e c o n d  numer i ca l  m e t h o d  used  m [13] a "'l/n" expans ion ,  a5 no t  a p p h c a b l e  to S U ( N )  for 

N > 2  



P Welsz, V Zlemann / Weak couplmg expanswn 

TABLE 1 
The number of generators Ngand ofhnearly mdependentlnvarlant polynomlalsNp 

of a gwen degree D 
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D Ng(D) Np(D) )zD=0 Np(d) 

0 0 1 1 
2 1 1 2 
4 2 3 5 
6 5 8 13 
8 6 17 30 

10 11 38 68 

where Q(c) xs a polynomial m the c 's  hawng appropriate transformations for a 
g~ven jPC and ~0 is a variational parameter In a second step the perturbations H~', 
u >~ 1 are treated according to standard Rayle~gh-Schrodlnger perturbation theory 

It  as in the first step that SU(3) turns out to be much more awkward to handle 

than SU(2) For  example, for SU(2) the 3 monormals 

g ~ = T r G  ~, p = 1 , 2 , 3 ,  G,l=c~c ~ (9) 

generate the space of polynomials mvarlant under the symmetries of H d 0 e those 
appropna te  to form a basis of the J P =  0 + states) In SU(3) the situation is much 
more comphcated and although a general theorem of Hllbert [14] tells us that the 
number  of (mvarlant) generators of the space of lnvanant  polynomials as finite, we 
(the authors) do not yet know how large th~s number is We adopted a constructive 
approach to the problem For a fixed degree we first estabhshed an exhaustive last of 
lnvarlants For tins task, a result of Dlttner [15], winch says that any SU(3) 
numerically mvanan t  tensor of rank > 6 can be expressed as an outer product of 
lower-rank lnvarlant tensors, is particularly useful Then, starting with the lowest 
degree and increasing the degree in steps of 2, we formed a maxamal subset S of 
independent generators (up to a given degree) by systematically working our way 
through the hst and admlttxng a member  as an element of S only in the case that ~t 
could not be expressed as a polynomial in the previously estabhshed elements of S 
The test of independence was done numerically using randomly generated conflg- 

urataons of the c ' s  In table 1 we tabulate the number of independent generators Ng 
to degree 10 m the c's, and the number Np of linearly independent polynormals to 
winch these give nse* A last of a set of generators, complete (only) up to degree 10, 
as given an the appendix We see that to tins degree there are already 25 generators 
winch is greater than the amount of c ' s  These therefore must be related m a more 
comphcated algebraic manner We did not pursue the matter further since length 10 

* The independence of our set is also confirmed dunng the Gram-Schmldt orthogonahsatlon procedure 
[13] 
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non-trivial wave functions were the longest that we could presently handle m 

practice (we say a wave function is non-trivial if it has no common  factor cjcf ')  

Without  a finite generating basis on hand, however, we could not generate the wave 

function inner products  and expectation values recurslvely as was the case for SU(2) 

[13] The main amount  of CPU time is required for the calculation of the inner 

products  of  elements involving polynomials of the same length the others can be 
related to these, and the hamihonlan matrix elements can then be related to the set 

of  inner products  from knowledge of various laplaclans The CPU time reqmred for 

calculating an inner product  depends strongly on the permutat ion symmetry of the 

polynomials  involved and in particular is greatly reduced when the number  of traces 

of  length 2 is large We required approximately 200 hours of CPU time on the 

D E S Y - I B M  to generate the entire set of matrix elements required for our basis ol 
106 wave functions in the 0 ++ sector Although we reahse that our programs were 

not  optlmised, it would require drastic improvements to tackle the computat ion of 
mner  products  lnvolwng polynomials of larger length, since our method ~ould  

typically need a factor - 100 more CPU time to compute  inner products Involving 
lnvariants of  length 12 compared to those for length 10 

The spectrum of SU(3) is richer than that for SU(2) since C-m~arlance gives rise 

to an addit ional  non-trivial quantum number,  and also vector states are present 

Fur thermore  the practical treatment of j P c  states other than the 0 ~+ is much more 
involved, e g the pseudoscalars are not all generated simply as products  ol 
f a b ~ .  a b L ~ e,jac, c~ c ~ times the scalars and the 2 states are not all of the lorm scalar times 

r 1 G ~ l -  ~gfil,  z, (r  = 1,2) as is the case for SU(2) We followed an analogous approach 

to construct ing their bases as that described above for the scalars, and this made the 

calculations very tedious and time consuming Moreover we were often restricted to 

a very small basis due to the fact that the construction of statable wave functions 

required rather  long polynomials,  an extreme example is the 0 + which for SU(3) 

requires at least degree 10 For  the same reason we did not investigate states w~th 
P = C = ( - 1 )  J+l at all, but  we expect them to he qmte high m the spectrum 

Finally we remark that many of our results were checked by using independent 

programs or  by performing other internal conslstenc~ checks 

3 Results and discussion 

The accuracy of the results obtained can be estimated by observing the depen- 
dence of the elgenvalues on the number  of basis vectors Table 2 shows this 

dependence  for the 0 ++ state The choice N b = 13, 30, 68 can be understood from 
table 1 and the 21, 47, 106 correspond to addmon  of tnwal  wave functions to the set 

immediately  below We estimate our result for the ground state energy of H~ to be 

correct  to 5 significant figures 
In  principle a lower bound for the ground state can be found using Temple 's  

lnequahty  [16] This states that if H is a self-adjolnt operator  bounded from below 
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TABLE 2 

Emgenvalues e I of H(~ for SU(3) m the jPC = 0++ sector as a funct ion of the number  

N b of basis  vectors used m the Raylelgh-Ratz vana t l ona l  ca lcu lanon  
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N b 1st s ta te  2nd state 3rd state 

13 12 61975 15 70477 17 89338 

21 12 61817 15 62457 17 85260 

30 12 59110 15 44853 17 34241 
47 12 59079 15 42199 17 32980 

68 12 58885 15 39047 17 23844 
106 12 58869 15 38468 17 23411 

with  lowest  and  next lowest elgenvalues E 0, E I then if ~ is a normal ized  state 

( ( ' / ' ,  g ' )  = 1) in the Hflbert  space on which H acts and  for which ( ' / ' ,  H g ' )  < E < E 1, 

then  

(g',  H 2 ~ )  - (g, ,  H g ' )  2 

(q ' ,  H g ' )  - E -  ( g ' ,  H g ' )  4 E °  (10) 

Howeve r  the  mat r ix  elements  of Hd2 for wave funct ions of degree >/8 are tedious to 

o b t a i n  The  bes t  bound  we ob ta ined  so far in this way is ra ther  poor  (compared  to 

our  es t imate) ,  VlZ 

e i (g round  state)  >~ 12 485 

In  tab le  3 our  results for the e, for various jpc states are l isted We consider  our  

resul ts  are  accura te  to a difference of about  1 m the last digit  quoted  The  

inaccu racy  of  the states o ther  than 0 ++ and 2 ++ is due to the small  d imens ion  of  the 

bas is  used However  for the lowest  s tate in each jpc channel  the es t imates  are good  

enough  to fo rm a quahta t ive  pic ture  of the spec t rum which IS given in fig 1 (see 

f igure  cap t ion)  

Some no tab l e  features are the fol lowing For  very small  volumes, the lowest  s ta te*  

is the 2 ++ fol lowed by  a 0 ++** This pa t t e rn  repeats  i tself  in that  e g the 1 - -  state 

(vec tor  s tates  are absent  in the SU(2) theory) lies above  the 3 - s tate We might  

also specula te  that  for a given spin J the lowest exci tat ion is the one with 
P = C = ( -  1)  J and the highest  that  with P = C = ( - 1 )  J t l  

All  the low-ly ing  eigenvalues in each case, with except ion of e 4, were ra ther  s table 

to  a range  of  the var ia t ional  pa rame te r  w lying between 1 - 2  To get a rel iable  

e s t ima te  of  e 4 requires an ext remely  large basis  and  hence our  results for this 

coeff ic ient  are  the least rehable  and must  be cons idered  as merely an es t imate  of the 

* The mass  of a s ta te  is given b_~ the energy of the s ta te  minus  the ground state energ~y 
**  This  as in  fact  true for all S U ( N )  The quahta t tve  features of the low-lying spect rum remmn the same 

for general  N [17] 
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TABLE 3 

L o w - l y i n g  mgenva lues  of  the effective h a m f l t o m a n  H '  for  SU(3) as c o m p u t e d  

b y  the Raylexgh-Ratz t e c h m q u e  (cf eqs (4),(5),  e 0 = 0 for  all s ta tes  hs ted)  

JP( F £1 ~:~ t~ f4 Nb 

0 ++ A 1 12 5887 4 0628 0 4280 0 104 106 

0 + + A l 15 38 4 79 0 57 0 08 106 

0 ++ A 1 17 23 - 5 28 0 50 0 05 106 

0 + A 1 28 - 6  4 

0 + A l 1 7 8  - 4 5  0 4  15 

0 A 1 > 20 0 

1 T 1 17 05 4 67 - 0  39 0 06 29 

1 + T 1 23 5 4 

1 + T 1 18 5 4 

1 * + T 1 > 2 0  0 

2 ~ + E 14 854 4 719 0 4 7 4  0 20 69 

2 + * T,  14 854 - 4  719 0 474 0 02 69 

2 ++ E , T  2 17 26 5 27 - - 0  45 69 
2 + E, T2 22 1 5 0 - 0  3 17 

2 + E,T~ 21 - 4  4 

2 E, T~ > 20 0 

3 A 2 T 1 T 2 1 6 5  4 7  0 4  7 

4 ~ * A I , E ,  T1 ,T 2 18 3 

N b IS the & m e n s i o n  of  the basa~ used P denote~ the cubic  g r o u p  r ep re sen t a t i on  A gap  mean~ e~ther 

t ha t  the respec t ive  quanti ty,  ~ a s  no t  measu red  o r  that  ~ e  did  no t  o b t a i n  a reliable es t imate  

MIM(O ++ ) ! i  

3 

2 

1 - -  

m 

- -  _ _ _ _  

0++ 0+-0-+0- -  1 --- 1 -+ i +- 1 ++ 2+.2.- 2 - + 2 ~ 3  -- /.+,- 
jPC 

Fig  1 Qua l l t a t l~e  p ic tu re  of  the low- ly ing  s p e c t r u m  of  H~ for  SU(3),  c o r r e s p o n d i n g  to the ~alues of  e~ 

in tab le  3 O n l y  a t  m o s t  the lowest  2 s ta tes  are d r a ~ n  for  each  I ec A d a s h e d  hne  ind ica tes  tha t  the resul t  

has  some  e r r o r  b a r s  (in some cases qui te  large) The  '~a~y lines for  the 0 1 + ' , 2  s ta tes  ind ica te  m 

o u r  ~iew a conserva t ive  guess for  a lower  b o u n d  in these channe l s  
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o r d e r  of  m a g n i t u d e  In general,  even for a fixed basis  d imension,  our  results  are 

expec ted  to  be  less accurate  than  the cor respond ing  SU(2) case s imply because  there 

a re  m a n y  more  degrees of f reedom 

Luscher  po in t ed  out  that  it was na tura l  to p lo t  physical  quan tmes  as functaons of 

a va r i ab le  z = M ( L ) L  In  his or iginal  work Luscher  hoped  that  combin ing  knowl-  

edge of  the  smal l  z spect rum with the known behav lour  in the z ~ oe l imit  would  

l ead  to an es t imate  of the inf ini te  volume value M(0 + ) / A M s  Tins original  op t imi sm 

was encouraged  by  calculat ions m the O ( N ) - o - m o d e l  [18] In the Yang-Mll l s  theory  

however  a p lo t  of  M(O+)/AMs against  z 0 = M(O+)L shows a very rap id  crossover  

m the region  z 0 - 1 - 2 A s lmdar  behavlour  occurs in the case of SU(3) In fig. 2 

we p lo t  M(2++)/Ags as a funct ,on of z 2 = M ( 2 + ~ ) L  Here  M(2  ++) is def ined as 

M ( 2  ++) = { [ M ( 2  +~, E )  + 2 M ( 2  ++, T ) ] ,  (11) 

the  c o m b i n a t i o n  for winch the S0(3)  b reak ing  term does not  cont r ibu te  W e  chose 

to p lo t  the  2 ++ not  because we necessar i ly  beheve that  the 2 ++ will turn  out  to be 

the  lowest  exci ted  state for all volumes bu t  because  our  results for the 2 ++ are 

p r o b a b l y  more  precise than those for the 0 +÷ Our  p lo t  follows the scheme of ref 

Fig 2 

10 6 

10 ~' 

Iq ( 2 ++) 
A ~  

10 2 

10 0 

i i i i i 

I I I I 

05 10 15 20 25 

Z2 

Energy gap ~¢(2 ++) in the 2 ++ sector as a function of z 2 for SU(3) The meamng of the curves ts 
explained in the mare text 
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[13] F rom the definition of the running coupling g(AMS ) it follows that 

In 

m 

M(2 ++) 

AMS 
ln(zx)  + ~ + 2-,2;, ~ (ln b,,X )) 

- ~2 (ln(a~r) + I " ( 1 ) )  + O(X3), (12) 

where b o, b 1 are the Callan-Svmanzlk fl-functlon coefficients for S U ( N )  

per turba twe expansion for z~ 

lS then reverted 

The 

2 = ~ c,X" (13) 
v =  1 

X = ~ d,,:~ (14) 
v =  I 

The right curve represents eq (12) where ~ is evaluated numerically by truncating 
the expansmn (14) after the first four terms The left curve is obtained by 

ehmlnat lng X from (12) using (14) to obtain 

M(2 -+  ) 
I n - -  - ~ l n ( -  2 ) +  , ,  a,z 2 (15) 

A M S  ~,= 3 

and including coefficients v ~< 0 Here we observe a rapid crossover region at 
z 2 -  1 5 - 2  Around  these values the two curves deviate considerably and we 

conclude that  the results for this ratio should not be trusted beyond :~ - 1 3 In fig 
2 we ha,,e not  included a MC estimate for the infinite volume limit, (which is 

approached  from below, cf eq (3)), since there appears, at present, to be no definite 

consensus In the hterature The crossover seems to set m at sllghtl~ higher : values 
than for SU(2) Indeed we might expect the crossover behaviour to become 

smoother  as N increases because the traple-glueball coupling vamshe~ as N---, at, 
causing a more  rapid approach to the :~ ~ ~v hmlt Ho 'sever  the triple-glueball 
coupl ing may  still be large for comparatively low values of N such as N = 3 [11] 

The behavlour  of mass-ratios on the other hand is expected to be smoother In 

table 4 we give the coefficients r,, occurring in the expansion 

- -  - r . ;  2 , (16) 
M ( 2 + + )  ,,=0 

and the corresponding curves are plotted in fig 3 This smooth behavlour would 

suggest that  the results can be trusted at least right up to the crosso,,er region 
Surprisingly, we find (in contrast to the case of SU(2)) that the mass rano 
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TABLE 4 

The first four coefficients m the z 2 expansions of mass r a u o s  (cf eq  (16)) 
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j PC F r 0 r t r 2 r 3 

0 + + A l 1 23 0 017 - 0 003 - 0 0 0 i  

0 ++ A I 2 05 0 025 0 01 

0 - +  A 1 2 3  0 2  

1 T 1 1 97 0 13 - 0  05 
2 4 +  E 1 0 0 - 0 0 1  

2 ++ T 2 1 0 0 0 0 0 5  

2 ++ E , T  2 2 06 0 029 0 01 

M(O++)/M(2 ++) lnmal ly  increases with z 2, however very slowly.  The ratio is 
init ial ly 1 23 (very close to the SU(2)  value), and it only increases by < 1% up to 

z 2 - 2  The sphttxng between the E and T states, (for Much  we again stress our 

es t imate  is not  very accurate), remains small even at z 2 - 1.5 and leads to the hope 

that the curves merge again m the z 2 --* oo limat 

In fig 3 w e  have also included the data points  extracted from the SU(3)  MC 

measurem en t s  by Berg et al [7] We note  very good agreement in the region 

z 2 - 1 5 - 2 ,  however  for the lower z values, where the perturbatIve results become  

more  and more  rehable, the MC data points are systematical ly higher than the weak 

30 

i'.'1 25 

-~2+ +) 
20 

15 

10 

05 

1 £ 

05 10 15 2LO 2 
Z2 

Fig 3 Mass  ratios as a function of  z 2 The crosses are estimates for M ( 0  + + ) / M ( 2  ~+) extracted f r o m  

SU(3) M C  measurements by Berg et al [7] 
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coupling curve (a similar but less accentuated trend appears in SU(2)) At least two 

explanations of this deviation are possible Either the small z results obtained above 

for the mass ratios are vahd in a region much smaller than we would like to expect 

or the tensor mass has been underestimated in ref [7] A possible source of such an 

underestlmaUon, which has been pointed out to us by Luscher. is as follows First 

recall that the Hllbert space of physical states of the finite volume theory divides 
into N 3 sectors of definite "'electric flux" [12] The states in the~e sectors are 

degenerate to all orders of perturbation theory, however, the degeneracy is hfted 
due to tunneling The intricate analytical calculation of the ground ~tate splitting 

A E  at weak couphng has been performed in SU(2) by Koller and van Bail [19]* 

They find that tunnehng contributions become appreciable for z -  1"* Numerical 

calculations of A E have also been performed by Berg et al [6,7] In the large L 

hmlt -4 E is related to the string tension o, -4 E - oL 

The true ground state having zero electric flux will be lnvarlant under rotations 

and hence operators belonging to non-trivial representations of the cubic group will 

have vanishing expectation values in this state However the other states carrying 

electric flux, which are nearly degenerate with the vacuum for small z. belong to 
non-tnwal representations of the cubic group and there is no a pnon  reason for the 
adjoint Polyakov loop to have vanishing expectation values in these states In the 

latter case the correlation funcuon of two adjolnt Polyakov loops would contain 

terms which would be independent of their "'time" separation Certainly when the 

"t ime" extent T of the lattice is made large these contributions are damped 

exponentially e x p ( - A  ET) ,  however as stressed above, for small z. -4 E is very small 

and hence the t-independent terms could be slgmficant unless T is made sufficiently 

large Omission of t-independent terms m fitting the adjomt Polyako~ correlation 

function MC data would result in underestimating the tensor mass 
The or,_gln of the discrepancy between the perturbatlve and MC results concern- 

lng the mass ratio M(0 ++)/M(2 ++ ) discussed above and concerning the ground 

state sphttlng -4E [7,19], are questions that should be resolved m the near future If 
it turns out that mass ratios do indeed show only weak volume dependence, as the 
present evidence indicates, then perturbatlve results certainly yield reliable informa- 

tion on the spectrum which can be used profitably m conjunction with MC analyses 
In that case it would be worth the effort to extend the computation made in thi~ 
paper to include larger bases and to investigate higher state~ The more pressing 

problem however is to further improve the MC spectrum calculations 

We are indebted to M Luscher for many helpful discussions and suggestions We 
also profitted from discussions with P van Bail and G Munster Finally we 

appreciated the help of R Wohlert in preparing the manuscript 

* The ca lcu la t ion  for SU(3) is under  way [201 
**  The same region ~he re  the per turba t ion  theor'j becomes  unrehab le  



complete  up to degree 10. We use the nota t ion  (tj 

degree 2 
degree 4 

degree 6 
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Appendix 

Below we list a set of polynormal generators of 0(3)  and  SU(3) lnvar lants  

k )  to denote tr(c,c/, cA) 

degree 8 

degree 10 

(n), 
(lJ)(lJ) 
(,j,j), 
(ij)(jk)(kl) 
(nj)(jkk) 
(ijk)(1jk) 
OJk)Okj) 
(,j)(,kjk), 
Oj)(,kk)(jll) 
Oj)(,kl)(jlk) 
(1j)(Ijk)(kll) 
(1j)(jk)(lkll) 
(njk)(jkll) 
(lljk)(jllk), 
OJ)(Jk)(lkl)(lmm) 

(1j)(j k)(lll)(kmm) 

(1j)(] k)Olm)(klm) 

(ij)(kl)(1j k)(lmm) 

(1j)(kl)( U m)(klm) 

(1j)Okk)(jllmm) 

O])Ojk)(kllmm) 

O])(klm)(uklm) 

(llj)(kkl)(jlmm) 

(nj)(jkl)(kmlm) 

(1jk)(u1)(klmm) 
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