
Nuclear Physics B288 (1987) 77-94 
North-Holland, Amsterdam 

HIGH-ENERGY, LARGE-MOMENTUM-TRANSFER PROCESSES: 
LADDER DIAGRAMS IN ¢p3 THEORY (I) 

Per OSLAND* 

Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138, USA 

Tai Tsun WU* 

Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Federal Republic of Germany, 
and Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138, USA 

Received 23 September 1986 

Relativistic quantum field theories may give us useful guidance to understanding high-energy, 
large-momentum-transfer processes, where the center-of-mass energy is much larger than the 
transverse momentum transfers, which are in turn much larger than the masses of the participat- 
ing particles. With this possibility in mind, we study the ladder diagrams in ~p3 theory. In this 
paper, some of the necessary techniques are developed and applied to the simplest cases of the 
fourth- and sixth-order ladder diagrams. 

l . ~ e d u c ~ n  

During the sixties and early seventies, there was a systematic effort to study the 
asymptotic behavior of scattering amplitudes in relativistic quantum field theories. 
At that time, the limit of interest was large s (the square of the center-of-mass 
energy) with fixed transverse momentum transfers. One of the deep and unexpected 
results is that both the total hadron-hadron cross section Oto t and the ratio o,~/Oto t of 
the integrated elastic cross section to the total cross section must increase at high 
energies [1]. This was later confirmed both at the CERN ISR [2] and more 
dramatically at the CERN ~p Collider [3]. 

It is the purpose of this paper to initiate an attempt to extend this previous study 
to the case where both the center-of-mass energy and the transverse momentum 
transfers are large. Such problems have been studied before [4], but the present 
point of view is slightly different in the realization that, in the physically interesting 
cases, the transverse momentum transfers, although large, may nevertheless be much 
smaller than the center-of-mass energy. For example, at the CERN ~p Collider and 
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Fig. 1. The box diagram, or the fourth-order ladder diagram in ~p3 theory. 

the Fermilab Tevatron Collider, the center-of-mass energy is of the order of 1 TeV, 
while the transverse momentum transfer is perhaps of the order of 30 GeV/c. 
Theoretically, it may be added that it is sometimes more profitable to attempt to 
enlarge the range of applicability of an approach instead of jumping to a different 
case. 

For two-body elastic amplitudes, the case of interest is therefore 

s >> Itl >> m 2, (1.1) 

where m is the mass of the heaviest particle in the theory. It goes without saying 
that this case (1.1) cannot be analyzed by simply taking the previous results of large 
s and fixed t and then letting t be large. For example, s may be smaller than 
t 2/m 2, or more generally ln(s/m 2) and ln(Itl/m 2) may be comparable. 

In the study of the sixties on the case of fixed momentum transfers, the first step 
is to understand the ladder diagrams [5] in ep 3 theory, even though this is not a 
"good" theory. It is therefore a natural proposal to consider first the same diagrams 
in the more complicated situation of (1.1). In this paper, we restrict ourselves to the 
two simplest cases of the fourth- and the sixth-order ladders of figs. 1 and 2. The 
eighth-order ladder of paper II is already much richer in structure. In particular, we 
shall see that it is asymptotically given by two different expressions, depending on 
whether ln(Itl/m 2) is less than or larger than ½In(s/m z). 
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Fig. 2. The sixth-order ladder diagram in ~3 theory. 
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Fig. 3. An example of tower diagrams in gauge theory. 

There is a more speculative motivation for the present program. When applied to 
gauge theories, the important diagrams for large s but fixed t are the tower and 
multitower diagrams [6]. An example of the low-order tower diagrams is shown in 
fig. 3. Roughly speaking, the tower diagrams are one-dimensional. For (1.1), we 
speculate that, again when applied to gauge theories, the important diagrams are 
two-dimensional. If so, a low-order example of such diagrams is perhaps the one of 
fig. 4. A further speculation is then that these "castle" diagrams may be related to 
strings [7-9]. For both the one-dimensional tower diagrams and the two-dimen- 
sional castle diagrams, the sums of the contributions, but not the individual ones, 
are gauge invariant. Consequently, most of the castle diagrams, including the one 
shown in fig. 4, are not planar. 

2. Method of approach 

In studying the asymptotic behavior of scattering amplitudes for large s but fixed 
t, at least two distinct approaches have been used: in one approach Feynman 
parameters are employed, while in the other one the integrals are considered directly 
in momentum space. Generally speaking, the first approach requires less a priori 
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Fig. 4. An example of castle diagrams in gauge theory. 

knowledge about the asymptotic behavior, while the latter leads more readily to 
physical insight. 

At present very little is known about the corresponding asymptotic behavior of 
scattering amplitudes for (1.1). Under this circumstance, it is natural to try first the 
Feynman-parameter approach. This is the approach to be used here. 

In the Feynman-parameter approach for large s but fixed t, it is most convenient 
to start with the Mellin transform formula [10] 

fo ~ ( d s + B + i e ) - ~ s - ~ d s =  F(a) 
F(1 - ~)F(a - 1 + ~) 

(d  + ie)-I+~'(B n t-  ie) 1-a-~ 

(2.1) 

where e ~ 0 ÷ and F is the gamma function. A corresponding formula is needed for 
the case (1.1). For this purpose, let 

t= -toSV, (2.2) 

where t o > 0 and 0 < 7 < 1. Then the generalization of (2.1) to be used as the 
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s tar t ing po in t  here is 

fo~dSs-~( As + Bt + C + ie)-a]t=_to,, 

= [ F (  a ) ] - ' ( 2 ¢ r i )  -1 f~' +io¢ dzl f~2+io¢ dz  2 F( zl)F (z2)v  ( a -  z 1 - z2) 
c 1 - i ~  - c 2 - i ~  

XSc(1 - ~" - z I - 3,z2)(A + i e ) - z ' ( - a  + ie)-Z2(C+ ie)-a+z~+Z2to z2 . (2.3) 

T h e  r.h.s, of  (2.3) needs some explanation.  The  contours  of integrat ion for z 1 and z 2 
are paral lel  to the imaginary  axis. The delta funct ion 8c(1 - ~ - z 1 - yz2) is some-  
wha t  different  f rom the conventional  one since the a rgument  is complex.  I t  means  

that,  for  ~ real 
(i) the contours  are chosen so that  

1 - -  ~ - -  C 1 - -  " fez  = 0 ; (2.4) 

(ii) with (2.4), the 8c is 

8c(1 - ~ - z 1 - V z 2 )  = i - 1 ~ ( -  am z 1 - 7 I m  z 2 ) ,  (2 .5 )  

where  the ~ funct ion on the r.h.s, has a real a rgument  and is the usual Dirac  delta 

function.  Eq. (2.3) holds when a > 0, with c 1 and c 2 chosen so that  

C 1 > 0 ,  ¢2  > 0,  a - -  C 1 - -  C2 > 0 .  (2.6) 

T h e  re la t ion (2.3) can be proved  in various ways. One way makes  use of the 

represen ta t ion  

e i r =  (2 qr i ) -  1 ~ c + ' ~  dzF(z)ei 'Z/2T -~ , (2.7) 

where  c > O. With  (2.7), it is a s t raightforward calculation to find that  

1.h.s. of (2.3)= [~dss-~[F(a)]- le- '"a/2[~dyy~-lexp(iy(As-  Bros" + C + ie)) 
' t O - - " O  

1 ~ eiy(C+i~)f ~ = [ F ( a ) ] -  e-i"~/2f dyy~-I  dss-~ 
gO ~0 

X(2cr i )  : fq+ioo dzx f¢2+,OOdz~r(zOr(z~)e,.,~,+~,/z 
- c l  - i o ~  - c 2 -  i ~  

× [ ( A  + i e ) y s ] - ~ [ ( - B  + ie)toYSV] -~2 

= [F(a)]-%-~"~/2(E~ri)-zff~+~°~-c~-~o~ dzl "c2--i°°f~+i°~ dz 2 r (z l ) r (~ )  

× ei"(z, +z2)/Z( A + ie)-~X(- B + ie)-Z2to~( C + ie) -a+~l +z2 

X ~ " (  a -  Z 1 - -  z2)e  i~r(a-z'-z2)/2 f°~dss-~-z,-~.  ( 2 . 8 )  

. '0  
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In order for the integration over s to be meaningful, the contours of integration in 
z I and z 2 must have been chosen to satisfy (2.4). With this choice and since (with 
S ~ e r )  

fo~ dss x = foo d y e / r I m ? '  = 2rr6(Im )~), (2.9) 
0 Re)~= - 1  - ~  

it follows from (2.5) that the right-hand sides of (2.3) and (2.8) are the same. This 
proves (2.3). 

In this paper, this fundamental representation (2.3) is to be applied to the 
diagrams of figs. 1 and 2. An alternative way of studying these ladder diagrams in 
cp 3 theory is to use the Fredholm integral equation [5]. 

3. Box diagram 

For the q~3 theory, there is only one mass, which can be set to be 1 without loss of 
generality. Furthermore, in (2.3) t o appears in a rather trivial way. Hence, again 
without loss of generality, t o can be set to be 1. 

The scattering amplitude due to the box diagram of fig. 1 is proportional to [11] 

12 ") J° 1 ( 4 )  = dalda2da3da4(~ 1 -  ~ j  
j = l  

)< (~3~4Sq-C~lC~21-- [ 1 - - ( ~ l  q'C~2)(C~3"4-~4)] q-i8} -2 . ( 3 . 1 )  

The choice of the a 's  is also shown in fig. 1, In order to study the behavior of this 12 
for the case of (1.1) where s >> - t >> 1, define the Mellin transform 

[2(~) = fo=dSsY-~12( s, - s r ) ,  (3.2) 

where the choice of the exponent y - ~ is motivated by the observation that 12(s, t) 
is very roughly (i.e. modulo logarithms) of the order of (sltl) -1 = s -(l+v). We want 
to evaluate this [2(~') for ~ small and positive. 

By the fundamental formula (2.3), an alternative expression for this [2(~') is 

T2(~" ) ~--- ( 2 ~ i ) - 1  fcI +ioo d z 1  fc 2+joe d z 2 / . . , ( z l ) / _ , ( z 2 ) F ( 2  _ z 1 _  z2  ) 
c] - ioo c 2 - ioo 

1 ( 4 )  
× S c ( l + y - ~ ' - z  1-Yz2)fo d a l d a 2 d a 3 d a , 8  1 -  E a j  (a3an) - ' '  

j = l  

X(-a la2+ie) -z=[ - l+(a l+aZ)(a3+a4)+ ie ]  -2+''+=~ (3.3) 
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The a integrations are convergent if cx < 1 and c 2 < 1. Since ~ is small and, by  (2.4), 

1 + ~ / -  ~ - c 1 - 7c 2 = 0,  (3.4) 

let 

Then  

21 ---- 1 - [Yl ,  

22 = 1 - fY2. ( 3 . 5 )  

F(zx) = F ( 1  - ~ y l )  - 1 ,  

r ( ~ )  = r ( a  - ~y~)  - 1 ,  

and  

r ( 2  - z l  - z 2 )  = r(~yl + ~y2) - [~(Yl +Y2)] -1 ,  

8c(1 + l' - ~ - z~ - 3,z2) = ~-  ~8c(1 - y ,  - "fY2) • (3.6) 

Therefore,  to leading order for small ~, 

T 2 ( ~ ) _  _ ( 2 ¢ r i ) - l  fq+iOOdy I rc2+i~ ,  l %12-io ° oY2 tY l  + Y 2 ) - * • c ( 1 - Y ,  7Y2) 
" ('1 - - i o  ~ 

1 ( , )  
X f0 dotldot2dot3dot4~ 1 -  E Or] (Ot3Ot4)-l+S'Yl(o/lOt2) -l+~y2 , (3 .7)  

j = l  

where c 1 > 0 and c 2 > 0. The c 1 and c 2 in (3.7) are, of course, not  the same as the cl 
and c 2 of  (3.3) and (3.4). The evaluation of  the a integrations is completely 

s t ra ightforward;  the leading contributions for small ~ come from the four regions: 

(i) ~2, °t3, and o~ 4 are small, i.e. eq - 1; 

(ii) etl, a3, and a 4 are small, i.e. a 2 ~ 1; 

(iii) al ,  a2, and a 4 are small, i,e. a 3 ~ 1; and 

(iv) at ,  a2, and a 3 are small, i.e. ot 4 ~ 1. (3.8) 

By symmetry ,  the contributions from the first two regions are identical, and so are 
those f rom the last two regions. Adding together these four contributions, the result 
is 

f 2 ( f ) -  - ( 2 r r i ) - l f q + ' ~ d Y l  r c 2 + , ~  ,, , .  3' "2~ -3 -2 -z  cx-i°° Jc2_i~ ° o y z O c l . I - y l -  y2)  Yt Y2 

= -4" /~  -3 (3.9) 
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This means that 

for large s, and hence 
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12( s, - s  ~) - - 2 y s - t - V ( l n  s) 2 

I2( s, t) - - 2 s - l i t [ - q n s  ln]tl 

for large, physical values of s and t. This is the desired answer. 

4. Three-rung ladder diagram 

(3 .lo) 

(3.11) 

and 

I3(s, t)=2!fol  daj 8 1 -  E 0 / j  a(D,s+Dtt+Dm+ie)  -3, (4.1) 
/ =1 j = l  

A = (~1+0/3+0/5+0/6)(~2+0/4+0/6+0/7)  -0/~,  (4.2) 

Ds=0/50/6a7, (4.3) 

+a6(0/,0/4+0/20/3) , (4.4) 

D m -~- - A  + oL5 (0/1 --I- 0/3)(0/2 + °/4 "1- 0/6 "]- 0/7) -I- 0/7(0/2 + 0/4) 

X(al +0/3+0/s+0/6)+0/s0/6(0/2+a4)+a60/7(0/t +0/3). (4.5) 

Since this 13(s, t) is expected to be very roughly of the order of (st2) -1, define the 
Mellin transform by 

~(~) = fo~dSsZv-:I3(s,-sV). (4.6) 

By (2.3), this is given alternatively by 

T 3( i f )  = ( 2 " ' ) - - 1  fcl+ietJ dz1  f c 2 + , ~  d z ,  F ( z 1 ) F ( z 2 ) F ( 3  - z 1 - g 2 )  
C 1 -- l ~ C 2 -- ioD 

' d0/j 8 1 -   20/: 
j ~ l  j = l  

X (0/50/60/7)-zl(--Dt + ie)-Z2(D,, + ie)-3+zl+Z2A. (4.7) 

where 

The same procedure is now to be applied to the three-rung, i.e. sixth-order, ladder 
diagram of fig. 2, where the s channel is from left to right, while the t channel is 
from bottom to top. The scattering amplitude is proportional to [11] 
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For  this three-rung diagram, the change of variable (3.5) takes the form 
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z t = 1 - ~Yx, 

z 2 =  2 - ~ y  2 . (4.8) 

The choice of the additive constants 1 and 2 in eqs. (4.8) is obvious from an 
inspection of the 8 c function in (4.7). More generally, it follows from a study of the 
way in which the integrand diverges as one or more of the ay becomes small. 

The leading term for small positive f is then given by 

1 3 ( ~ ' )  - (2¢r i ) - '  f q + i ° ° d y l  ,'c2+i~ _ ~,-i~o J~2-ioo d y 2 ( Y '  +Y2)-' 

io'(,o, X ~ ( 1 - y l - T y 2 )  d% ~ 1 -  E a y  
j = l  

X (a5116aT)-I4~YlDt-2+~Y2(-Dm)-~(Yt+y2)A. (4.9) 

The important  task is to ascertain the regions in the six-dimensional 11-space 
which give the leading contribution to T3(f ) for small f. From the box diagram, it is 
seen from (3.8) that there are four such regions, namely, the four comers of the 
tetrahedron. We therefore expect the major contributions to (4.9) to come from the 
seven corners, i.e. the seven regions a 1 - 1, ot 2 - -  1, 113 - 1, 114 - -  1, 115 - 1, Ix 6 - -  1, 
and 117 - 1. Again by symmetry, the contributions from the first four regions are 
identical, and so are those from the fifth and seventh regions. 

In the integrand of (4.9), the presence of the factor D~ -1+~yl = (a5116a7) - I+~yl  

means that a factor of ~-~ shows up when integrated over the region 115 - 0 ,  or 
116 - 0, or a 7 - 0. On the other hand, the D t of (4.4) is more complicated: D t = 0 
when 11 x = a 2 = 0, or a 3 = 114 - - - - -  0. In other words, in order to produce a factor of ~-1 
from D i  2+~y2, two 11's must be small. Since, at most, only six of the seven 11's can 
be small, the maximum power of f -1  is thus ~-5. Conversely, in order to get ~-5 for 
small f, the region of contribution must be one where six of the a 's  are small, i.e. 
one of the comers listed above. 

It follows from (4.5) that 

D m - - a ,  (4.10) 

valid in each of the seven comers. Indeed, this is a general feature of all diagrams, 
not  limited to ladder diagrams. Let [31(~), [32(f), and f33(f) be the contributions 
from the comers 114- 1, 116 - 1, and 11 7 - 1, respectively. Then 

/ 3 ( ~ ) -  4T31(f) + T32(~) + 2 /33( f ) ,  (4.11) 
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af3x(~" ) = (2~ ' i ) -  ' Y~2 ,oo oY2tY' +Y2) -18c(1 -Yx-  YY2) 
- Cl -- I O 0 -- • 

X f01 d0/1 dot2d~3 d0/5 d0/6 d0/7(0/50/60/7)-1+~Yl [0/1(0/3 + 0/6) 

"['-0/2(0/1 + 0/3 "1- 0/5 "[- 0/6)] --2+:~'Y1 (0/1 "[- 0/3 "[- 0/5 "[" 0/6) 1-~'(yl +Y2), 

q-ioo J~2-ioo dy2(Yt +Y2) - ISc (1-Y l -VY2)  

X foX d0/1d0/2d0/3 d0/4d0/5 d0/7(0/50/7)-x+~Yl [(0/1 q- 0/2) 

(4.12) 

and 

X (0/3 "{- 0/4)] -2+~'Y2(0/1 "['- 0/2 "[- 0/3 + 0/4 "[- 0/5 ''[" 0/7) 1-~'(yl+y2), (4.13) 

1 l ' c l + i ° ° j  f c 2 + i ° ¢ 1  

~3(~') = ( 2 ~ i ) -  Jcl-ioo Oyl Jc2-ioo oY2(yl +Y2)-18c(1-Yt -YY2)  

) X d0/j (0/50/6) -I+[yl [0/10/3 "~ 0/20/4(0/1 + 0/3 q- 0/5 "~ 0/6) 

+ 0/6 (0/lOt, -~- 0/20~3)] - 2+s'Y2 (0~1 +0l  3 "1-0/5 -.]-- 0/6) 1-~(yl +y2) " (4.14) 

In these three integrals, the upper limit of integration for the a variables has been 
set arbitrarily to be 1. So far as the leading terms for small ~ are concerned, it makes 
no difference what this upper limit is, so long as it is positive and independent of ~. 
For  example, it may be 1, in which case there is no overlap in the various regions. 

It may be instructive to contrast (4.12) with (4.14). The main difference is the 
following: when a 4 - 1, D t simplifies to a polynomial which is homogeneous in the 
remaining a 's ;  on the other hand, when 0/7 - 1, there is very little simplification in 
D t and the resulting expression contains both quadratic and cubic terms in a's. In 
either case, the neglected terms are each much smaller than at least one of the terms 
retained. For  example, in the former case, ot6a2a 3 << 0/2a3 . In the latter case of 
a 7 ~ 1, although aj, j = 1 , . . . ,  6, are all small, there is no reason why 0/20/4a6 , for 
example, should be smaller than 0/10/3. It is for this reason that the cubic terms have 
to be kept in (4.14), and the presence of these terms leads to essential complications. 

These three integrals on the right-hand sides of (4.12)-(4.14) are evaluated 
approximately for small ~" in appendices A, B, and C, respectively. Because of the 
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cubic terms, the evaluation of ~f33(f) is by far the most complicated one. The results 
are 

~f31(~') - 2~'-5T2( 6 - ST + 3T2), (4.15) 

I32(~) = O ( ~ - 3 ) ,  (4.16) 

and 

I 3 3 ( ~ )  --  8f-53'3( 2 - "{). (4.17) 

Substitution into (4.11) gives 

f3(~) - 8~-57:(  6 - 47 + 72) (4.18) 

for small ~. This means that 

I3(s ,  - s  r) - ~s - t - :vy2(6  - 4T + "/2)(ln s) 4 (4.19) 

for large s, and hence 

I3 ( s ,  t)  - ~ s - l t - Z ( l n l t l ) z [ 6 ( l n s )  z -  4(ln s)( lnl t l )  + (lnltl)2], (4.20) 

for large, physical values of s and t. This is the desired answer. 
Note  that, in evaluating the y integration, 3' < 1 has been used. Thus, (4.20) does 

not hold in the case - t  >> s >> 1. 

5. Discussion 

For the purpose of comparison, it is useful to write down the known asymptotic 
expansions of I2(s ,  t) and I3(s,  t) for large s and fixed t ~< 0 [5]: 

I2(s,  t)  - - s - l ( l n s )  f o l d a [ a ( 1  - a)l t l  + 1]-1 ,  (5.1) 

]3 ( s , t ) - l s -X ( ln s )2 ( fo ldo t [o t (1 -o t ) l t [+  1]-1)  2 . (5.2) 

If we take these results for fixed t, and evaluate them asymptotically for large It I, 
the results are, from the right-hand sides of (5.1) and (5.2), 

12(s ,  t)  - - 2s-11/ I - l ln  s lnlt I , (5.3) 

I3(s ,  t )  - 2 s - l l t 1 - 2 ( I n  s)2(lnltl) 2. (5.4) 
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Fig. 5. The e ighth-order  ladder  diagram in ¢p3 theory. 

The result (5.3) agrees with (3.11), but (5.4) fails to give all the terms in (4.20). In 
other words, (5.4) holds under the condition 

Ins >> lnlt[ >> 1, (5.5) 

which is a much stronger condition than (1.1). This is the explicit justification for 
the discussion following (1.1). 

A simplifying feature of the three-rung ladder diagram is that the comer a 6 --  1 
does not contribute, as shown explicitly by (4.16). This feature is quite general; for 
example, for the four-rung ladder diagram of fig. 5, neither comer a 8 - 1 nor a 9 ~ 1 
contributes to the leading term, as shown in paper II. Indeed, it will be seen there 
that this diagram of fig. 5 is much richer in structure. 

It is too early to tell how the present program of studying the asymptotic region 
(1.1) will develop. It is clear from sect. 4, together with the appendices, that 
technically this is much more complicated than the previous case of large s with 
fixed values of t. If the present development does follow that of the previous, 
simpler case, then it is necessary to attack the following types of Feynman 
diagrams: 

(A) higher-order diagrams in ¢p3 theory; 
(B) diagrams in abelian gauge theory; and 
(C) diagrams in non-abelian gauge theory, i.e. Yang-Mills theory. 

Useful discussions with Professors Hung Cheng, Raymond Gastmans, Harry 
Lehmann, Barry McCoy, and Walter Troost are happily acknowledged. One of us 
(T.T.W.) wishes to thank Professors Hans Joos, Harry Lehmann, Roberto Peccei, 
Paul Srding, and Volker Soergel for their kind hospitality at DESY. He is also 
grateful to the Alexander von Humboldt Foundation for a Humboldt award. 
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A p p e n d i x  A 

EVALUATION OF ~l(~) FOR SMALL 

In this appendix, the integral ~1(~), as defined by (4.12), is evaluated for small ~. 
In this case, the a 2 and a 7 integrations can be carried out trivially, leading to 

I31(~ ')-  (2~ri) l~_t f<l+i~ dy  t f.c2+i~ dy2[yl(y 1 + y 2 ) ] - t  8 c ( 1 - Y t -  YY2) 
" Cl - -  t o o  c 2 - -  i o o  

X fO1 da lda3  da5 da6(a5t~6)-l+~'Yl [ffl(t~3 + 0~6)] -t+~y2 

X ( O / 1  "4- a 3 --}- a 5 -{- a 6 )  - ~ ( y l  +y2)  . (A.1) 

Since the integrand is homogeneous in the four a's, the standard scaling procedure, 

a i = pa,', 

(A) /01j=~l daj/(ai) : f l  dppN_lfl f i  da~ 1- ct~ f(pa~), (A.2) 
" 0  " 0  j = l  = 

gives a factor of (Yl +Y2)-1~ - t  together with a delta function 8(1 - a t - a 3 - a s - 
a 6 ) .  Similar to the development of sect. 3, the leading contributions come from the 
four corners of the tetrahedron, the results being 

(i) a t - 1: ~-3y[2(y t + y 2 ) - t ;  

(ii) a 3 - 1: ~'-3y12y21; 

(iii) a s - 1: ~-3y{ly~l(y I +y2) -1 ;  

( i v )  a 6 - 1:  0 .  

Therefore, 

I3t ( ~ ) -  ( r r i ) - t~-5  f<,+i~ d Yt fc=+i~ d Y2 Yl 3Y2-I(Yl + Y2)- 2~c(1 -- YI-- YY2) 
c 1 -- i¢~ '* c2-- io0 

= ( r r i ) - l ~ - ' f  c:+'~ dY2 YEt( 1 -- 7Y2)-3[ 1 + (1 -- 3') Y2] -2. (A.3) 
- c2--iet~ 

Since ~,-1 > c2 > 0, the poles of the integrand are at 

y 2 = 0 ,  "t -1,  - ( 1  - - r )  - t ,  (A.4) 
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where the first and third poles are to the left of the contour, while the second one is 
on the right. This is because 0 < 3' < 1. Closing on the pole 7-1, for example, gives 
(4.15). This condition on ~, is also needed to get (4.17) from (C.6). 

A p p e n d i x  B 

E V A L U A T I O N  OF ~2(~') FOR SMALL ~" 

In this appendix, it is shown that ~2(ff), as defined by (4.13), is small. The reason 
is that the integrand is homogeneous of order - 5  + ~'(Yl + Y2) in the a's. This is to 
be contrasted with that of ~1(~') of (4.12), where the order is - 6  + ~(2y 1 + Y2). 

To see more explicitly the consequences of this important difference, carry out the 
scaling (cf. eq. (A.2)) 

p ~--- 0~1 -I- 0~2 -1- 0~3 nt- 0/4 -1- 0/5 -t- 0/7, 

O/j ----- p O/j , 

(B.1) 

(B.2) 

for j = 1, 2, 3, 4, 5 and 7. Then it follows from (4.13) that 

1 /"Cl  + i ° °  a [ c 2 + i ° ° ~  r 
[32(~)-- (27ri)- j . oy  l j  . oy2 ty  l + y 2 )  - 1 8 c ( 1 - y l - Y y 2 )  

- ('1 - - 1 0 0  - C 2 - - 1 0 ~  

foldp pf(yl +y2)foldot . . . . .  × ~da~ da ;  dot 4 da  5 da~ 8(1 - a I - a 2 - a 3 

- a ~ -  a ; -  a~)(a;ct~)-a+~Yl[(ct{ + a l ) ( a ;  + a ; ) ]  2+fy: (B.3) 

Therefore, the P integration fails to give a factor of ~--1, and (4.16) follows from 
(B.3). 

A p p e n d i x  C 

EVALUATION OF ~733(~" ) FOR SMALL 

In this appendix, the integral ~3(~), as defined by (4.14), is evaluated asymptoti- 
cally for small ~'. This task is much more difficult than that of appendix A. The 
techniques developed for this purpose will also be useful in the study of higher-order 
ladder diagrams, including the eighth-order one of paper II. The complication is due 
to the fact that the integrand is not homogeneous in the six a's, as already 
emphasized in sect. 4. 
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The first step is to integrate over 0/2 to get 

f 3 3 ( ~ ) -  (2~ri)-~ f " x + ~ d y ~  fC~+~dyE(y~ + y 2 ) - l ~ c ( 1 - y l - y y 2 )  
c' l - -  i o o  c 2 - -  i o o  

£' × d0/1d0/3d0/4d0/sd0/6(0/50/6)-l+tY~(0/l+0/3+0/s+0/6) I-t(y~÷y2) 

x [0/,(0/1 + 0/3 + 0/, + 0/,) + 0/30/61-1{ [0/1(0/3 + 0/40/6)1-1 +t,2 

- [ 0/10/3 ÷ 0/,(0/1 + 0/3 + 0/, + ~6) + 0/30/61-1 + ,2  }. (c .1 )  

In the last factor of (C.1), a term 0/60/10/4 has been omitted because it is small 
compared with the second term 0/40/1. Due to the deletion of this term, the integrand 
of (C.1) is homogeneous in the 0/'s except for the factor 0/3 + 0/40/6 in the next-to-last 
term. If the variable 0/4 is shifted, 

0/30/6 
' - 0/4 + , (C.2) 

0/4 - -  0/1 + 0/3 ÷ 0/5 ÷ 0/6 

where the shift is always small when the a 's  are all small, then the approximate 
formula (D.1) derived in appendix D can be applied. For the two terms of (C.1), the 
A's of (D.1) are, respectively, 

0/3 

A = + 0/3 ÷ 0/5 ÷ °~6 

0/10/3 

(C.3) 

with the corresponding Ad: 

0/6~ 
A8 = 0/1 ÷ °13 At- 0/5 ÷ 0/6 

0/6 

0/1 

(C.4) 

When at, a 3, as, and a 6 are all small, the second A is large, and the first A8 is 
small. The other two values, a6/a 3 and a6/al, may be of any size. 
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The a 4 integration is carried out next by applying (D.1). The result is 

~3 (~') (2*ri) -1 q +i°°dYl c2+i°° 
- f l  ioo f2-ioo dY2(Yl + Y z ) - I $ ¢ ( 1 - y I - T Y 2 )  

fo x da  1 × dot3 da , da6(asa6)-l+fY~(otia3)-l+fyz(oq + a 3 + a 5 + a6) -f(yl+y2) 

[ al + C~3 + ~x' + ct6 --ctffY2(~xl + ctr)fY2ln ~xi + c~6 ] (C.S) 
X In a6(a 3 + a6 ) a6 . 

The a integrations can now be treated by the standard scaling procedure on the four 
a's. The calculation is still tedious but fairly straightforward. The result is 

I[3(~'~_(2~ri.~-lfq+i°° dy  1 1"c2 + i ° ° .  z • 'cl2 ,oo oY2t'Yl + Y 2 ) - ' 8 ~ ( 1 - y l - V Y 2 )  
C 1 - -  i o 0  - -  " 

X[4~-Sy12y22(yl  + y 2 ) - l ]  , (C.6) 

from which (4.17) follows. 

Appendix D 

AN APPROXIMATE INTEGRAL 

In this appendix, we obtain the following approximate formula 

1 +AS 

(1 
~1 d-'-~-x ( l x  + A x ) - l + f  - (1 + AS)t in  (D.1) 

f l  dx  
1.h.s. of (D.1) - j ,  -~-- (1 + A x )  -1 

1 +AS 
-In (1 +A)8" (D.3) 

In this case, (1 + Ax)  f is close to 1 in the vicinity of the lower limit of integration. 
Therefore, it may be verified that 

valid for 8 and ~ both positive and small, and A positive but arbitrary in 
magnitude. This (D.1) is needed to obtain (C.5). Actually, the range of validity of 
(D.1) is somewhat larger. 

This (D.1) can be obtained in various ways. One derivation is as follows. Consider 
first the case where 

ln(1 + AS) << 1. (D.2) 
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Next consider the case where ~ ln(1 + AS) is not small. Since ~ is small, A8 must be 
large, and hence 

l.h.s, of (D.1) - fsl ~ (Ax)-X+; 

= (1 - ~ ) - t [ ( A S ) - '  + ; -  A -1 +~'] 

- (A~)  - '+~.  (D.4) 

Since (D.1) reduces correctly to (D.3) and (D.4) in their respective ranges of 
validity, and (D.3) and (D.4) cover all cases, we obtain the approximate formula 
(D.1). 

In our application of this formula (D.1), the upper limit of integration will not be 
1, but rather some unspecified value 3, = O(1). By a simple rescaling, it follows from 
(D.1) that 

fs~ dx 1 + A8 -~- (1 + A x  ) - t  + ~ ~ (1 + AS) ~ln (1 + -/A) 8 '  (D.5) 

with y = O(1). The dependence on the upper limit of integration is only through the 
logarithm. Therefore, up to terms of O(1), which we are not interested in, the 
integral (D.5) is independent of the upper limit of integration, ~, - O(1). 
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