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We argue that an inflationary phase in the very early universe is related to the transition from 
a higher dimensional to a four-dimensional universe. We present details of a previously considered 
model which gives sufficient inflation without fine tuning of parameters. 

1. Introduction 

An inflationary phase [1] at an early stage of the evolution of our universe has 
become a paradigm of modern cosmology. (By inflation we mean an exponential 
expansion of the Robertson-Walker scale factor R3(t). ) The horizon problem can be 
solved if the inflationary phase lasts long enough. At the same time the inflationary 
cosmology could explain the flatness, age, homogeneity and isotropy of our uni- 
verse. In some of the first attempts inflation was related to the phase transition of 
grand unified theories. This scenario seems to be difficult to realize and attention 
has been turned to models with a scalar singlet field [2] responsible for inflation, 
sometimes called the "inflaton". Although useful for purposes of demonstration 
that inflation could work, the existence of a special inflaton field only motivated by 
cosmology seems not very satisfactory, especially since these models need very 
accurate fine tuning of parameters. It would be more natural to relate the inflation- 
ary phase to some transition period where the properties of the universe change 
qualitatively. 

Could unification of gravity (strings) be the underlying physics for inflation? It 
was proposed [3] that inflation describes the transition from higher dimensional 
cosmology to an effective four-dimensional cosmology*. In this context inflation 
could be a purely (classical) gravitational mechanism. Higher dimensional theories 
have become candidates for a unification of all interactions, including gravity. The 

* For alternative ideas in this context see ref. [4]. 
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simplest version would be riemannian geometry in more than four dimensions, in 
which case four-dimensional gauge interactions arise from isometrics of internal 
space [5]. The model which so far is perhaps closest to observation [6] starts from 
d =  18 gravity coupled to a Majorana-Weyl spinor [7]. Since models of simple 
riemannian gravity coupled to fermions are not renormalizable and in general not 
anomaly free, modifications and generalizations are needed. Most popular today are 
string theories [8]. In their most ambitious version they may be considered as a 
purely bosonic unification of all forces in 26 dimensions [9]. 

All realistic higher dimensional models must have a ground state solution with 
spontaneous compactification of the extra dimensions. The characteristic length 
scale L of the internal space must be of the order of the Planck length or somewhat 
larger, whereas the observed four spacetime dimensions are flat. If this ground state 
solution is classically stable, there always exist Friedmann-type cosmologies at late 
times where L ( t )  is almost constant whereas the expansion of the four-dimensional 
Robertson-Walker scale factor R3(t ) is well described by the standard four-dimen- 
sional hot big bang cosmology. However, in the very early universe L and R 3 are 
expected to be of the same order of magnitude. The static approximation for L 
breaks down and we have to consider the coupled system for the time evolution of 
L ( t )  and R3(t ). The basic question of Kaluza-Klein cosmology [10] is: How did 
L ( t )  and R3(t ) become separated by so many orders of magnitude? 

We relate inflation and this asymmetric evolution of L ( t )  and R3(t ). The basic 
mechanism can be understood in a four-dimensional language. We choose the 
d-dimensional cosmological constant (or some other appropriate parameter) so that 
the four-dimensional cosmological constant vanishes for the ground state with 
L = L 0. However, an internal radius L ( t )  different from L 0 induces a positive 
effective cosmological constant in four dimensions. This will be responsible for a 
phase of exponential expansion of R3(t ). 

Two new features are important for the inflationary phase of higher dimensional 
cosmology: 

(i) There is a natural scalar singlet with an associated exponentially fiat potential. 
This scalar singlet ¢p is related to the internal space. In the simplest version, the 
deviation of the overall internal scale from its ground state value, L ( t )  - L o, leads 
after dimensional reduction to a four-dimensional scalar field q0(t). A change of 
volume does not change the symmetries and ¢p must be a singlet under the 
four-dimensional gauge transformations. (In more complicated models, other char- 
acteristic scales of the internal manifold may also play this role.) The potential 
terms in the action are typically polynomials in L -2, whereas kinetic terms have the 
form - ( L / L )  2 which reflects their gravitational origin. For a standard normaliza- 
tion of the kinetic term one has ¢p- l n (L /Lo )  and the potential is W(cp)= c + 
b exp(-acp)  for large L. This exponentially flat tail of the potential is relevant for 
the inflationary period [11,12] since it corresponds to a very slow time evolution of 
¢p(t). On the other hand, near the ground state L = L 0 the potential has a relatively 
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Fig. 1. Difference between the potentials w(qo) and v(~0). 

large quadratic term -/.L2ep 2 (~2 ~ (1017 GeV)2) which facilitates sufficient heating 
at the end of the inflationary period. 

(ii) The four-dimensional equivalence principle is broken as a consequence of higher 
dimensional unification. The scalar particle corresponding to cp does not move on 
four-dimensional geodesics in the absence of non-gravitational interactions. It feels 
additional gravitational forces. A coherent mode cp(t) receives additional gravita- 
tional contributions to its evolution equation. As a consequence, the potential W(cp) 
which determines the time evolution of cp(t) is different [11,12] from the potential 
V(cp) appearing in the energy momentum tensor and acting as a cosmological 
constant for the gravitational field. A typical form for the potentials W(cp) and 
V(cp) is depicted in fig. 1. The "cosmological constant" V(cp) vanishes exponentially 
for large ¢p (large L). This leads to a comparatively small Hubble constant (typically 
H = 1012 GeV) during inflation. As a consequence, the density fluctuations Ap/p  
are naturally small without fine tuning of parameters. This was demonstrated [12] in 
a simple model [13] where an adjustment of one parameter within 10% was 
sufficient to obtain a long enough inflationary period and a satisfactory value for 
the density fluctuations. The small Hubble constant during inflation is also effective 
in avoiding problems with particle production during inflation and unacceptable 
temperature fluctuations in the background radiation by anisotropies in the gravita- 
tional field. This is remarkable since the other relevant mass scale during inflation, 
the inverse radius L-l ( t ) ,  is typically of order 1016-1017 GeV. 

The breaking of the four-dimensional equivalence principle and the difference 
between W(q0) and V(cp) seems crucial to obtain enough inflation and small A p / p  
without fine tuning of parameters. For this it seems essential that the higher 
dimensional gravity theory contains higher derivative terms such as R~poR ~p" etc. 
Indeed, contributions to the four-dimensional action of the form f(ep)R, which at 
first sight seem to violate the equivalence principle for the motion of the scalar % 
can always be removed by an appropriate Weyl scaling of the four-dimensional 
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metric. With this scaling one has W = V and classical physics is of course indepen- 
dent of the choice of variables. (We are not concerned here by additional gravita- 
tional interactions of other fields.) In contrast, terms like F(rp)R 2 cannot be scaled 
away simultaneously. Here the breakdown of the four-dimensional equivalence 
principle is a genuine physical effect and not a mere artefact of an inappropriate 
scaling of the metric. The use of R 2 terms for compactification [13] and cosmology 
[3] has been proposed earlier, but it has sometimes been criticized. Let us therefore 
briefly review some arguments why higher derivative terms are expected in generic 
gravitational theories. 

For any discussion of the ground state (compactification) and cosmology the 
relevant classical field equations are those derived from the effective action, which 
includes the effects of quantum fluctuations. The full effective action is often not 
known, but information on its general form can be obtained from symmetry and 
scale arguments. In any quantum theory of gravity, including string theories, the 
effective action should be invariant under general coordinate transformations*. We 
expect the effective action to be a complicated function of the various gravitational 
invariants R, R~R ~, R~poR~P~, R~R~R p~, etc. In string theories, such terms 
appear even in the tree approximation [14]. The full classical field equations will be 
rather complicated. For large enough length scales one may use an approximation 
where only terms up to a certain number of derivatives are included, resulting in an 
action which is a polynomial in the gravitational invariants. Of course, such an 
approximation is in general expected to break down somewhere near the Planck 
scale. A second derivative approximation which only involves R is often insufficient 
to give a satisfactory description of the ground state. R2-type terms seem to be 
needed for compactification of pure gravitational theories [3] as well as for string 
theories [15] and therefore cannot be neglected for cosmology. 

The main objection against R2-type terms concerns classical stability. Indeed, 
higher derivative actions lead to unstable higher poles in the propagators [16]. 
However, the location of the higher poles indicates [17] the breakdown of the 
polynomial approximation for the effective action rather than a genuine classical 
instability. As long as all relevant energy scales are below the higher poles We may 
simply neglect them. In particular, the effective action need not be a generalized 
Euler form [18,19]. 

So far our remarks have been rather general and we would like to demonstrate 
them in a specific model. We want to describe inflationary cosmology which finally 
changes to a four-dimensional Friedmann universe**. We therefore require that the 
model has a satisfactory ground state with vanishing four-dimensional cosmological 

* We neglect here corrections arising in perturbation theory from fluctuations with length scale larger 
than the compactification scale L. 

**  Models which are only valid for the inflationary phase [4] can demonstrate a fast time evolution of 
R 3 (t),  but they are not suitable for more precise questions like heating after inflation, the evolution 
of density fluctuations etc. 
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constant and static internal space. It would be interesting to study some of the 
superstring compactifications [15]. However, the form of the higher derivative terms 
in the effective action is not yet settled. In addition, the compactifications discussed 
so far lead to massless scalar fields which could ruin any sensible cosmology by 
modifications of the Friedmann universe long after the inflationary period. Waiting 
for a solution to these problems we come back to our toy model [3] based on pure 
gravity in 4 + D dimensions with the most general four-derivative approximation for 
the effective action. We believe that this model reflects the main features of 
inflationary cosmology for more realistic models. The main results are already 
published [3,11,12], but a more detailed exposure of results and the various steps in 
the calculation seems useful in view of their applications and generalizations to 
more realistic models. In this paper we establish the existence of inflationary 
solutions in a higher dimensional language. An alternative equivalent description in 
terms of four-dimensional fields will be given in forthcoming publications. 

In sect. 2 we describe our model and derive the field equations for an ansatz 
which is separately homogeneous and isotropic in internal dimensions and in the 
usual three-dimensional space. In sect. 3 we discuss exact de Sitter solutions with 
static internal space as a prototype for exponential expansion of R3(t ). More 
general inflationary scenarios are described in sect. 4. We explain the approxima- 
tions valid for arbitrary inflationary periods and solve the field equations within 
these approximations. We describe two scenarios with sufficient inflation: One is 
realized whenever the internal radius L(t )  has grown sufficiently larger than L 0 
whereas the other corresponds to solutions in the vicinity of exact de Sitter 
solutions. For both scenarios no fine tuning of parameters is necessary. The 
discussion in sect. 5 briefly addresses the problem of how the universe could enter 
the inflationary phase. 

2. Cosmological equations in fourth order gravity 

In this paper we will illustrate the possible gravitational origin of an inflationary 
phase [3] in the evolution of the early universe within a simple model [13] of pure 
d-dimensional gravity. The action of this model is 

1 
S =  - -~D f d d ~ l / 2 ( a R 2  + f lR~-R~ + y R ~ e R f ' ~ e  + ~R + e ) . (1) 

Here R ~ e ,  J ~  and R are the d-dimensional curvature tensor, Ricci tensor and 
curvature scalar defined as usual and we use conventions with signature 
(+  . . . . . .  ) where the curvature scalar is negative for spacelike dimensions 
forming a sphere. The d-dimensional metric is ~ with ~ = I det g~l. In general we 
denote d-dimensional objects and indices by hats. For convenience we have ex- 
tracted a normalization factor V D which is the volume of the internal space in the 
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ground state. In these conventions the parameters a, fl and y are dimensionless and 
8(e) has dimension (mass) 2 ((mass)4). 

The action (1) should be considered as an approximation to the effective action at 
the length scale L o of spontaneous compactification, where all quantum fluctuations 
with length scales shorter than L 0 are included. Contributions from additional 
terms with more than two powers of the curvature tensor are assumed to be small. 
The field equations derived from this effective action are 

^ ^ a ^ ^ a ÷ ~ + S R ~  2aRR;,~ + 2flR;,aR ~ + 27R~a~R ~ 

- '  ^ flRa~R + vka~xk  a~x + 8R + e) 

^ ^ ,9 f l (  ^ ^ ,~e  ~,~ 

^ d ,~  ~ 6 ) ~  1 ^ + 2 y ( R ~  ~ ;a,~+ ^ a~ R~ ~; 7T~. (2) 

The quantity ~ on the right-hand side of eq. (2) is the d-dimensional generalization 
of the energy-momentum tensor. It includes all contributions to the field equations 
from incoherent excitations and vanishes for zero entropy. Formally we may write 

incoheren t  " 

We assume for the ground state that incoherent excitations can be neglected to a 
good approximation ( ~  = 0). In the parameter range 

~ = D ( D -  1 ) a +  ( D -  1)f l+ 21' > 0, (4) 

8>0,  (5) 

the field equations (2) admit a solution [13] where the ground state is a direct 
product of four-dimensional Minkowski space ~/¢4 and a D-dimensional "internal" 
sphere S D, provided we adjust the cosmological constant e: 

e = ¼8 2 D ( D -  1 )  
(6) 

The radius L 0 of S ° is determined by 

8 
L°2 = 2---( (7) 
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The effective Newton's constant governing four-dimensional gravity is positive for 

X = ( D -  1)13 + 2~ > 0 (8) 

and the Planck mass is given by 

M 2 = 16~r~ 6. (9) 

Throughout this paper we always consider parameters fulfilling the constraints (4), 
(5), (6) and (8). 

The adjustment (6) of the cosmological constant e is crucial for this solution. 
Otherwise, no static ground state of the form dg 4 × S v can be obtained. Rather one 
would be left with a non-vanishing effective four-dimensional constant or with 
solutions which have not the direct product form "four-dimensional spacetime × 
internal space" and where the internal space is not compact [20]. The adjustment of 
e seems not natural. This is the cosmological constant problem in the context of 
higher dimensional gravity. Any explanation of why the characteristic length scale 
for the D internal space dimensions is today so different from the characteristic 
length scale for the usual three space dimensions requires a vanishing four-dimen- 
sional cosmological constant for the ground state. Internal length scales of order 
M~ -1 are very natural in a theory with parameters of order Mp. The puzzling 
question is rather: Why is the characteristic length scale of our four-dimensional 
world so large? In our context, this includes the problem: Why is e so near the value 
given by (6)? We will not address the cosmological constant problem in this paper 
but we note that the inflationary period is insensitive to e somewhat different from 
(6). In any case, we note that for a given adjustment (6), ~,E × Sa-E is a solution of 
the field equations only for E = 4. Any other number of flat dimensions would 
require a different adjustment. 

If the above ground state is classically stable*, we can immediately conclude that 
there are Friedmann-type cosmologies: 

g.a  = ~.~,  g . .  = 0, 

L a = 0 ,  L = 0 ,  (10) 

goo = 1 ,  gio = 0 ,  

g i j  = R 2 3 ( t ) g i j ,  (11) 

 oo= p(t), 0, 

= (12) 
* Even without classical stability the Friedmann-type solutions exist i f  the subsector of SO(D + 1) 

singlets is stable. For an extensive discussion of classical stability of our ground state see ref. [17], 
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(We use conventions where/2, ~... are d-dimensional indices, a,/3. . ,  are internal 
indices, /~, 1,... are indices of usual four-dimensional spacetime and i, j . . .  denote 
the three usual spacelike coordinates.) The metric g~ is the Robertson-Walker 
metric of standard big bang cosmology with R3(t ) the Robertson-Walker scale 
factor. The time evolution of R3(t ), energy density p(t), and pressure p( t )  with the 
associated temperature T(t) is the standard evolution of big bang cosmology for an 
unbroken SO(D + 1) gauge theory coupled to gravity. The cosmology described by 
(10)-(12) is not an exact solution of the field equations (2), but is a very good 
approximation for TZL 2 << 1. It should adequately describe cosmology sufficiently 
well after the Planck era. However, for T 2 of order Lo 2 the approximation 
(10)-(12) becomes meaningless and one has to study how the higher dimensional 
cosmology evolved towards the Friedmann solution, which is the main purpose of 
this paper. 

Let us then investigate the cosmology obtained from the effective action (1) 
before the transition to the Friedmann solution (10)-(12). For a first study, we 
make an ansatz of separate homogeneity and isotropy in the D internal and the 
three usual spacelike dimensions. This amounts to an ansatz for the metric ~a~ 
where the "Minkowski" components ~,, are given by a Robertson-Walker metric 
(12) and the off-diagonal components ~ vanish. However, the internal metric ~ 
is now characterized by a time dependent radius L( t )  of SD: 

z , ( t )  o 
g~a- Lo gaB" (13) 

The curvature tensor is easily calculated for this ansatz: 

/~ a,83,8 = -- ( n - 2  q'- L 2 L - 2 ) ( g a T ~ f l 8  - ga3g,sy)  

= cl( jB -  od 0, 

ijk,  = -- ( ktl~ 3 2 q- ~ 2 R 3 2 ) ( gik g j l  -- g i lg jk  ) 

= 

k,,,,,j = - L L -  1R3R 3 lgaflg,j  = ¢3gaflgi j  ' 

h o o a o  = - LI - . -  lt,~a = c , ~ . a ,  

k iojo = - h ~ R ; ~g,j = csg ,  j . (14) 
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The curvature tensor vanishes for all index combinations except those obtained by 
permutations of the above expressions. As usual, k = + 1 ( -1 )  denotes the closed 
(open) Friedmann universe with k = 0 the border line. The dots denote time 
derivatives. 

The requirement of separate homogeneity and isotropy implies for the d-dimen- 
sional energy-momentum tensor ~ :  

= 

= (15) 

with vanishing ~ for all other index combinations. We introduce the dimensionless 
variable s by 

with 

s( t)  = ln (L ( t ) /Lo ) .  (16) 

and the Hubble "constant" 

g = L / L  (17) 

H(t )  = R 3 ( t ) / R 3 ( t ) .  

With these definitions the functions c i in (14) read 

C 1 = -- ( t  -2 -~- L2L -z) = - (Lo2exp( - 2s) + g2), 

c2= - ( k R ;  2+ k 2 R ;  2) = - ( k R 3  2 + H2) ,  

C 3 = - L L - l k 3 R K  1 = -gH,  

C4-~- - £ t - 1  ~--- - (~'--I- ~ 2 ) ,  

C5=  - / ~ 3 R ~ - I  = - ( / - t +  n 2 ) ,  

(18)  

(19)  
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and we can now give the field equations (2) for our ansatz: 

a ( D Z ( D  - 1)2c 2+ 36c 2+ 36D2c 2 + 1 2 D ( D -  1)elC 2 

+ 1 2 D Z ( D -  1)Qc 3 + 72Dc2c 3 -4D2c24 - 36c g -  24Dc4c 5 } 

+ f l (  D ( D - 1 ) 2 c ~  + 12czZ+ 3 D ( D +  3)c~ + 6 D ( D - 1 ) Q c  3 

+ 12Dc2Q + 2D(D - 1)Qc 4 + 12c2c s + 6Dc3c 4 

+ 6 D c 3 c  , - 1 8 D c 4 c  5 - D ( 3 D -  1)c42- 24c 2 } 

+ y ( 2 D ( D -  1)c 2+  12c 2+ 12VcZ-4Dc24 - 12c 2} 

+ 3 ( D ( D - a ) Q  +6c2+6Dc3} +e 

- 4 a ( D d  + 3 H ) [ D ( D -  1)k 1 + 6k 2 + 6D~ 3 + 2D~ 4 + 6 4 ]  

- 2fl  ( ( Dg z + 3" + 3Hi )[ D (  D - 1 ) (  c ,  - Q )  + 3 D ( c ~  - c 3 )] 

+ (3H 2 +/-I + DH~)[6(c 5 - c2) + 3D(c 4 - c3) ] + D ( D  - 1 ) ~  x + 6H~ 2 

+ 3D(H + i)k3 + [3DH + D ( D +  1)i] e4 + (3D~+ 12H)4 ) 

-8~ '{  D ( D -  1)$2(c4 - Cl) + 6 H 2 ( c 5 - c 2 )  

+ D ~ 4 + 3 H 6 5 + 3 D H ~ ( c 4 - c 3 ) + 3 D H g ( c s - c 3 ) )  = -13, (20) 

D( D - 1)~'c 2 - 4(3a + fl + 7)c22 + D[12Da - ( D - 9)13 + 43'] c 2 

+D [4Da + (D + 1)/3 + 4~] c ] + 4(3a + 2fl + "[)c~ + 4D(D - 1) aclc 2 

+ 2 D ( D  - 1)(4Da + 3/3) ClC 3 + 2D(D - 1)(2Da + / 3 ) Q c  4 

+ 8D(D - 1)aQc 5 - 4 D / 3 c 2 c  3 - 8 D o t c 2 c  4 - 4flc2c 5 

+2D(8Da + 3/3)c3c 4 + 2D(12a  - /3)c3c  5 + 2D(8a  + 3/3) c4c 5 

+ 8 ( D ( D -  1)Q + 2c 2 + 4Dc3 + 2Dc4+ 4cs} + e 

- 4 a ( D g  + 2 H ) [ D ( D -  1)k 1 + 662+ 6DO 3 + 2 0 6 4 +  665] 

-2/3  { D ( D  - 1)(Dg 2 + 3"+ 3Hg)(c 4 - ¢1) "}- ( 6H2 + 2/~ + 2DHg)(c 5 - ¢2) 

+ (3DH 2 + DI2I+ D2Hg)(c4 - c3) + 3D(Dg 2 + f +  3Hg)(c 5 - c3) 

- D ( D -  1)~k 1 + 2D2O 2+ D ( D -  3)g~ 3 

+ [4DH + D ( 2 D -  1)g]64 + (12H + 7D~)65 } 

-8v((nn2 + 2H + 2DHi) (c  5 - c2) + D( Og2+ 3"+ 2Hi) 

× ( c  5 -  c 3 ) -  2Hk 2 -  DgO 3 + ( 4 H +  2D~)d 5} 

- 4 D ( D  - 1)a//1 - 4(6a +/3)//2 - 2D(12a  +/3)//3 

- 2D(aot +/3)//4 - -  8(3a +/3 + 7)//5 =/3,  (21) 
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( D -  1 ) ( D -  4)~c~ + 12(3a + f l  + ~,)c 2 

+ 3 1 1 2 0 ( 0  - 2)a  + ( 0 2 + 3 0  -- 12)13 + 4(D - 2)3'] c3 z 

+ [ 4 0 ( 0  - 2 ) a  + ( 0 2  + 0 - 4)13 + 4 ( 0  - 2 ) v ]  c j + 12(3,~ + 13 + ~ ) c  2 

+ 12(D - 1)(D - 2)aClC 2 + 6(D - 1 ) [2 D(D - 3)a  + (D - 4)13] cac3 

+ 2 ( D  - 1) [ 2 D ( D  - 3)a  + (D  - 4)/~] cxc4 + 12(9 - 1)(D - 2) aClC5 

+ 1216(D - a )a  + Dfl] c2c 3 + 24(D - 1)ac2c 4 + 12(6a + 13)c2c s 

+ 614D(D - 2)a  + (D - 4)fl] c3c . 

+ 6 [ 1 2 ( D  - 1)a + D13] c3c 5 + 614(D - a )a  + D13] c4c 5 

+ 3 { ( D - 1 ) ( D - 2 ) c  1 + 6 c  2 + 6 ( D - 1 ) c  3 + 2 ( D - 1 )  c 4 + 6 c  5 } + e  

- 4 a [ ( D -  1)~+ 3 H ] [ D ( D -  1)k 1+ 6k 2 +6D~ 3 + 2D~ 4+ 66s] 

- 2 f l  {(D - 1)(D - 2)(3"+ D~2+ 3Hg)(c 4 - ca) 

+ 6 (3H 2 + / ~  + D H g ) (  c 5 - c 2 ) + 3D (3H 2 + / q  + DHg )( c 4 - -  C3 ) 

+ 3 ( 0  - 2)(3"+ Og 2 + 3H~)(c s - c3) + 3 ( 0  - 1 ) H k  1 - 6H~ 2 - 3 ( 0  - 3) 

XH63 + [ 2 D ( D -  1 )g+  3 ( 2 D +  1 ) H ] 6 4 +  [ 6 ( D -  1 )g+  15H]~5} 

- 8 " y ( ( 0 -  1 ) [ ( D -  1)g 2 + 3"+ 3 H ~ ] ( c 4 - c l )  + 313H 2 + H +  ( 0 -  1)Hi]  

X ( c 4 -  c3) - (D - 1)scl - 3Hc3 + [ 2 ( 0  - 1)~ + 6H] ca } 

- 2 ( 0  - 1 ) ( 2 0 a  + 13) c'1 - 24a~'2 - 6 ( 4 0 a  + 13) k'3 

- 214Da + (D + 1)13 + 4"/] e 4 - -  6(4a + 13)e 5 = q. (22) 

At first sight these equations look hopelessly complicated. We will see, however, 
that suitable approximations which apply to our inflationary solutions will simplify 
them considerably. 

Conservation of the energy-momentum tensor 

7 ~ ;  ~ = 0 (23) 

follows directly from the field equations (2) by the use of suitable Bianchi identities. 
This is consistent with the possibility to introduce additional matter fields whose 
equations of motion obey the principle of equivalence in d dimensions. With our 
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ansatz, the conservation of the energy-momentum tensor reads 

t~ + 3H(t~ +/3) + Dg(t5 + ~) = 0. (24) 

We may use (24) to replace one of the equations of motion (20), (21) or (22) or 
alternatively as a consistency check of our calculations. 

3. Exact de Sitter solutions in higher dimensional gravity 

Let us now come to the main subject of this paper, the investigation of inflation- 
ary solutions of the gravitational field equations (2). Such solutions are char- 
acterized by a four-dimensional metric well approximated by de Sitter space with 
exponential expansion of R3(t ) and almost constant Hubble "constant" H. For 
inflation to last long enough and thereby solve the cosmological problems, the time 
evolution of H and correspondingly of s must be slow. This means that the time 
derivatives of s and H must be small compared with the characteristic scale given 
by H for a sufficiently long time: 

I~1 << H ,  (25) 

I/2r I << H 2 . (26) 

We will make this statement more precise below. 
We first observe that, depending on the parameters, the system of field equations 

(20)-(22) admits exact de Sitter solutions with exponential expansion of R 3: 

L( t )  = L H ,  

R2R3 2 = ~ 2 _  kR3 2, 

0 = P  = q =  0. (27) 

m 
The constant internal radius L n is different from L 0 and H is a positive constant. 
For  this solution, the c i defined in (19) are as follows: 

c 1 = --LH 2 = --y,  

C 2 =  C 5=  _ / ~ 2 ,  

¢3 --  ¢4 = O. ( 2 8 )  
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The field equations reduce to two coupled equations for ~2  and y: 

6 [ 2 D ( D - 1 ) a y - 8 ] H 2 + D ( D - 1 ) ~ y 2 - D ( D - 1 ) 3 y + e = O ,  (29) 

(D - 1)(D - 4)~y 2 + (D - 1)(D - 2)(24a/7 2 - 6 ) y  

+ 1 2 H 4 [ ~ + ( 1 2 - D ( D - 1 ) ) a - ( D - 4 ) f l ]  - 12H23 + e = 0 .  (30) 

Inserting the adjusted value of e from eq. (6) and defining 

Lo 
5 = Lh  = yL° ' (31) 

with L 0 the ground state internal radius (7), we can use (29) to calculate the Hubble 
constant H as a function of 5: 

1 D(D-1 )  (1-5)  2 

24 ~" (1 + o5) 8. (32) 

Here we have introduced the parameter combination 

D ( D - 1 ) a  ( D -  1 ) f l + 2 7  X 
o =  ~ ~ - 1 = ~ - -  1. (33) 

(Our constraints imply o >/ -1 . )  The internal radius for the de Sitter solution is 
determined by (30): 

ax53 + a252 + a35 + a 4 = P(5) = O, (34) 

with 

a 1 = D(D - 1) + D(D - 1)~ + [D(D - 1) - 12] o - 12o 2, 

3 D - 4 o 2  
a 2 = - 3 D ( D - 1 ) - 3 D ( D - 1 ) ' r - - D  [ D 2 ( D - 1 ) - 4 D + 1 6 ] ° + 1 2  D ' 

3 2 3 [ D 2 ( D _ l ) _ 4 D _ 1 6 1 0 ,  a 3 = - ~ [ D  ( D - 1 ) - 4 D - 1 6 ]  + 3D(D-1 ) . r+- -~  

a 4= - D ( D -  1) + 1 2 -  D ( D -  1)~ ' -  [ D ( D -  1 ) -  12 l a  (35) 

and 
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~-= - ( D -  4) f l  (36) 

Comparing the Hubble constant for the de Sitter solution with the Planck mass 
determined in (9), one finds 

if2 1 D ( D -  1) ( l - f ) 2  

M 2 = 384----~ X (1 + o5 ) "  (37) 

For  not too small values of X, /~z is considerably smaller than M 2. If 5 is also 
small, all relevant mass scales of such a de Sitter solution are well below the Planck 
mass. This enhances our confidence in the classical treatment used in this paper. We 
note that for D :~ 4 a value of "/ near ~/c, 

3 ( D -  1) 
re= 2 (DTgB, (38) 

implies that a 4 approaches zero which therefore leads to solutions with very small 
values of ~. For  D = 4, one has a 4 = 0 independent of a, fl and ~,. For a given set of 

parameters  a, r ,  3~ there are up to three exact de Sitter solutions corresponding to 
the solutions of (34). 

4. Approximate de Sitter solutions and the inflationary universe 

There is no reason to assume that the universe was ever described exactly by one 
of these exact de Sitter solutions. We are more interested in general solutions 
characterized by a slow time evolution of L(t) and an exponential expansion of 
R3(t  ) during an inflationary phase which, after a transition period, approach the 
Fr iedmann solution (eqs. (10)-(12)). During the inflationary phase, such solutions 
are approximate de Sitter solutions. 

Such a scenario may be realized if the internal radius L(t) grows until some time 
t o after which gravitational damping stops its further increase. The radius L(t) 
subsequently decreases. If  L(to) is sufficiently near L H the evolution of L(t) in the 
vicinity of t o may be described by small deviations from the above exact de Sitter 
solutions. In this case the evolution of L(t) after t o very much resembles the 
"roll ing down" of a scalar field from a potential maximum in models of "new 
inflation". As for these models, gravitational damping should be the dominant 
contribution to the kinetic terms for s for a certain period of time after t 0. During 
the inflationary period we have 

13"1 << IHgl,  I/~1 << I n / t l ,  (39) 
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and similar inequalities hold for all other higher derivatives of s and H. At some 
time t t the approximations (25), (26), (39) characterizing the slow time evolution of 
an approximate de Sitter solution will break down. Sufficient inflation will be 

obtained if 

t I -- t o >_. 60H-  x (40) 

Other scenarios for an inflationary period can be imagined. For example, L(to) 
must not necessarily be near the radius L H of an exact de Sitter solution, provided 
(25), (26), (39), and (40) hold. Also, the universe may go to an approximate de Sitter 
solution by tunnelling effects and subsequently be slowly moving away from such a 
solution. In fact, all solutions obeying (25), (26), (39), and (40) typically lead to an 
inflationary phase in the evolution of the universe. 

For  a study of possible inflationary solutions we may therefore linearize the field 
equations in g a n d / t  and neglect all second and higher time derivatives of s and H. 
All terms proportional R31 also can be omitted due to the exponential expansion of 

R 3 (t)- In this approximation one has 

c 1 = - y  = - L o 2z = - -  L o 2exp( - 2s ) ,  

c 2 =  - n  2 , 

c 3 = - Hg, 

C 4 =  0 ,  

c 5 = - H 2 - H ,  (41) 

and the field equations (20)-(22) simplify 

D( D -  1)fy  2 -  D( D -  1) 3y + e -  6H213-  2D( D -  1)ay]  

+72(34 + fl + 3') H 2 / 1 +  6D(124 + 3fl + 43')H3g 

+ 12D(D - 1)(D - 2) aHyg - 6D3Hg = - t3, (42) 

D( D -  1)~y 2 -  D( D -  1)3y + e -  6H z [ 3 -  2D( D -  1)ay]  

+ 72(34 + fl + 3 ' )H2H + 8D(D - 1)ayI:I- 4 3 H +  2D(124 + 3/3 + 83,)H3g 

+ 8D ( D - 1)( D - 2) aHyg - 4D3Hg =/3, (43) 

( D -  1 ) ( D -  4)~y 2 -  ( D -  1 ) ( D -  2) 3y + e -  12H 2 

X [3 - 2 (D - 1) (D - 2)ay - (124 + 3]3 + 23 ' )H 2] + 12(364 + 9/3 + 2y)  H 2 / t  

+ 12(D - 1)(D - 2)ayI:I-  631:1 + 1818(D - 1)a  + (D - 2)fl - 4V] Hag 

+ 12(D - 1 ) [ D ( D  - 5)a - 2fl - 23'] Hyg - 6(D - 1) 3Hg = q. (44) 
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As a check of our calculations we verified that the left-hand sides of (42)-(44) 
indeed obey the relation (24) up to terms involving more than one time derivative of 
H o r  s. 

To proceed further, we need to make some assumptions on the energy-momentum 
tensor ~ .  We will suppose that fql is roughly of the same order as t3 or smaller and 
that /3 is positive and at most of the same order of magnitude as t~- No further 
specifications of the equation of state are needed. In this case we can neglect the 
third term in (24) since I Dgl << 3H according to the approximation (25). Therefore 

decreases exponentially during the inflationary period 

t3(t) < ~(to)exp [ - 3H(t - to) ] (45) 

and we can neglect all effects from incoherent excitations during the inflationary 
period. As a consequence, the inflationary period is rather insensitive to the state of 
the universe before inflation: The universe may have been hot or c o l d -  in the 
limiting case containing almost no entropy! 

We now have to solve eqs. (42) and (44) with vanishing right-hand side. (Eq. (43) 
is automatically fulfilled since it follows from (24), (42), and (44).) This is a system 
of two differential equations for two functions s and H. Consistency requires that 
possible solutions obey the approximations (25), (26), and (39) which in general will 
be the case only for a certain range of values of the parameters a, fl and 3'. To 
leading order, the Hubble constant H 0 is determined by neglecting time derivatives 
of H and s in (42) 

H2 = H02 + AH, 

1 D ( D - 1 ) ( l - z )  2 
Hg = 24 ~ (1 + oz~ 3. (46) 

(6) and (7) for e and Lo 2 (compare eq. (32)). 
constant due to the time variation of H and s are 

Here we have inserted eqs. 
Contributions to the Hubble 
given by 

D ( D -  1) 
a . -  (3a+~+3') 

2~" (1 + o~)a 

{ DZ(D-1)(12a+3fl+43' ) ( l - z )  2 [D+(D-2)oz]}  
+ 24~ (1 + oz) 2 (1 + oz-) Hog. (47) 

According to our approximations we have A H "~< ng and H can be obtained to 
leading order by taking a time derivative of (46): 

a 

ffl=z(12--z + l----+~oz}Hog=gx(z)Ho d . (48) 
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One finds 
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k(z) 
Ho g3(z) +gl(z)g4(z) +g2(z)gs(z) = w ( z ) .  

(55) 

This is the key equation for the inflationary period. 
The inflationary period is characterized by a slow time evolution of s compared 

with the Hubble "constant" characterizing the expansion rate of the usual three 
space dimensions. This requires 

Iw(z)l << 1. (56) 

Our approximations (26), (39) hold provided 

Igl(z)w(z)l << 1, 

g,(z)w(z)- 2z << 1, 

dw w(z) dgl(z) 
2gl(z)w(z)- 2Zdz - 2zgl(z ~ dz << 1. (57) 

In the region of interest 0 ~<z < 1 the function gl(z) (eq. (48)) (as well as 
(z/ga)(dgl/dZ)) is of order unity or smaller provided z is not too near the pole at 
z = 1. Solutions consistent with our approximations therefore exist provided in 
addition to (56) one has 

zd~-z w ] << 1. (58) 

Assume now that at some time t o the universe is characterized by-an inflationary 
solution obeying (46), (55), (56), and (58). As we will see, such solutions often exist 
for an appropriate range of z. The critical question is: How long will the unverse 
stay in this regime? Is the time of inflation sufficient to produce the 60 or more 
e-foldings in R3(t ) required to solve the cosmological horizon and flatness prob- 
lems? We will discuss two different circumstances where sufficient inflation can be 
realized. 
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4.1 INFLATION FOR LARGE INTERNAL RADIUS 

Assume that at t o the internal radius L(to)  is much larger than L 0 so that z << 1. 
In this case w ( z )  approaches a constant 

1 D - 4  
k(0) 12 D ( D - 1 ) ( 3 ( D - 1 ) f l + 2 ( D + 3 ) ' ~ ) ,  

gl(0)  = 0,  

g2(0) = - ½ D 2 ( D -  1 ) ~  + ~ D ( D -  1 ) ( D -  8) + ~D(D + 3 ) ( D -  4 Y-- 

1 
g3(0) = ~-~ ( ( D  2 - 10D + 8)/~ - 4 (D + 4)7 }, 

gs(0) = - 2 k ( 0 ) ,  

k(O) 

w ( 0 )  = g 3 ( 0 )  _ 2k(0)g2(0) . (59) 

We choose parameters so that k(0) is negative and g3(0) - 2k(0)g2(0 ) positive. In 
this case the internal radius decreases slowly after t o with s almost constant. The 
evolution of s is driven by a constant force - k ( 0 )  and damped by a force 

g3(0) - 2k(0)g2(0 ). (This motion is a good approximation if w(0) is sufficiently 
small; condition (58) holds trivially for small z.) The inflationary period ends once 
L ( t )  becomes so small that the approximation w(z)  -~ w(O) (or (58)) breaks down. 
We denote by s 1 the value of s( t )  where this happens, and s o = S(to), As = s o - s 1. 
The duration of inflation is given by 

As 
t I - t o = (60) 

w(0)H0(0)  

and sufficient inflation is obtained for 

w(0) 1 
- -  < . ( 6 1 )  
As - 60 

It is obviously possible to obtain an arbitrarily long inflation time starting with very 
large s 0. This, however, corresponds to an enormous internal radius L(to)  = Loex p s o 
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which seems unlikely to be realized by the evolution of the universe prior to t 0. We 
rather concentrate on moderate values of L(to)  roughly an order of magnitude 
bigger than L0, implying a range 1 _< IAsl < 3. Sufficient inflation requires then 

Iw(O)l ~ ~0- (62) 

This can be realized if k(0) is sufficiently small compared to g3(0). The term 
- k(0)g2(0 ) in (59) is small and eq. (62) is fulfilled [12] for g2(0) > - 5 and 

2 D - 4 3(D - 1)/3 + 2(D + 3)3' 1 

3 D - 1 (D 2 - 10D + 8)/3 - 4(D + 4)y  ~< 3---0 " 
(63) 

For  suitable choices of fl and y this condition can be easily fulfilled and sufficient 
inflation is realized. 

As an example, we may consider, for D = 9, the range - /3  ~< 7 -< -0.85/3 < 0, a >_. 
/3. (The special case D = 4 will be discussed in a subsequent paper of this series.) In 
contrast to many four-dimensional models, sufficient inflation occurs quite natu- 
rally, without any extreme fine tuning of parameters! 

4.2. INFLATION NEAR EXACT DE SITTER SOLUTIONS 

Let us now discuss solutions in the vicinity of the exact de Sitter solutions 
presented in sect. 3: Assume that at t o the internal radius is near a critical value 
corresponding to an exact de Sitter solution 

Is(t0) - sl << 1 (64) 

with ~ = exp( - 2g) a zero of the polynomial P ( z )  (eq. (34)). Since 

k ( z )  = 1 2 D ( D -  1) ( l - z )  P ( z ) ,  (65) 

one has w(~) = 0 and we can expand the equation of motion (55) around 

or  

d w  
= -d-~-z (,~) Ho (,~) (z - ,~) (66) 

d w  
~= -22-d-~-z(~)Ho(2)g, (67) 

with g =  s -  g. This approximation is valid as long as [g[ is sufficiently small 
compared to one and leads to the solution 

s( t ) - ~ = ( S( to) - ~)exp(~( t  - to)) ,  (68) 
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with 

dw 
to = -25-d-z-z (5)H0(5) .  (69) 

For a small positive to this corresponds to a slow evolution away from the exact 
de Sitter solution. If S(to) is not extremely close to g this inflationary period ends at 
t 1 with tl - t o = to-1. Sufficient inflation is therefore obtained if 

to dw 1 
(70) H o - 2 5 d z  ' 5 '  60" 

Replacing the parameters a, fl and ~, by ~, o and 5 one obtains 

to 45 ( 1 + a ) ( 2 ( 1 + 2 ( 1 + o ) 5 + o 5 2 ) _ ( 1 _ 5 ) ( 1 + o 5 ) )  (71) 
Hoo= ( 1 - 5 )  2 D-----~ D 

with 

5 ) =  - -  
( D - l )  

(g3(5) + gl (5)g4(5)  + gE(5)gs(5)) ,  (72) 

a function of o, ~ and 5 which is of order one for a wide range of parameters. This 
is the result of ref. [3] and sufficient inflation can be obtained for a suitable choice 
of parameters. 

5. Conclusion 

We have found two scenarios for a phase of exponential expansion of three space 
dimensions, during which the volume of the internal space remains almost constant. 
Both are described by approximate de Sitter solutions. One scenario describes the 
vicinity of exact de Sitter solutions, whereas the other more generic scenario applies 
to situations where the radius of the internal space has grown sufficiently, say an 
order of magnitude, larger than its ground state value and starts to subsequently 
decrease. The inflationary phase achieves the separation of length scales between the 
internal space and our observed four-dimensional world. After inflation, a four- 
dimensional description of the universe becomes more appropriate for questions like 
the heating of the universe, entropy production, and the evolution of density 
fluctuations. We will give more details of the four-dimensional treatment [11,12] of 
our model in subsequent publications. 

Let us finally turn to the question: How did the inflationary phase start? For our 
solutions with two degrees of freedom R3(t), L(t) to apply, one needs at least one 
region of the universe which is sufficiently homogeneous and isotropic separately 
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for internal space and the observable three dimensions during the whole inflationary 
period. At some time t o this region must have evolved into one of the approximate 
de Sitter solutions. In particular, the energy-momentum tensor on the right-hand 
side of the gravitational equations must have become negligible. If this region is 
large enough so that boundary effects can be neglected, it can evolve to the entire 
presently observed universe. We emphasize that inflation is described here by pure 
classical gravity for the evolution of R3(t ) and L( t )  which should be reliable if all 
length scales are sufficiently larger than the Planck length. Ambiguities such as how 
to determine the cosmological constant in quantum theory are not immediately 
relevant in this scenario - except for the unnatural fine tuning (6) of the cosmologi- 
cal constant for the ground state which hopefully will be replaced by some 
mechanism of dynamical adjustment. We note that small changes of the four-dimen- 
sional or higher dimensional cosmological constant do not modify the inflationary 
phase. 

The question if the conditions for a beginning of inflation are fulfilled involves 
cosmology at length scales of the order of the compactification scale or shorter. This 
is a difficult subject since one moves quickly into a region where quantum gravity 
should play an important role. It is conceivable that the approximate de Sitter state 
at t o is a direct result of a genuine quantum process ("tunnelling from nothing" 
[21]). Alternatively, it is possible that this state is a result of previous (classical) 
evolution of the universe. In this case one first has to explain the split in topology 
into three and D space dimensions (a typical topology for the spacelike dimensions 
would be S°>($3).  This needs a description of transitions between different 
topologies. Continuous transitions of this type require "non-compact"  internal 
space [22] at intermediate steps. The next question concerns the validity of a 
description by two degrees of freedom R3(t ) and L(t) .  The likelihood for a region 
with sufficient homogeneity and isotropy depends to a large extent on whether 
additional degrees of freedom have a tendency to be damped and die out. (This is 
partly related to classical stability of our approximate de Sitter solutions, which is 
certainly a necessary condition for our scenario to work.) If a description by R 3 and 
L is appropriate, it is plausible that at some moment R 3 and L have grown 
relatively large, then L stops growing due to gravitational damping and subse- 
quently decreases because of potential terms. Entropy will be diluted in such a 
process so that neglecting the energy-momentum tensor becomes justified. Our 
scenario is therefore rather insensitive to the amount of entropy before inflation: 
The universe could have been hot or cold - in the extreme case even without any 
incoherent excitations and vanishing entropy. 
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