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Low-lying energy values of SU(3) gauge theory in a L periodic box are calculated for small
volumes using Luscher’s effective hamiltomian The lowest particle state 1s the 2% Mass ratios
exhibit smooth volume dependence 1n the domain of valhidity of the perturbation expansion 1n
particular M(0**)/M(2"*) remamns practically constant at ~123 up to M(2* )L ~2

1. Introduction

It 1s generally believed that pure SU(N) gauge theory has a mass gap m and
possesses a rich low-lying spectrum of stable particles and resonances — the glue-
balls The calculation of this spectrum 1s not only a challenging theoretical problem
in 1ts own right but one of phenomenological interest since in QCD we anticipate
the existence of low-lying resonances which may be interpreted as glueballs Despite
the fact that mwoang effects will certainly distort the quantitative relationship
between the spectra of glueballs in the pure and full theores 1t 15 expected that
qualitative features such as quantum numbers will survive Experimentally, there are
at present resonances (¢ (1440), 8 (1690)) which do not seem to fit into a pure quark
model framework, but their interpretation as glueballs remains controversial [1]

In the infinite-volume continuum Yang-Mills theory the glueball masses i, are
proportional to the lambda parameter Ay

m,=cAys (1)

1

The determination of the numbers ¢, 1s a non-perturbative problem Attempts to
calculate the spectrum in this framework are all semi-phenomenological [2], or
mvoke other ad hoc assumptions [3] which make the control or estimation of
systematical errors practically impossible and lead to varying results Reasonable
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model 1independent qualitative considerations by Jaffe, Johnson and Ryzak [4]
favour J”¢ quantum numbers 0,277 07,2 ' for the lowest states. and 1t 15
generally argued that they should be narrow compared to mesons with valence
quarks

Probably the most promusing approach to the problem to derive results from first
principles 1s the numerical Monte Carlo (MC) method applied to the theory
formulated on a fimte L*7T latuce Most of such simulations i the past [5],
however. suffered from a poor signal-to-noise ratio because of the high dimension of
operators used as interpolating fields for the glueballs In a recent calculation Berg,
Billoire and Vohwinkel have obtained significantly better statistics bv measuring
correlations of spatial Polyakov loops 1n the adjoint representation In both SU(2)
[6] and SU(3) [7] ther analysis favours 2** to be the lowest state for all volumes

In MC analyses, as in real experiments, one must incorporate sufficient theoreti-
cal mput to extract rehable predictions from the raw data In particular m MC
simulations one must understand and 1solate the cut-off effects

In the scaling region, for sufficiently large correlation length the dependence on
the lattice spacing @ for mass ratios 1s supposed to be of the form

m,
=—+0(a"m?) (
My

to
~—

The O(a*) corrections are non-umversal, 1e depend on the lattice action used
These effects should be fitted or one can attempt to suppress these effects by using
Symanzik improved actions [§]

In an umportant paper Luscher {9] has proven* a umwversal formula which
expresses precisely how the stable particle masses M, (L) in a finite volume with
periodic boundary conditions. exponentially approach their infinite volume lmit
m,= M () For low-lymg scalar glueballs, for example. the leading term is given
by

(MI(L)_m,)/m,———)fC,(mL)fle‘\/*mL 2 (3)

[ -

and where C, 1s the approprnate triple-glueball coupling (1in the mtmite volume
theory)

Lattice strong coupling (SC) expansions have been made by Munster for the
glueball spectrum [10] and for the triple-glueball coupling [11] Extrapolating the
results to regions of smaller coupling suggest 07 to be the lowest state with strong
interactions C =100 [11] This order of magnitude for C 1s consistent with MC
calculations by de Forcrand et al [5} and would mean non-neghgible finite volume
corrections despite the exponential fall-off

* The proof 1s to all orders of perturbation theory, but thought to be of general s ahdity
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As a further check comparisons of MC results should be made with analytical
calculations 1n domains where the latter can be performed. These are the regions
where either the ultraviolet cut-off @' or the infrared cut-off L are small in units
of m The former 1s the SC expansion mentioned above

In a finite volume the spectrum 1s discrete and moreover for small volumes the
spectrum can be calculated perturbatively since then the running coupling constant
1s small In another pioneering work, Luscher [12] showed that the lowest-lying
energies of the SU(N) theory on a torus have an expansion*

1 = _ -
E=— Y e, A=[g(Awl)]” (@)
A=1

and that they are exactly equal to the eigenvalues of an effective quantum mechani-
cal hamiltomian H’ acting on wave functions in the space of constant gauge
potentials

ey k=1,2,3, a=1, .N*-1

H’ has an expansion

A ®
[ v ’
H' =+ Y NH!, (5a)
r=0
with
1 82 lf b d.a.b.c.d
H/= _____‘_7 abefec Ca(.’ CLC
0 ag.a 4 AR
2 dcf dc;
H! =kc],
H;=0,
H{ =k, Hj + k35" %cfcheied + x4s”b‘d[56,“c,”c,‘c,‘1— 3c,“c,”c,‘c,‘1] . (5b)

where the numerical constants «, are given by

N
K== X1 89153165,
T

11N
ky= — S X 0 409052802
9(47)
2
Ky=—"73,
P 15(4n)
0619331710 (5¢)
Kg= — X c
Y 5(4q)?

* Most of the equations 1n this paper can be found in the works of Luscher we include them to make
the paper self-contained
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f4%¢ are the SU(N) structure constants and s“?<¢

tensor defined by

the totally symmetric invariant

Sahcd= éN(dubedetd+ da(edebd+ dadcdeb()
+%(8ab8td+ 8ac6bd+6ad8bc) (6)

Luscher and Munster [13] calculated the eigenvalues of H’ for the case of SU(2)
Among therr results they found that the 2%* was the lowest state 1n the perturbative
region, however, the mass ratio m(0*")/m(2") decreased with increasing volume

In this paper we report on the analogous calculation for the phenomenologically
mnteresting case of SU(3) During the course of completion of our work the MC
computations [7] were made and hence enable a comparison

2. Aspects of the Rayleigh-Ritz variational calculation

The physical states of H’ are gauge invariant
¥(Rc) = ¥(c) (7)

for R 1n the adjoint representation of SU(N) These states are classified according
to their transformation properties under symmetries of H’, (¢, = A%}),

parity s S AN
charge conjugation ¢, > — (¢,)".
cubic rotations GOS8, S0

Note that in fact HJ 1s mvariant under the full rotation group SO(3) and 1ts
eigenstates can be classified by J, the angular momentum The SO(3) 1s only broken
down to the cubic group ¢ by H{ As pointed out by Luscher and Munster [13] this
symmetry at small X 1s “accidental”. and the rotation symmetry which 1s restored at
large I may put states which have different J into the same multiplet The
scrambling of the lowest lying states 1s however limited by the cubic symmetry

The method we used follows exactly that of Luscher and Munster* First, the
eigenvalues of H{ are determined by applying the Rayleigh-Ritz vanational method
using a basis of harmonic functions of the form

T(c) = O(cJexp( — Laoctes). (8)

* The second numernical method used n [13] a “l/a expansion, 15 not applicable to SU(N) for
N>2
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TaBLE 1
The number of generators N, and of hnearly independent invariant polynomuals N,
of a given degree D

D N, (D) Ny (D) 7 oN(d)
0 0 1 1
2 1 1 2
4 2 3 5
6 5 8 13
8 6 17 30
10 11 38 68

where Q(c¢) 1s a polynomual 1n the ¢’s having appropriate transformations for a
given JP¢ and  1s a vanational parameter In a second step the perturbations H/,
v > 1 are treated according to standard Rayleigh-Schrodinger perturbation theory

It 1s 1n the first step that SU(3) turns out to be much more awkward to handle
than SU(2) For example, for SU(2) the 3 monomals

g,=TrG”, v=1,2,3, G, =cict (9)

generate the space of polynomials invariant under the symmetries of Hj (1e those
appropriate to form a basis of the J” =07 states) In SU(3) the situation 1s much
more complicated and although a general theorem of Hilbert [14] tells us that the
number of (invariant) generators of the space of mnvanant polynomials 15 finite, we
(the authors) do not yet know how large this number 1s We adopted a constructive
approach to the problem For a fixed degree we first established an exhaustive list of
mvarntants For this task, a result of Dittner [15], which says that any SU(3)
numerically invariant tensor of rank > 6 can be expressed as an outer product of
lower-rank nvanant tensors, 1s particularly useful Then, starting with the lowest
degree and increasing the degree 1n steps of 2, we formed a maximal subset S of
independent generators (up to a given degree) by systematically working our way
through the hist and admitting a member as an element of S only 1n the case that 1t
could not be expressed as a polynomial 1n the previously established elements of S
The test of independence was done numerically using randomly generated config-
urations of the ¢’s In table 1 we tabulate the number of independent generators N,
to degree 10 1n the ¢’s, and the number N, of linearly independent polynomuals to
which these give rise* A list of a set of generators, complete (only) up to degree 10,
1s given 1n the appendix We see that to this degree there are already 25 generators
which s greater than the amount of ¢’s These therefore must be related in a more
complicated algebraic manner We did not pursue the matter further since length 10

* The independence of our set 1s also confirmed during the Gram-Schmidt orthogonahsation procedure
(13]
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non-trivial wave functions were the longest that we could presently handle in
practice (we say a wave function 1s non-trivial 1f 1t has no common factor ¢’c?)
Without a finite generating basis on hand, however, we could not generate the wave
function inner products and expectation values recursively as was the case for SU(2)
[13] The main amount of CPU time 1s required for the calculation of the mnner
products of elements involving polynomials of the same length — the others can be
related to these, and the hamiltonmian matrix elements can then be related to the set
of inner products from knowledge of various laplacians The CPU time requred for
calculating an mner product depends strongly on the permutation symmetry of the
polynomials involved and 1n particular 1s greatly reduced when the number of traces
of length 2 1s large We required approximately 200 hours of CPU time on the
DESY-IBM to generate the entire set of matrix elements required for our basis of
106 wave functions i the 0" sector Although we realise that our programs were
not optimised, 1t would require drastic improvements to tackle the computation of
mner products mvolving polynomuals of larger length, since our method would
typically need a factor ~ 100 more CPU time to compute inner products mvolving
vaniants of length 12 compared to those for length 10

The spectrum of SU(3) 1s richer than that for SU(2) since C-invariance gives rise
to an additional non-trivial quantum number. and also vector states are present
Furthermore the practical treatment of J”¢ states other than the 0" 1s much more
mmvolved, eg the pseudoscalars are not all generated sumply as products of
f“"‘eu,‘cl“c,”c,‘\ times the scalars and the 2"~ states are not all of the torm scalar times
G;,— 188, (r=1.2) as 1s the case for SU(2) We followed an analogous approach
to constructing their bases as that described above for the scalars. and this made the
calculations very tedious and time consuming Moreover we were often restricted to
a very small basis due to the fact that the construction of suitable wave functions
required rather long polynomials. an extreme example 1s the 07~ which for SU(3)
requires at least degree 10 For the same reason we did not investigate states with
P=C=(—1)"" at all. but we expect them to he quite high in the spectrum

Finally we remark that many of our results were checked by usmg independent
programs or by performing other internal consistency checks

3 Results and discussion

The accuracy of the results obtained can be estimated by observing the depen-
dence of the eigenvalues on the number of basis vectors Table 2 shows this
dependence for the 0** state The choice N, =13.30,68 can be understood from
table 1 and the 21, 47,106 correspond to addition of trivial wave functions to the set
immediately below We estimate our result for the ground state energy of H; to be
correct to 5 significant figures

In principle a lower bound for the ground state can be found using Temple’s
mequality [16] This states that 1f H 1s a self-adjoint operator bounded from below
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TABLE 2
Eigenvalues & of H} for SU(3) 1n the /7€ = 07" sector as a function of the number
N, of basis vectors used 1 the Rayleigh-Rutz variational calculation

Ny 1st state 2nd state 3rd state
13 12 61975 1570477 17 89338
21 12 61817 1562457 17 85260
30 12 59110 15 44853 17 34241
47 12 59079 1542199 17 32980
68 12 58885 15 39047 1723844

106 12 58869 15 38468 17 23411

with lowest and next lowest eigenvalues E;, E; then if ¥ 1s a normahzed state
(¥, ¥)=1) 1n the Hilbert space on which H acts and for which (¥, H¥)< E<E|,
then

(¥, H*¥) — (¥, H¥)

(¥, H¥) E—(V.HV)

<E, (10)

However the matrix elements of Hj? for wave functions of degree > 8 are tedious to
obtain The best bound we obtained so far in this way 1s rather poor (compared to
our estimate), viz

¢ (ground state) > 12 485

In table 3 our results for the ¢, for various J”¢ states are listed We consider our
results are accurate to a difference of about 1 m the last digit quoted The
maccuracy of the states other than 0%+ and 2** 1s due to the small dimension of the
basis used However for the lowest state in each J*¢ channel the estimates are good
enough to form a qualitative picture of the spectrum which 1s given m fig 1 (see
figure caption)

Some notable features are the following For very small volumes, the lowest state*
1s the 2** followed by a 0" *** Ths pattern repeats 1tself in that e g the 17~ state
(vector states are absent in the SU(2) theory) lies above the 37~ state We might
also speculate that for a given spin J the lowest excitation 1s the one with
P = C=(—1)’ and the highest that with P=C=(—1)’"!

All the low-lying eigenvalues 1n each case, with exception of e,, were rather stable
to a range of the vanational parameter « lying between 1-2 To get a reliable
estimate of e, requires an extremely large basis and hence our results for this
coefficient are the least reliable and must be considered as merely an estimate of the

* The mass of a state 1s given by the energy of the state mmus the ground state energy
** This 1s 1n fact true for all SU(N) The quahtative features of the low-lying spectrum remain the same
for general N [17]
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TABLE 3
Low-lying eigenvalues of the effective hamiltoman H’ for SU(3) as computed
by the Rayleigh-Rutz techmque (cf eqs (4),(5). g = 0 for all states hsted)

JPe r £ £ £ € Ny,
o+t A, 12 5887 —4 0628 -1 4280 -0 104 106
o' A 1538 —-479 -057 008 106
0 A, 1723 -52K -0350 -003 106
0+~ A 28 -6 4
(U A, 178 -45 -04 15
(U A, > 20 0
1 T 1705 -467 -039 -006 29
1= T, 23 -5 4
1+ T, 18 -5 4
1" T, > 20 0
P E 14 854 —4719 -0474 020 69
2t T, 14 854 -4719 -0474 —-002 69
PR E.T, 1726 —527 —045 69
2+ ET, 21 -50 03 17
27 ET, 21 —4 4
2 ET, >20 ]
377 AT T, 165 —-47 -04 7
4+~ ALET.T, 18 3

Ny, 15 the dimension of the basis used I' denotes the cubic group representation A gap means erther
that the respective quantity was not measured or that we did not obtain a reliable estimate

M/M(0*™)

2+ . —— ———-

== S 1++ F4 - — o~ 4

(o ) 0 o R ¢ I R B A M I R RA
JPC

Fig 1 Qualitative picture of the low-lying spectrum of H,, for SU(3), corresponding to the values of ¢

in table 3 Only at most the lowest 2 states are drawn for each /¢ A dashed line indicates that the result

has some error bars (in some cases quite large) The wavy lines for the 0 ~ 1%',27  states indicate 1n
our view a conservative guess for a lower bound 1n these channels
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order of magmitude In general, even for a fixed basis dimension, our results are
expected to be less accurate than the corresponding SU(2) case simply because there
are many more degrees of freedom

Luscher pointed out that 1t was natural to plot physical quantities as functions of
a variable z= M(L)L In hs ongnal work Luscher hoped that combining knowl-
edge of the small z spectrum with the known behaviour 1n the z —» o0 himit would
lead to an estimate of the infinite volume value M(0")/Agz This oniginal optimism
was encouraged by calculations in the O(N )-o-model [18] In the Yang-Mills theory
however a plot of M(0")/Ass agamst z,= M(0")L shows a very rapid crossover
m the region z;~1-~2 A similar behaviour occurs 1n the case of SU(3) In fig. 2
we plot M(2*")/Axg as a function of z,=M(2"*)L Here M(2**) s defined as

MQ ) =L1[MQ* E)+2M2**.T)]. (11)

the combination for which the SO(3) breaking term does not contribute We chose
to plot the 27" not because we necessarily believe that the 2"+ will turn out to be
the lowest excited state for all volumes but because our results for the 2** are
probably more precise than those for the 0°* Qur plot follows the scheme of ref

22

Fig 2 Energy gap M(2* ") m the 2% sector as a function of 2, for SU(3) The meamng of the curves 1s
explained 1n the main text
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[13] From the definition of the running coupling g(.\yg) 1t follows that

11\7(2++) | 1 b,
M s =In{z) + PN

(ln byA')
—(In(47 )+ I"(1)) + O(N}), (12)

where b,, b, are the Callan-Symanzik p-function coefficients for SU(N) The
perturbative expanston for z,

= YN (13)
r=1
1s then nverted
A=Y 4,z (14)

1

v

The right curve represents eq (12) where A 1s evaluated numerically by truncating
the expansion (14) after the first four terms The left curve 15 obtaned by
elimmnating A from (12) using (14) to obtain
M2y
In———— = 2In(z,) +
‘/\M’S p=-3

1

a,z (15)

v

(SR

and including coefficients » <0 Here we observe a rapid crossover region at
z;~15-2 Around these values the two curves deviate considerably and we
conclude that the results for this ratio should not be trusted beyond z, ~ 13 In fig
2 we have not included a MC estimate for the mfinite volume ltmit, (which 15
approached from below. cf eq (3)). since there appears. at present, to be no definite
consensus 1n the literature The crossover seems to set 1n at shghtly higher - values
than for SU(2) Indeed we mught expect the crossover behaviour to become
smoother as N increases because the triple-glueball coupling vanishes as N — oc,
causing a more rapid approach to the z, = oo Iimit However the triple-glueball
couphng may still be large for comparatively low values of N such as N =3 [11]

The behaviour of mass-ratios on the other hand is expected to be smoother In
table 4 we give the coefficients r, occurring 1n the expansion

M,

(2+$ Zryz‘z. (16)

p=0(

and the corresponding curves are plotted 1in fig 3 This smooth behaviour would
suggest that the results can be trusted at least right up to the crossover region
Surprisingly, we find (in contrast to the case of SU(2)) that the mass ratio
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TaBLE 4
The first four coefficients 1n the z, expansions of mass ratios (cf eq (16))

JPC r I n P r
ot A, 123 0017 —0003 —-0001
0+ A 205 0025 001

0+ A 23 02

1~ T, 197 013 —-005

2+ E 1 0 0 -001
2t T, 1 0 0 0005
2t ET, 206 0029 001

M@O*")/MQ2"") mtially increases with z,, however very slowly. The ratio 1s
mnitially 123 (very close to the SU(2) value), and 1t only increases by < 1% up to
z,~2 The splitting between the £ and T states, (for which we again stress our
estimate 1s not very accurate), remains small even at z, ~ 1.5 and leads to the hope
that the curves merge again in the z, — oo limt

In fig 3 we have also included the data points extracted from the SU(3) MC
measurements by Berg et al [7] We note very good agreement in the region
z,~15-2, however for the lower z values, where the perturbative results become
more and more reliable, the MC data points are systematically higher than the weak

2=

1 1 1 —

05 10 15 20 25
Z,

Fig 3 Mass ratios as a function of z, The crosses are estimates for M(0**)/M (2" ") extracted from
SU(3) MC measurements by Berg et al [7]
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coupling curve (a simuilar but less accentuated trend appears in SU(2)) At least two
explanations of this deviation are possible Either the small - results obtained above
for the mass ratios are valid 1n a region much smaller than we would like to expect
or the tensor mass has been underestimated in ref [7] A possible source of such an
underestimation, which has been pointed out to us by Luscher. 1s as follows First
recall that the Hilbert space of physical states of the finite volume theory divides
into N? sectors of definmite “electric flux” [12] The states n these sectors are
degenerate to all orders of perturbation theory, however. the degeneracy 15 lifted
due to tunneling The intricate analytical calculation of the ground state splitting
AE at weak couphng has been performed in SU(2) by Koller and van Baal [19]*
They find that tunneling contributions become appreciable for = ~ 1** Numerical
calculations of AE have also been performed by Berg et al [6,7] In the large L
limat AE 1s related to the string tension o, AE ~ ol

The true ground state having zero electric flux will be invariant under rotations
and hence operators belonging to non-trivial representations of the cubic group will
have vamishing expectation values 1n this state However the other states carrying
electric flux, which are nearly degenerate with the vacuum for small z. belong to
non-trivial representations of the cubic group and there 1s no a prion reason for the
adjoint Polyakov loop to have vanishing expectation values 1n these states In the
latter case the correlation function of two adjoint Polyakov loops would contain
terms which would be independent of their “time” separation Certainly when the
“time” extent 7 of the lattice 1S made large these contributions are damped
exponentially exp(—A4 ET), however as stressed above, for small z. AE 1s very small
and hence the r-independent terms could be significant unless 7" 1s made sufficiently
large Omussion of f-independent terms 1 fitting the adjoint Polyakov correlation
function MC data would result in underestimating the tensor mass

The ongm of the discrepancy between the perturbative and MC results concern-
ing the mass ratio M(0"")/M(2" ") discussed above and concerning the ground
state sphtting A E [7,19], are questions that should be resolved in the near future If
1t turns out that mass ratios do indeed show only weak volume dependence. as the
present evidence mndicates, then perturbative results certainly vield reliable informa-
tion on the spectrum which can be used profitably in conjunction with MC analyses
In that case 1t would be worth the effort to extend the computation made in this
paper to include larger bases and to investigate higher states The more pressing
problem however 1s to further improve the MC spectrum calculations

We are indebted to M Luscher for many helpful discussions and suggestions We
also profitted from discussions with P van Baal and G Munster Finally we
appreciated the help of R Wohlert 1n preparing the manuscript

* The calculation for SU(3) 1s under way [20]
** The same region where the perturbation theory becomes unreliable
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Appendix

Below we hist a set of polynomual generators of O(3) and SU(3) invanants
complete up to degree 10. We use the notation (y k) to denote tr(c,c,. ¢;)

degree 2 (),

degree 4 )y
(y),

degree 6 (1Qk)(ky)
(17)(Jkk)
(yk)(yk)
(yk)(iky)
(y)(kjk) ,

degree 8 (y)akk)(yi
(y)(akD(tk)
(y)(yk)(kl)
()(k)(kL)
(ayk)Ok
(yk)(lik),

degree 10 )k)k)(Imm)
()(k)@lly(kmm)
(k) alm)(klm)
(u)(kl)yk)(lmm)
(y)(kI)(ym)(klm)
(17)(1kkk)(jllmm)
()(yk)(kllmm)
(y)(klm)(yklm)
()(kkD)(jlmm)
(up)(skI}(kmlm)
(wk)(yl(klmm)
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