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Abstract. We calculate one loop corrections to heavy 
quark production in proton antiproton collisions. We 
cancel ultraviolet and infrared singularities and give 
the cross sections on the partonic level. 

1. Introduction 

The calculation of strong corrections to parton par- 
ton scattering process was begun several years ago. 
Two groups [8, 12] calculated gluon corrections to 
the scattering of two non-identical quarks in order 

3 It was found that the inclusion of O(c~) terms 
substantially modifies the O (e~) tree level results. 

At the energies of the present p/~ collider gluons 
cannot be neglected. At supercollider energies they 
will even play a pre-eminent role. This increases the 
number of diagrams to be considered in O (e~). Calcu- 
lating the heavy quark production means that we re- 
strict ourselves to diagrams with a specific final state. 

We are interested in charm production at the col- 
lider. Heavy quark production at the ISR-FNAL en- 
ergies is not under the quantitative control of pertur- 
bative QCD. The reason is that a large fraction of 
the cross section at the small ISR energies is diffrac- 
tive. 

However, the present UA1/UA2 triggers are not 
sensitive to such a component.  Thus it is reasonable 
to calculate QCD corrections to the diagrams in 
Fig. 1 in order to see whether perturbative QCD de- 
scribes the "high pz"  data at the collider correctly 
[1]. The diagrams in Fig. 1 and their corrections are 
probably the dominant  source of heavy flavour pro- 
duction. Weak production mechanisms such as 
pi6---, Z ---, c (  etc. have much smaller cross sections. 

In our calculation all particles are massless. So 
"heavy"  quarks means quarks that can be identified, 

1 Supported by BMFT, 05 4HH 92P/3, Bonn 

such as c and b, whose masses are still small compared 
to the energy involved at the collider. 

Furthermore we work in the Feynman gauge and 
regularize ultraviolet and infrared singularities by go- 
ing to n = 4 - 2  e dimensions. 

In this paper we fully work on the parton level. 
No folding with the distribution functions is under- 
taken. The aim is to prove that all infrared singulari- 
ties cancel and to obtain all finite contributions for 
the cross sections of the pat ton processes q g l - ~ Q O  

3 and gg ~ Q Q  in order a s . 
The paper is organized as follows: In Sect. 2 we 

revisit the tree level contributions and the virtual cor- 
rections. In Sect. 3 the real corrections are discussed 
and in Sect. 4 I present the results cancelling all 
singularities and going to e = 0. An Appendix is devot- 
ed to the calculation of a complicated phase space 
integral. 

2. Born Graphs and Virtual Corrections 

Consider the processes 

q ( P O  + q(P2) ~ Q (Pa) + Q(P4) 

g (pa) + g(p2) --* Q (p3) + Q(p4). 

(2.1) 

(2.2) 

Define as usual s = 2 p l  P2 =2P3 P4, t =  - 2 p 2  P4 
= - 2 p l  P3, u =  - 2 p a  p4 = - 2 p 2  P3 with s + t + u = O .  

q2 = s  is the energy squared of the process (on the 
parton level). From t and u one can construct the 
scattering angle 0: 

ts = - t / s  = �89 (1 - cos 0) (2.3) 

us = - -  u / s  = 1 - -  t s. (2.4) 

The tree level contributions for the above pro- 
cesses have been calculated some time ago [2], virtual 
corrections to them have only just been published 
E3] 
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q ( P ~ } " ~ ~ ~  Q(P3 ) 
~(p2 ): \Q(P~) 

contains mainly the two particle phase space 

ps(2) = ( 4 ~ 2 f  1 
8 = r ( 1 - = )  dts t,-'(1 - ts )  -~ (2.9) 

g{P~ } %~_ " Q(P3) 

g(p2)~ ~176176176176176 ..... < ~(p~) 
g(Pl 1~] Q(P3 } 

g{p2 ) ] (~(p~) Fig. 1. 

d~virtual_ I# / .2~\2 ( "q~-'QQ = / ~*t*" : 
dts \ 2re ] N4u(4) _ ~ _ _ _  

I- / 4xp2 \  ~ F ( I + ~ ) F Z ( 1 - e )  
"[N"t---~ ) F ( 1 - 2 e )  

~,(u2) 
2~ 

( ( 4 6 8 
.n( . )  - CF in 
a., q~ ~ QQ g2 e ,9. 

+~-(41n ts- 21n us)) + N4 Fq~QO]} (2.5) 

where 

Fq~,QO=Bqv~_,QQ[_16Cr_t_(8~+6(2+I~(4) _ in ~]s/N~ 

4 

2 2 - 2 Ce  (t~ - u 2) (12 ~2 + ln2 t~ + ln2 Us ) 
+�89 N~ CF(18~z + 21nZt~+ln 2 us--2t ~ In us+4us In ts) 

+4C2(t ,  In us-us In t,). (2.6) 

The renormalization has been done here already. # 
is the (arbitrary) mass parameter which has been in- 
troduced to keep the coupling constant dimensionless 
in n dimensions. Cr=4/3 ,  % = 3  are the invariants 

/~2 
of SU3. We have used the abbreviation ~ 2 = ~  

1.6449. 

B(.) _ __/-, tf2 ..}_ 1,12 __ g) qrl --+ QQ - -  "-'F~,~s (2.7) 

" [m" ( ~ / r ( l  + ~) r:(1- ~ ) r ( ,  - 2 e )  

3 2 11 + 4TR~ 

+ (4) No 2 ( C r -  N~(u 21nt~+t  2 :2, ,o,,)) 

where 

Fgg-~ Q0 

_ B ( 4 )  _ { 7 + ~ l n [ ] ~ 2 \  2 

-- ck e 2]j2 lnuslnts+%(%--Cv)(~--~f[ )) 

N~ 3 f2(4)) +6~2(--~Nc(Cv--T)+2(cv--N~)2 (I+~ 

N2(L r  L ,c(4)~ 
+ "2 2 "  ]1 

1 1 \ / %\ 
J-In2 ts IN? (Us 4 ~ s ) - 2 N c t C F - 2 ) ( ~ s u s - } - ~ )  

5 u s 

3 1 / N~\/us 4 1\1 �9 , )  

B(.) _ _ r ~ r(n)_ ~,rr(.) (2.12) g g - - + Q Q - - ~ F J 2  X'cJ1 

\u,  t~ ust ( l--e)  (2.13) 

f l n )  2 2 : (ts + us - e)(1 - e). (2.14) 

is the n-dimensional Born level contribution and 

47~3#2e ( ~ ) e  
_IV. - Nc sF(1 --e) t*-~(1 -- t*)-' (2.8) 

3. R e a l  Correc t ions  

The infrared singularities present in (2.5) and (2.10) 
can be cancelled by contributions from the processes 
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q(Pl) + q(P2) --+ Q (p3) + Q(p4) + g(p5) 

g (/)1) + g(p2) ~ Q (p3) + Q(p4) + g (ps). 

(3.1) 

(3.2) 

There is also a third and a fourth process producing 
heavy quarks, namely qg~QO_.q and glg~QQft. 
These, however, give only finite contributions -up  to 
initial state singularities which can be absorbed into 
the distribution functions�9 As they have been de- 
scribed in detail in [4], we will not consider them 
any further�9 

The singularities of (3.1) and (3.2) come from the 
collinear regions P5 II Pi, i--1, 2, 3, 4 and from the 
infrared region I PsI--'0. Introducing an angle cut 6 
and an energy cut A, we will integrate over these re- 
gions analytically. Then we do the cancellations of 
singularities with (2.5) and (2.10). The result will de- 
pend on 6 and A. Integrating numerically over the 
rest of three particle phase space and adding this to 
the analytical result will give a 6- and A-independent 
cross section. 

In contrast to jet calculations the cuts 6, A here 
are only technical devices. So they may be choosen very 
small numerically (A <= 10 3, 6 <  10-4). Therefore in the 
analytical calculation terms of order & or A may be 
neglected. 

For the 2 ~ 3 processes we use the following vari- 
ables 

so'=2pi pJ2pl P2. (3.3) 

First we give the four-dimensional matrix elements 
squared for the processes (3�9 and (3�9 [5] �9 

2 t M tqrt~oO~ 

= -o , ,  c,~ s~3 + s L + s ~ 4 + d 3  ~c~ [(s14+s~) 
S12 $34S15 $25 S35 $45 t 

�9 (Sl3 $24+$12S34--S14S23)+S14(S13 S12+$24S34) 

-I-B23(S13SB4+S12S24)]-[-(CF--N2) 

" [(S13 -~- S24)(S13 S24--S12 S34--S14 S23) 

-1-2S12S34(S14-1-$23)--2S14S23(S12+$34)]}. (3.4) 

2 ([M]qg~QO_q can be deduced from this by the inter- 
change (5 ~ - 2)�9 

i 2 M Igg-. QOg - - ON 

S13 S14 (~3 -~ S24) -}- $23 $24(~3 q- $24) + S35 $45 (45 q- S25) 
8S13 $23 S35 S14 $24 S45 

"{--2(CF--~-)2s124-Nc(CF--@) 

[$34 __ ~12 (S13 1 �9 S24 2i- S14 $23)--S~ 5 ($23 $45 71- $35 S24) 

1 (s35 S14-1-S13 S45) ] 
S15 

N ?  [$35S45 (S13S24-'[-S14S23)-[ S13 S14 
+ 2Si2 Isis s25 - sic sl~-5 

"($23S45"1-$35S24)-~$23S24($35S14"[-S13S45)]}.$12 S25 (3.5) 

The absolute normalization O N of (3.4) and (3.5) can 
be read off the cancellation of the singularities (see 
below)�9 (3.4) and (3.5) can then be integrated numeri- 
cally over the finite regions�9 

We define 

[:=1(1 --cos g (3, 5)), q :=�89 --cos g (l, 5)) 

and x to be the fraction of energy carried away by 
the outgoing gluon. Then we can do the numerical 
integration with the following phase space 

s x (1-x)  
dPS(3)= (4=) 4 ( l - - x ( )  2 dxdqd(dff)  

(3.6) 
A<_x<_l, 3__<r/, ( < 1 - 6 ,  0___~b<2m 

Here q5 is the azimuthal angle between the 125-plane 
and the 345-plane. 

The invariants sq can be expressed by the integra- 
tion variables of the phase space (3.6): 

s12 = 1 (3.7 a) 

l - x  
s13 = 1 --.x;~ (/1(1 - - 0 +  ~(1 "/7) 

- -2 / / / (1  --r/)((1 - - 0  cos ~b) (3.7b) 

s14 = 1 - x r / - s l a  (3.7 c) 

s15 =xr/  (3.7d) 

1 - x  
s23 = 1 --x--~ ('I ~ + (1 --q)(1 --~) 

+ 2 ]/%(1 -- r/) ((1 -- ~) cos ~) (3.7 e) 

$24 = 1 --X(I --/~)--823 (3.70 

s25 =x(1 --r/) (3.7g) 

S34= 1 --x (3.7h) 

x (1 -x ) (  
S35-- l - - x (  (3.7i) 

x(1 - 0 
s45= 1- -x (  (3.7j) 
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We now come to the collinear integrations�9 Because 
of the singularities we have to generalize (3.6) to n 
dimensions 

s 
dPS(3) - (4 rc )4F2( l_e  ) - -  ( 1 _ x ( ) - 2 + 2 ,  

�9 (x(1 - x ) ) * -  2'(~ (1 - q ) ( ( 1 - 0 )  -" dxdt ld~dck .  (3.8) 

Let us begin with the q~ ~ QQg-case and consider 
Pa I] Ps, i.e. ( <  6. We define effective particles with mo- 
menta p i = p l ,  pn=p2,  p m = p 3 + p s ,  Piv=P4 . This 
means one can identify s~4 as the effective 2 --* 2 vari- 
able u~ and 2pl  P2 as the 2 --. 2-energy s. This is physi- 
cally intuitive, but can also be derived from (3.7) for 

~ 0. Furthermore one has 

S13 = ( 1  - - X ) t s ,  S15 =Xts ,  S23 = ( 1  --X) bls, 

$24  = t s ,  $25 = X Us, S45 = X. (3.9) 

In the numerator  one can put s3s =0,  in the denomi- 
nator one must use s35 = ~ x ( 1 - x ) .  Inserting this into 
the matrix element (3.4) and keeping only the pole 
in ( one finds 

�9 2 -- (") Pq~) (1 -- x)/(x(1 hm ( [ m  [q~_. aOo - ON C v Bq~_. aO - x)). 
~'--, 0 

(3.10) 

At all stages only simple poles in ((s35) appear. This 
is the reason why one can use the simple approxima- 
tion (3.9) to (3.7). 

(3.10) shows that in the collinear limit the matrix 
element factorizes into a Born type expression (with 
variables the effective 2--, 2 variables) and the n-di- 
mensional Altarelli-Parisi function (AP-function) 

2v  
Pq~)(v) = T2T_ v +(1 - ~ ) ( 1 - v ) .  (3.11) 

The Born type expression can be left as it is. Only 
the AP-function must be integrated�9 The variable of 
the AP-functions will always be v = 1 - x. 

With the approximations (3�9 the three particle 
phase space (3�9 factorizes into an effective two parti- 
cle phase space times some integrations to be carried 
out: 

p~(3) _ p,q(2) ( ~ )  e S 
~out-- ~ -  167r2F(1 --e) 

6 1 
�9 ~ d~(  -~ ~ dx(x(1 - x ) )  1-2~ (3.12) 

0 A 

The @integration is trivial for (3.10)�9 The region x < A 
is excluded here, because it will be considered in con- 
nection with the infrared limit. The result of the inte- 
gration is 

q~ - /as(#2)\ 3[4~#2~ ~.(.) 

�9 [2~ + 2 In A + ~ - - 4 ( 2 - 2  ln2 A 

3 ] 
- ~  In 6 - 2  In 6 In A . (3.13) 

A factor of 2 has been added to account for the case 

P4 I[ Ps. 
We now come to the case, where the outgoing 

gluon is collinear with one of the incoming quarks. 
For  P111 P5 it is appropriate to identify 

s = 2 p a  P2 . ( 1 - x )  (3.14 a) 

u~=(1 --0/(1 - -x O  (3.14 b) 

as the effective 2-~ 2 variables. Then for ~/~ 0 one 
finds (sij :=2pi pi/s) 

ts us 1 - x 
S 1 3 - - I - - X '  S t 4 = - I - - x '  S 1 5 =  X ' t  I ' 

X 
s23 =us, s24= ts, s25= 1 - x '  (3.15) 

X t s X U s 
$34 = 1, Sa5-- 1 --X' S45 -- 1 --X �9 

A remark is in order: In the case under consideration 
we can define effective momenta  p~ =P l  +Ps ,  Pn = P2, 
phi=P3, p~v=P4 . Therefore the relation s23=us is 
physically intuitive. This leads to (3.14). 

In the limit r /-*0 the matrix elements and the 
three particle phase space again factorize: 

l - - x  
lim r/] 2 (") Pq(q") ( 1 -  x) ~ (3.16) M Iq~ ~QOo = ON CF Bq~-,QO 
ricO 

-in = p S ( 2 )  16 ~2 F (1 -- e) 

dt lq -"  I" d x x l - 2 ~ (  1 i x )  -1 +" (3.17) 
0 A 

There is again a factor of 2 for the case P2 IIps- Doing 
the integrations one finds 

f 3 lnA 11 
�9 [ ~ + 2  e + 4  + 2 ( 2 - 2 1 n 2 A  

3 In 6--2  In 6 in A]. (3.18) 
2 
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The same analysis can be made for the collinear 
limits of the process (3.2). The analogues of (3.10), 
(3.13), (3.16) and (3.18) read 

lim ([Ml~Zg~Q~g 
{~0 

1 
=0NN~ C 2e~") - Pq~")(1-x) (3.19) 

~gg-'QQ x(1-x) 

lim tllM 2 [gg-~ Q(2s 
~1~0 

1--x 
= 0u N~ 2 ~") - -- x) (3.20) Cv Bgg_~ Q~ P~g (1 - -  

X 

The AP-function 

gg(v)=2+ l-~vv-4+ 2v(1-v) (3.21) 

is independent of the space time dimension. 

g g  - -  CZs(~ 2) 3 ( ~ ) e  
Co~t - N, ( - ~ 9 - )  B':)g_~Q~2F(1--e) N~C~ 

�9 + - l n A +  --4~2--2  ln2A 

3 In 3 - 2 In 6 In A] 
2 J 

(3.22) 

(e~(#2)]3 [4nl t2] B )g Q(  2r0- )N? 
C~=N,\ 2n ] \ s ] 

[ l l + 2 1 n A + 2 1 n T _ l l l n  6 
" ~ ~ 

--2 lnA l n 3 - - 2  in T l n 6 - 2  In 2 A 

6 ]  
+ l n  2 T - - 2 ( 2 +  . (3.23) 

In the last formula a cut T has been introduced 
to avoid the limit of the two heavy quarks being col- 
linear ( 1 - x  ~0) .  This is a physical cut which has 
to be put on experimentally anyhow. 

One should note that the factorization properties 
of (3.10), (3.16), (3.19) and (3.20) could have been fore- 
cast from more general considerations. In the infrared 
(IR) limit we shall also find factorization (however 
without AP-functions, see below). 

Before turning to the 1R limit I want to discuss 
an additional type of collinear singularities. These 
must be absorbed into the distribution functions of 
the quarks and gluons. They are proportional  to Pqq 
for the qgl ~ QQ case and to ~g for  the gg ~ QQ case 
(cf. [3] and the discussion at the end of Sect. 5). /~ 
are AP-functions modified in such a way that charge 
conservation 

1 
J dv~q(v)= 0 (3.24) 
0 

and momentum conservation hold [6]" 

~ v 3 
Pqq(V) = 2 (1 --v)+ t- 1 -- v + ~  3(1 - v) (3.25) 

2 
Pgg(v) = v(1 - v)~ --4 + 2 v(1 - v) 

(11 2 ) 6 ( l _ v ) "  (3.26) 
+ 3 

Here ( l - v ) +  1 is the regular version of ( l - v )  -a in 
the usual sense [6]. As we calculate an integrated 
cross section we can use (3.24) to prove that the 
q~--, Q(~ case gets no contribution from these consid- 
erations. This is even true if one absorbs certain finite 
higher order contributions of deep inelastic scattering 
into the distribution functions [7, 8]. 

For  the gg ~ QQ case we have 

1-A 
dv~g(v)=2[-ln T - - ~ -  TR/(12N J 

T 
+~(--�89 In 2 T +  67 2~2 -- 3g)]. (3.27) 

A term proportional  to (3.27) is indeed needed to 
get a finite answer namely 

c . .  = _ 

�9 n(n) _ 2 F ( l _ e )  N2 Cr ~ g g  ~ QQ 

- I d x g g ( l - x ) .  
d 

(3.28) 

Now we come to the infrared limit x < A. We cannot 
work any more with the phase space (3.8) in the infra- 
red limit, because parton 5 being infrared defines no 
z-direction any more. Therefore we have chosen an- 
other description of three particle phase space [9] : 

d PS (3) = dPS ~2) 16 n 2 F(1 - ~) 

"(Sa4 s45 s35) -~ ds34 ds35 (1 - s4 5 ) -  1-2~ 

�9 6(1 -s3,-s45 - s35  ) ~ sin -1~ (Od(O 

0<s34,  s35<1, 0 < ( o < n .  (3.29) 

Here (O is the azimuthal angle of P5 with respect to 
P3. (We have chosen P3 to define the z-direction.) N o 
is the normalization of the (o-integration, N~=F(�89 
- r ( 1 ) / r ( l  - 

One can calculate s34, s45 and s35 in terms of 
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our old variables x and (. S34=l--x, $35=X(1 
-x)(/(1-x(),  s45=x(1-O/(1-xO. In the small x 
limit one receives 

ps(~=ps(2 ) ~ s ~ dxx~_2, 
16zc2 F(1 --~;) o 

"ol d((((1 - ())-~ ~-~ ! sin -~" cpd~o (3.30) 

r/is no longer a simple quantitiy in this system 

q = (us+(1 - - 0 t s + 2  cos cp V~(1 --()u~ ts. (3.31) 

Therefore expressions with s~5,~/ in the dominator 
are not easy to integrate (see below). 

It is simple to define an effective two particle phase 
space in the infrared limit, because parton 5 is not 
involved in the definition of effective partons: I=1 ,  
11=2, I I I=  3, IV=4.  So t =  - 2 p i  pro= - 2 p l  Pa etc. 

Inserting the small x approximations of the s~j 
into the transition probabilities one gets their IR- 
limit. One finds at most poles of second order in x 
(despite the appearance of sa5 $25 $35 $45 ,.~4 in the 
denominator of (3.4)). In fact 

l i m  x 2 2 I M l ~ o 0 g  
x - ~ O  

[ C N~\ [2 2 2 2 4u~ 

4us 4ts 4 t ~  (3.32) 

l i m  x 2 2 I M Igg-* QO* 
x---~ 0 

{1 

�9 + 
1 

, (1-  

�9 + ( 1 - ~ ) ( 1 - r /  " 
(3.33) 

Note that (3.32) and (3.33) also show factorization 
properties, however, without AP-functions. The fac- 
tors in front of the Born expressions are always inde- 
pendent of ~. This is in accordance with general con- 
siderations [10]. 

Integrating (3.32) and (3.33) with the measure 
(3.30) one gets 

n~ 2 ,  ] ~ 'q~  

�9 {2N~J_ +(Cr-~)[4J~+4J,+8J_-8J+]} 

(3.34) 
/c~(#2)\ 3 /4n#2 \  ~ A -2~ 

�9 { 2 N ~  J.(�89 ") -f(1 ")) 

U~ Uc 
J 2  ~ c 3 1  ] a ~  

_ _ _  (n) _ _ _ _  ( ) 

[{C -Nr +Nr us c(n)]'( (3.35) 
+2J+Nc[1  r 2]J2 2 ts J '  If" 

Here we introduced 

1 
Jr S d(( ~-,(1_~)-~= r(-~)r(1-~)  

o C(1 --2e) 
(3.36) 

1 1 i d q ~ s i n - e ~ p l  (3.37) J . =  ~ d ~ - ~ ( 1 - ~ ) - ~  ~ o 
0 

1 1 ~ ts 
3+ = oS d~(-~( 1 - 0 - ~  ! d~o sin -2 '  q ~  (3.38) 

1 1 ~ U s 
J -  = S d( ( -~(  1 - 0 - ~  - S d~o sin- 2e ~o (1 

0 O 

= J+ (ts~-~ us) (3.39) 

and have made use of symmetry properties of ~/and 
1 - ~  under exchanges ts+-~us and (+-~1-( .  We have 
devoted an appendix to the calculation of J. and J+. 
Here we only quote the results 

1 
J, = - -  + (2 e (3.40) 

2 
J+ = - - + 2  in ts+e(2L2(t~)+2 In ts In u , - l n  2 t,). 

8 

(3.41) 
In (3.41) L2 means the Spence function. 
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Finally we receive 

\ 27~ ] ~'qrT-~eq 

. 

+ 8 C e  In t ~ + 2 N  In us-8Cv In us] 

+ C F [ - 4 ( 2 + 8  In 2 A - 1 6  lnA l n t S - 4 1 n  2 ts 
L Ns 

+ 4 In 2 u~ + 8 L 2 (ts)- 8 L 2 (us) 1 

+ N~ [2 ~2 + 8 In A In t s -  4 In A In u~ + 2 In 2 ts 
N 

-- In 2 us-- 2 In t~ In u s -  4 L2 (t,) + 2 L2 (us)]~ 

(3.42) 

iRgg = N./,s(#2)]3 ( ~ 2 )  ~ A -2~ 
" \  27c } C v N ~ - 2 e  

"{1[N~2(2f~2")+4f~")--~)  

+4CvN~(f~,)_c(,)~ ar~2 4"(,)] 

+ N~ In ts(- 2 f~")- 2f~")+ 2f(")/tO 
+ Nc 2 In  R s ( -  2f(2 n)-  2 f  (n) + 2f(ln)/bls) 

+4f~  ") CF N~ In (us ts)} (3.43) 

d = ~2 (f2 ~") N ) -- 2 (f~") + f~")) C F N~ + 2 f~") Ce z) 
+N~ 2 In 2 t get")_t_ ~ctn) r ~ ^ .  stsl --J2 --s l  /~sJ--2N~ Crf(2 n) In 2 t s 

+ 4 N~ Cr f2 ~") In ts In us 
/ f(n) \ 

+N~ In ts In u /J1 - -2r  c~")l skt~u s J2 a~} 

+ 4 f~") N~ Cv L~ (ts) + 2 Nr 2 L2 (ts)(f~")/ 
ts--f2 ~") - f(")) + (ts ~ u~). (3.44) 

4. Results 

In the sum (2.5)+(3.13)+(3.18)+(3.42) and (2.10) 
+ (3.22) + (3.23) + (3.28) + (3.43) the singularities drop 
out. For  e = 0 one gets 

d %~o'a~ a0 N4 {as(#2)~ 2 fB(4) _L Lxs(#2) 
dts k~-~ ] "( q~-~QO" 2re 

"{B~q])-~ao[Cv(~--8~2-41nZts+41nZus 

--6 l n 6 - 8  In6 l n A - 1 6  l n d  In ts 
u, \ 

+ 8 L 2 (ts) - 8 L2 (us)) 

+N~(2~2 + 2  in 2 t s - 2  In ts In u , - l n  2 us 

+ 8 In A In ts--4 In A In us-4Lz(q)  

~,dl 2 2 dag" ~QO- ~r { ~ f u(4) _ • as(#2) 
dts ~'4~ 2n } 1 ~'*g~oo'-CrN~ 2~- 

- 2 (Nc + Cv) In 6 In A - 2 Nc In 6 In T 

+ ( ~  3CF-)ln6)+Fgg-~Q(2+~zNc(Cv--~)f~ 4) 

--4 N~ Ce ft24) In 6 + N~ CF f~z4)(ln z t~-- 2 In ts lnus 

+ 4  In t~ In A)+N~Z((f(4)+�89 4)) In ts In us +4f(4)  In 8) 

{ s ,,2 US ~ M2 +ln2 usk-J1 - - s  - - ~ J , , c  

- I n  d In ts (4u 2 + 2 ~ )  N~ts\ 2 

5. Conclusions 

We have calculated QCD-corrections to partonic 
processes important for collider experiments. How- 
ever, not all possible QCD-corrections were consid- 
ered, because we restricted ourselves to a specific final 
state. For  example, the corrections to the process 
g g ~ g g  which is important for the full collider jet 
cross section have not been calculated, though in 
principle our method is also applicable to them. 

We have given analytical expressions only for 
those regions of phase space where the collinear and 
infrared singularities lie. In those regions three parti- 
cle kinematics effectively reduces to two particle kine- 
matics, if the cuts ~ and A are chosen small enough. 
In this limit our analytical expressions become exact. 
The integration over the rest of phase space can be 
done numerically. If, for example, one would be inter- 
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ested in jet cross sections, one would have to intro- 
duce physical jet cu t s  Aje t and 6j,t and add to (4.1) 
and (4.2) the results of a numerical integration of (3.4) 
and (3.5) in the regions A <x<Aj,t and 6<~, 1 -~ ,  
/1, 1 --/7 <Ojet" 

The partonic cross sections calculated in this way 
have to be folded with quark and gluon distribution 
functions. (Decay functions are not needed, because 
we assume the heavy quarks to be directly measured.) 
This is to be done in a future publication. 
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Appendix 

Here we calculate J~ and J+ as needed in the infrared 
limit. First one can do the (p integration [11] 

I r ~ drp sin-2~rp 

~ o  J Cus+(1-O t s - - 2 / ( (1 - - ( ) t s  us cos (p 

=(1 +2e2~2) r 51-2" 

2e2[L2(1-Ss++)+ln~Yf+ ln(1--s~f+)] 

where 

r+ = (us+ (1 - - ( )  t s 

r_ = l~ - t s l  

s+ ~t.+-~-t._. 

So 

s_+= )~(us 
2 (ts(1 -~ )  

Because of 

1 - s - = 2 r -  
s+ s+ 

(A.2) 

(A.3) 

(A.4) 

~> ts 
(A.5) 

t~>~. 

(A.6) 

the singularity for r_ ~ 0  is removed in the second 
term of (A.1). That term gives only a contribution, 
when a pole in ~ is present and only for ~ ~ 0. Because 
of 

lim s _ :  0 (A.7) 
~ o S +  
~ < t s  

one gets a ~2 from the Dilogarithm and a 1/5 from 
the ~-integration. 

From the first term in (A.1) one typically en- 
counters the following ~-integral 

1 

K , = ~ d ( ~ - ~ - ' ( 1  -,  2~ 2, - 0  {~ us O(~- t3 (~- t3  -1-2~ 
0 

+(1--()2~t2~O(ts--()(t,--()-1-2~}. (A.8) 

One needs Ko for J ,  and K1 for J+ .  Ko can be calcu- 
lated by expanding ( ( - t s ) - l -2~  around the appro- 
priate point. K 1 can be reduced to K o (modulo some 
simpler integral) by partial fractioning 

~(~-ts)  ts 

Here we only quote the result for K o 

K o = 2 F ( -  2e) F(1 --5) + ~ 2  + 0(52) �9 (A.10) 
r ( 1 - 3 ~ )  

The final formulae for J ,  and J+ can be found in 
the main text. 

References 

1. UAJ Coltab. G. Arnison et al.: Phys. Lett. 147B, 222 (1984); 
A. Ali: DESY 85-107, CERN-TH. 4207/85 

2. B.L. Combridge: Nucl. Phys. B151, 429 (1979) 
3. R.K. Ellis, J.C. Sexton: Nucl. Phys. B269, 445 (1986) 
4. R.K. Ellis: Fermilab-Conf.-86/35-T 
5. F.A. Berends et al.: Phys. Lett. 103B, 102 (1981) 
6. G. Altarelli, G. Parisi: Nucl. Phys. B126, 298 (1977) 
7. G. Altarelli, R.K. Ellis, G. Martinelli: Nucl. Phys. B157, 461 

(1979) 
8. R.K. Ellis, M.A. Furman, H.E. Haber, I. Hinchliffe: Nucl. Phys. 

1 

B173, 397 (1980); ~ dvfqq(v)=O holds also for the finite higher 
0 

order contribution of deep inelastic scattering fqq as defined in 
this publication 

9. M.A. Nowak, M. Praszalowicz: MPI-PAE/PTh 14/84 
i0. A. Sugamoto: Phys. Rev. D16, 1065 (1977) 
11. I.S. Gradsteyn, I.M. Ryzhik: Table of integrals. New York 1965 
12. W. Slominski, W. Furmanski: Krakow preprint TPJU-11/81 

(1981) 


