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A Monte Carlo process for the simulation of random walks and random surfaces is proposed. 
It is based on the canonical algorithm of Berg, Billoire and FSrster, but uses a length (area) 
dependent coupling constant. The method is applied to determine the critical coupling constant of 
the planar random surface model without spikes in various dimensions. Also the mean-field 
behaviour of this model is derived and flo MF is compared to the data. It is shown, that the string 
tension of the model for d --* oo is dominated by the minimal surface spanned by the Wilson loop. 

1. Introduction 

During the last years much effort has been put into understanding lattice random 
walk and surface systems. Despite their complexity many properties have been 
derived with analytical methods [1, 2,11,14,16,17], some of which we review in the 
following sections. Nevertheless, as has been pointed out by Fr~hlich [3], it seems 
that in order to make further progress the use of numerical methods is unavoidable. 
In 1981 Berg and F6rster suggested a Monte Carlo procedure for the simulation of 
random walks [4]. The method has the advantage of being very flexible. It can be 
used for the investigation of free random walks, random walks without spikes, 
self-avoiding random walks and more general systems [5]. A shortcoming of the 
method is that it has an autocorrelation time of order (L )  2+2~, where L is the 
length of the path and u is the inverse of the Hausdorff dimension. Beretti and 
Sokal suggested a Monte Carlo process for random walks which has an autocorrela- 
tion time of order (L )  2 [8]. This procedure has been used by de Forcrand, Koukiou 
and Petritis to simulate the self-avoiding walk on an hexagonal lattice [9]. One of 
their conclusions is that the method is not suitable for the simulation of walks with 
both end-points fixed. So in this case we have to adhere to the procedure of Berg 
and F6rster. The latter method has a direct generalization to the case of random 
surfaces. It is extremely important to have a tool for the investigation of self-avoid- 
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ing surfaces, surface models which take the curvature of the surfaces into account 
(see ref. [15]) and other systems. Unfortunately the computer code for surfaces 
becomes very complicated [6, 7]. In this paper we make a proposal how to modify 
the procedure in order to increase its efficiency. The method is used to perform a 
high precision calculation of the critical coupling constant for the planar random 
surface model without spikes in various dimensions. Furthermore we compare the 
results with the corresponding mean-field values. 

2. The models 

For the reader's convenience we give a short summary of the definition of the 
models which have been investigated in the past. In the case of the random walks 
the 2-point-function is defined through 

G#( x,  y )  = ~_, e -[~L(~') 
~o: x ~ y  

= ~ n ( L ) e  --t~L. (2.1) 
L ~ Lmi n 

60 is a path on the lattice connecting the points x and y and L(to) its length. The 
models considered here are distinguished according to the properties of the walks 
which contribute to the sum in (2.1). 
Prominent examples are: 

(i) The bosonic random paths (BRP). All walks contribute. 
(ii) The fermionic random paths (FRP). All walks without spikes contribute. A 

spike is formed by two consecutive steps of the walk which occupy the same lattice 
link. 

(iii) The self-avoiding random paths (SARP). All those walks contribute which 
meet each lattice site at most once. 

The path entropy is generally assumed to behave like 

n( L ) - L'e #°L, L ~ oo, (2.2) 

where/30 is the critical coupling constant and e is a critical exponent. In the case of 
the closed bosonic and fermionic random walks in 4 dimensions there exist the 
following useful expressions for the entropy [12]: 

L/2 /21~2[ L _  2112(L) 
(2.3) 
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and 

nFRp(L) = nBRp(L ) + 6 -- 88L, 0 -- 78L, 2 

+ • ( - 1 ) ' 7 '  z,~l + L~I-1 n.Rp(L-2l) (2.4) 
I=1 - - 1  ' 

where L is even. We used these formulae to calculate the entropy with infinite 
precision up to L = 100. The notable result is that the entropy at L = 100 deviates 
from the asymptotic expression by roughly 2.5%. So we find it necessary to simulate 
the models at lengths (areas) larger than 100 in order to obtain reliable estimates for 
the quantities r0 and e. 
For  each of the above presented path models there exists a natural analogue for 
surfaces: 

(i) The planar random surface model (PRS). All orientable surfaces with planar 
topology contribute. 

(ii) The planar random surface model without spikes (PRSWS). Like the PRS, 
with the additional constraint that surfaces which contain spikes do not contribute. 
A spike consists out of two connected monomers which occupy the same plaquette. 

(iii) The self-avoiding random surface model (SARS). Those planar and orientable 
surfaces contribute, which occupy each lattice link at most once. 

Instead of (2.1) we have now 

. . . . .  = Z e (2.5) 
S ~ ( ~ , a  . . . . .  7,,) 

where S is a surface which has the loops 3'i as its boundary. IS[ denotes the area of 
S. The entropy is assumed to behave like (2.2), where one has to replace the length 
by the area. 

Let us compile the most important features of the PRS and PRSWS (for the 
definitions needed we refer to ref. [1, 2]): 

For  the PRS it has been shown [2] that the mean-field values of the critical indices 
describe the properties of the model in all dimensions >t 2. In particular this means 
that the Hausdorff  dimension d n is 4 and ~/, the anomalous dimension of the 
2-loop function, is zero. The continuum limit of the string tension is infinite. In 
contrast to a universality conjecture it has been shown in [10], that the PRSWS in 4 
dimensions has a nonvanishing anomalous dimension of the 2-loop-function. The 
Hausdorff  dimension comes out to be 4. The PRSWS is the simplest known lattice 
surface model showing nontrivial critical behaviour. In this article we demonstrate 
that the model possesses universal mean-field behaviour in high dimensions. 

Remark. In the somewhat pathological case of 2 dimensions the PRS and 
PRSWS show completely different behaviour. Here a local constraint (no spikes 
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allowed!) makes the PRSWS (almost) identical to SARS. The Hausdorff dimension 
becomes equal to the canonical dimension of surfaces, that is d n = 2. The string 
tension is equal to 13 and the mass gap is infinite. We see that in 2 dimensions 
PRSWS and lattice gauge theories are trivial in a very similar way. 

Recently Polyakov has proposed to consider a string theory with an action that 
takes the extrinsic curvature of the surfaces into account [18]. A lattice surface 
model with this property has been introduced by Durhuus and Jonsson [17]. They 
point out, that the PRSWS corresponds to a certain limit of their model. This yields 
a more physical interpretation of the "no  spike constraint", which originally has 
been incorporated in analogy to the fermionic random walks. 

3. The Monte Carlo procedure of Berg, Billoire and F6rster 

We start by summarizing the Monte Carlo procedure for random surfaces as 
introduced by Berg, Billoire and FSrster [4, 7]. We restrict the discussion to surfaces, 
since the treatment of walks is simpler and follows the same line. 

Suppose one is given a surface on the lattice belonging to a certain class (planar, 
self-avoiding,...). The MC process consists of performing a sequence of local 
deformations according to some rules. The deformations have to be such, that the 
surfaces obtained from a parent surface belong to the same specified class. We call 
the 2-cells which constitute the surface monomers to distinguish them from the 
plaquettes of the lattice. The deformations are realized via shifts of monomers. Such 
shifts are specified by the following rules: 

(i) Make a cut which isolates a monomer p from the surface. Call p the shift 
monomer. 

(ii) The shift monomer defines a plane. Shift the monomer into a direction 
perpendicular to this plane. Clearly, the boundary of the shift monomer sweeps out 
four plaquettes Pi, i = 1, 2, 3, 4. 

(iii) (a) If Pi is not occupied by a neighbour of p, place a monomer there. 
(b) If the plaquette p~ is occupied with a neighbour of p, remove the 

neighbour monomer. 
(iv) After this procedure has been performed on all plaquettes pi, the pieces are 

glued together along their boundaries. 
An example of a shift is depicted in fig. 1. In this way only changes of area of 0, 

+ 2 and ___ 4 are possible. 
Now we go from one surface to the next by the following steps: 
(a) Choose randomly one of the monomers building up the surface. It is taken to 

be the shift monomer. 
(b) Then choose randomly one of the directions perpendicular to the shift 

monomer. 
(c) Check if an imposed constraint, for example self-avoidingness, would be 

violated if the chosen monomer is shifted into this direction. 
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Fig. 1. Example of a shift. When, starting from A, monomer  1 is shifted into the direction e3, 
configuration B is the result. During the shift monomer  2 is deleted and monomer  3 as well as those 
monomers  lying in the plane spanned by e 1 and e 3 are created. The same configuration would result 

from a shift of 2 into direction e 1. 

(d) If no constraint is violated calculate A, the amount of change in surface area, 
for the proposed shift. 

(e) Perform the shift with a probability p(A) that depends on the change in area. 
Thus we obtain for the shift probability: 

1 
W(S ~ S') - ,-~,p(A)x(S') .  (3.1) 

121 

Here x(S') is 0 or 1, depending on whether a constraint is violated or not. x(S') is 
also set to zero if a proposed shift has no inverse and in some other cases [7]. We 
demand that the following conditions are fulfilled: 

(i) Normalization 

E w ( s  -~ s') = 1, 
S' 

(ii) Ergodicity. 
(iii) Detailed balance (DB) 

? ( s ) w ( s  -~ s') = w ( s '  - ,  s ) v ( s ' ) .  (3.2) 

From DB and (3.1) one can read off that we obtain the probability distribution 

P ( S ) -  ISle-alsl, (3.3) 

instead of a pure Boltzmann distribution. Detailed balance implies 

p(A)/p(-A) = e  -'a#. (3.4) 



396 B. Baumann / Noncanonical path and surface simulation 

The normalization condition for the unconstrained system can be written as 

¢r(S,p) = ~r^. B = 1 - y'p(a), (3.5) 
cA_ 

where ~r(S, p) is the probability that no shift takes place after the shift monomer p 
has been chosen and e .  is the shift direction. In the notation of [7], A labels 
different types of surface geometry and B labels different types of shifts. 

Working out (3.5) for all cases gives 

~1.1 = 1 - ( 2 d -  4 ) p ( + 4 ) ,  

~r2.1= l - p ( + 2 ) -  ( 2 d -  5 ) p ( + 4 ) ,  

rr3.1 = 1 - 2 p ( + 2 ) -  ( 2 d -  6 ) p ( + 4 ) ,  

7r3. 2= 1 - e ( O )  - ( 2 d -  5 ) p ( + 4 ) ,  

~r4.1= 1 -  3 p ( + 2 ) -  ( 2 d -  7 ) p ( + 4 ) ,  

~r4. 2= 1 - p ( 0 ) - p ( + 2 ) -  ( 2 d -  6 ) p ( + 4 ) ,  

~r4. 3 = l - p ( - 2 )  - ( 2 d -  5 ) p ( + 4 ) ,  

~rs. 1= 1 -  4p (+2)  - ( 2 d -  8 ) p ( + 4 ) ,  

~rs. 2= 1 - p ( 0 )  - 2 p ( + 2 ) -  ( 2 d -  7 ) p ( + 4 ) ,  

~rs. 3 = 1 -  2 p ( 0 ) -  ( 2 d -  6 ) p ( + 4 ) ,  

~rs. 4 = l - p ( - 2 ) - p ( + 2 ) -  ( 2 d - 6 ) p ( + 4 ) ,  

~rs. 5 = 1 - p ( - 4 )  - ( 2 d -  5 ) p ( + 4 ) .  (3.6) 

Detailed balance (3.4) yields two equations for the five unknown p(A). The 
remaining freedom can be used to make three of the null-shift probabilities vanish. 
The choice 

q'/'5.3 = ~ 5 . 4  = q'/'5.5 = 0 (3.7) 

optimizes the algorithm and is consistent in the sense that all probabilities lie in the 
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range between zero and one. This leads to 

1 

p ( - 4 )  = 1 +  ( 2 d -  5)x 2 '  

l + t ¢  2 
p ( - - 2 )  ( 1 +  g ) ? ( - 4 ) ,  

p (0)  = ½(1 + K 2 ) p ( - 4 ) ,  

p(+2) 

? ( + 4 )  = x 2 ? ( - 4 ) ,  (3.8) 

with ~ = e-2~. More details and some subtle points can be found in ref. [7]. 

4. The noncanonical weight factor 

In our previous work we found it mandatory to use a microcanonical ensemble 
for both path and surface simulation [10]. We obtained an approximation to a 
microcanonical ensemble by choosing/3 </30 and introducing an upper bound on 
the area. This method has the appealing feature that it can be realized very easily. 
However it also has its problems. Surfaces with an area smaller than the upper 
bound are exponentially suppressed. At the upper bound it does not make sense to 
collect data, because there the ergodicity condition is not fulfilled in some of the 
models. Also a fixed bound might decrease the flexibility of the lattice surface, 
which could slow down the motion through the space of surfaces. (In fact, this has 
been the reason for our decision not to introduce a lower bound on the area). 
Another possible implementation of the microcanonical ensemble consists in mak- 
ing the shift probabilities area dependent. In general however this leads to severe 
technical problems, in particular if one wants to simulate large surfaces. These 
problems can be avoided by the use of the following probability distribution 

with 

e ( s )  - c (/3 s31 s I e -  (4.1) 

[ f l t < f l o ,  if ISI < h i ,  (4.2) 
flrsl--- ~/3u>flo, if ISl >~hl, 

for some fixed A 1. Indeed, this leads to area-dependent shift probabilities: p (A)  
p~sl(A) and rrA.B ~ ~rJ,sl B. Since IA[ ~ 4 we have to distinguish only six different 
situations: IS[ < A 1 - 4 ,  IS I = A 1 - 4 ,  IS I = A 1 - 2 ,  ISI = A  1, IS[ = A 1 + 2  and IS[ 
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> A 1 + 2. The DB condition reads now 

c(fllsl) ea/~,s,+~ elSlf/~,s,+a-/~,s,)= Plsl + a ( - A )  
C(fllSI+~) PlSI( +A ) 

To simplify the formulae we introduce some notation: 

?lsl(a) = 

c(B.) ~:= e-AI(B.-Bb, 
~ :=  c( f l l  ) ' 

'p~,(A), for ISl < A 1 -  4 

p_4(A) ,  for ISl = A 1 - 4  

p+2(A) ,  for ISI = A 1 + 2  

p~.(A), for iS[ >A1 + 2. 

(4.3) 

(4.4) 

(4.5) 

p_4(--4) =p.,(-4). 

p_4(--2) =p.,(-2). 

P-4( -t- 2) = K I P _ 2 (  --  2), 

p_4(+4) = WK2ep0(--4), 

p_2(--4) =p~,(--4), 

p_2(+2) = ~0xt~P0(-- 2), 

p_2(+4) = t~r/K.d~p+2(-- 4), 

p0(+ 2) = ~ p + 2 ( -  2), 

p0(+4) =p. .(+4),  

p+2(+2) =?. . (+2) ,  

p+2(+4) =p. .(+4).  

The probabilities p , , (a)  are chosen to be identical to the probabilities p(A) in (3.8) 
with ~ being equal to xi = e-2a', i = l, u respectively. Detailed balance implies: 
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The remaining detailed balance conditions are not affected. This means that (3.4) is 
obeyed for the cases not listed in (4.5) with/3 being equal to/31 or/3, respectively. 
The null-shift probabilities are 
Demanding: 

'ff5~. 3 = 0  

also area dependent. We define: 

and 

, / / . A • .  B --AI+Zl :~-~ WA-B • 

forA ~ { - 4 ,  - 2 , 0 ,  + 2 } ,  

~ra4= 0 for A ~ ( - -2 ,0 ,  +2} 

~r~5 = 0 forA ~ ( - 2 , 0 } ,  (4.6) 

1 
d =  - -  ( 4 . 7 )  

Ok 

determines all probabilities in a consistent way and makes the probability distribu- 
tion continuous at A z. However it is more efficient to have as many transistion 
probabilities as possible unmodified in comparison with the old algorithm, allowing 
for a discontinuous distribution at I Sl ---A1. The optimal choice is 

and 

It corresponds to 

~5~.3 ~--- 'B'5~.4 = 'B'5~5 = 0 f o r A ~  ( - 4 , 0 ,  + 2 } ,  

~r~3 2 = 0, (4.8) 

d'= p,, , (-  4) 
,op, . ( -4)  " (4.9) 

p_,(a) =p,,(a), 

p-d-4) =p,,(-4), 

p _ 2 ( - 2 )  = p , , ( - 2 ) ,  

p _ : ( o )  = 1 _  ( d -  3 ) p , , ( - 4 ) ,  

p _ : ( + 2 )  = p , , ( + 4 ) p ~ . ( - 2 )  
~,p,.(-4) ' 

P - 2 ( + 4 )  = K.p, , , (+4) , 
I¢ / 

po(a) = p , , . ( a ) ,  

p+da) =p,.(a). (4.10) 
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This choice is consistent in the sense that  all resulting probabil i t ies are between zero 

and one. 
Somet imes  one needs to generate surfaces in a range ISI ~ [Am~, Ama~] with 

equal  frequencies.  This can easily be  achieved by  using the above described 

dis t r ibut ion (4.1) with 

(,St < & ,  

#tsl = ~/~,,, -- & '  
I,B,, > & ,  

if ISl <Amin,  

if Amin~ < [SI <Amax,  

if ISl >~Amax- 

(4.11) 

5. The noncanonical weight factor at work 

Let  us p e r f o r m  M C  simulations with the weight factor  (4.1), (4.2). The  relative 
f requency for  the generation of surfaces with I Sl = A, A >> 1, is 

~V(A) - ~(fl~)A ~÷~ e-(B~-ao)~. (5.1) 

There fore  it follows for A < A 1 and A' > A1, that  

N ( A ' )  = ~0 e x p ( ( f l , -  f l o ) A  - ( f l~  - f l o ) A ' ) N ( A ) .  (5.2) 

The  relative f requency is asymmetr ical ly  distr ibuted a round A r This is due to the 
fol lowing reasons:  

(i) We  have  a discontinuity in P(S) at ISI = A1 by  construction.  
(ii) The  fac tor  A ~÷ 1. 

(iii) Fini te  size effects. 
(iv) Final ly  we have to use a guess for/30 as input  which, via (4.2), contr ibutes  to 

the asymmet ry .  
Our  a im is to take advantage f rom (iv) and to use the a symmet ry  to determine to-  

Wi th  A = A 1 - a 1 and A'  = A 1 + a 2 we obtain  f rom (5.2) an es t imator  of rio: 

A1 + a 2 ) 1 " P ' " ( - 4 ) N ( A ' + a 2 ) - ( e +  - -  (5.3) 
~0=  0/1 + Ot-""'~' flltxl + ~u£lt2 + I O g p - - ~ l ( - - ~ - - a l )  1 ) l ° g A  1 a 1 " 

Usual ly  one has some a priori  bounds  on e. For  PRSWS we assume - 1 ~< e + 1 ~< 
0. Choosing  A 1 -- 5000 and a i << A 1 the contr ibut ion of the last te rm in (5.3) is small 
(~< 2 × 10-4) .  
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TABLE 1 
Statistics from simulation of PRSWS 
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Total number Iterations for 
d d 1 fit flu of iterations thermalisation 

3 4999 0.525 1.525 42 × 107 2 X 107 
4 " 0.690 1.690 17 X 107 1 X 107 
6 " 0.900 1.900 17 X 107 1 X 107 
8 " 1.005 2.005 17 X 107 1 X 107 
8 9499 1.005 2.005 17 X 107 1 X 107 

10 4999 1.075 2.075 34 X 107 2 X 107 
12 " 1.150 2.150 50 X 107 2 X 107 
26 " 1.410 2.410 50 x 107 2 X 107 

We performed simulations of PRSWS in various dimensions. The statistics we 
have collected are summarized in table 1. About 100 hours of CPU time have been 
used on the Siemens-Fujitsu 7.882 computer of Hamburg University. The program 
is written in Fortran 77 and was run with optimization level 3, which is slightly 
faster than level 2 (=  10%). 

Results can be found in table 2. Error bars for the generation frequency N ( A )  

have been estimated in the standard way. That is, first we divide the sequence of 
data into bins of different size; then for all these divisions error bars are calculated, 
assuming the bin-means are independent events. The values obtained in this way, 
which are in some range approximately independent of the bin size, are taken as 
error bars of N(A). The maximum number of bins consistent with this error bar can 
also be found in table 2. Unfortunately in three dimensions no such constant error 
bar can be found. Here we take the value calculated from a five bin division of the 
data. 

Next  we calculate flo by using the numbers from table 2 and setting o/1 = Ot 2 : ~ -  tit 
= 2, 4. Error bars for/~o are calculated using the standard formula for the propa- 
gation of errors. We draw the bin values of the data pairs into the N(A 1 - 2) versus 
N ( A  1 + 2) plane. These plots reveal, that anticorrelations of the two frequencies 

have to be taken into account, when one calculates the errors. The values we 
obtained for flo from a = 2 and a = 4 are consistent with each other. The same is 
true for the corresponding error bars. In eight dimensions we performed simulations 
at A 1 = 4999 and at A 1 = 9449. The results for fl0 from large and very large surfaces 
are consistent within error bars. We conclude, that finite-size effects are small. Next 
we calculated fl0 for individual bins. The meanvalue/~0 of these quantities as well as 
the corresponding error is in good agreement with fl0 and Aft0 for all d. Therefore 
the distribution of the/3o is assumed to be weakly biased. In ref. [10] we presented 
estimates for fl0 in four and eight dimensions. The values obtained from the 
noncanonical method lie in the ranges given there. 

All results concerning fl0 are summarized in table 3. 



402 B. Baumann / Noncanonical path and surface simulation 

TABLE 2 
Results of simulation of PRSWS in various dimensions 

d = 3 N u m b e r  o f  b i n s  = 5 

A N(A) AN(A) 

4995 0,13383 0.00047 
4997 0,23274 0.00029 
4999 0.33545 0.00214 
5001 0,07902 0.00091 
5003 0,01798 0.00030 

d = 4 N u m b e r  o f  b i n s  = 16 

A N(A) ~N(A) 

4995 0,07079 0.00013 
4997 0.19213 0.00029 
4999 0.43992 0.00016 
5001 0.16182 0.00027 
5003 0.05941 0.00020 

d = 6 N u m b e r  o f  b i n s  = 16 

A N(A) AN(A) 

4995 0.07366 0.00015 
4997 0.19604 0.00022 
4999 0.43905 0.00019 
5001 0.15811 0,00021 
5003 0.05676 0.00016 

d = 8 N u m b e r  o f  b i n s  = 8 

A N(A) aN(A) 

4995 0.07114 0.00017 
4997 0.19307 0.00021 
4999 0.43921 0.00018 
5001 0.16130 0.00022 
5003 0.05926 0.00013 

d = 8 N u m b e r  o f  b i n s  = 8 

A N(A) AN(A) 

9495 0.07111 0.00022 
9497 0.19322 0.00027 
9499 0.43956 0.00023 
9501 0.16114 0.00031 
9503 0.05912 0.00015 
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TABLE 2 (Continued) 
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d = 10 Number  of bins = 8 

A N(A) ~ N ( A )  

4995 0.06768 0.00012 
4997 0.18884 0.00015 
4999 0.43924 0.00011 
5001 0.16592 0.00022 
5003 0.06267 0.00010 

d = 12 Number  of bins = 24 

A N(A)  AN(A)  

4995 0.06968 0.00009 
4997 0.19096 0.00015 
4999 0.44026 0.00010 
5001 0.16310 0.00013 
5003 0.06041 0.00009 

d = 26 Number  of bins = 24 

A N(A) AN(A) 

4995 0.06681 0.00009 
4997 0.18566 0.00017 
4999 0.44290 0.00013 
5001 0.16669 0.00017 
5003 0.06256 0.00012 

TABLE 3 
Results concerning flo 

Number  

d a of bins flo '~flo /~o A/~o From ref. [10] 

3 2 5 0.7833 0.0026 0.7832 0.0026 
4 5 0.7883 0.0025 

4 2 16 1.1898 0.0007 1.1898 0.0007 
4 16 1.1896 0.0006 

6 2 16 1.3891 0.0006 1.3891 0.0006 
4 16 1.3889 0.0006 

8 2 8 1.5042 0.0006 1.5042 0.0006 
4 16 1.5042 0.0006 

8 2 8 1.5038 0.0008 1.5038 0.0008 
4 8 1.5040 0.0007 

10 2 8 1.5880 0.0005 1.5880 0.0005 
4 8 1.5881 0.0004 

12 2 24 1.6534 0.0004 1.6534 0.0004 
4 24 1.6536 0.0003 

26 2 24 1.9209 0.0004 1.9209 0.0004 
4 24 1.9207 0.0004 

1.180 </30 < 1.195 

1.502 < flo < 1.507 
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Finally let us comment on the case d = 3. In three dimensions the Monte Carlo 
process for PRSWS is not ergodic. A certain class of surfaces cannot be generated 
with the described shift procedure, as has been described in ref. [7]. Therefore the 
value of/3o for d = 3, given in table 3, is not the critical coupling constant of the 
PRSWS, but  of a model which is built from a subset of the surfaces constituting 
the PRSWS. 

6. Mean-field analysis of the PRSWS 

In 1979 Drouffe, Parisi and Sourlas presented a mean-field approximation for the 
study of lattice gauge theories [13]. Their method can be used for the investigation 
of random surface systems in high dimensions [2, 3]. In this section we present the 
mean-field analysis of PRSWS. 

The starting point is the observation, that in high dimensions the loop correlation 
functions are dominated by so called "tree-like surfaces". In order to see what the 
essential features of tree-like surfaces are, we demonstrate how they can be con- 
structed in the various models. We restrict ourselves to surfaces with one minimal 
boundary loop. 

PRS. Take two monomers and place them on top of each other. Let us call such 
an object a " t ree  element". Choose one of its eight links. Now we have two 
possibilities to proceed: 

(a) The chosen link and the one sharing its position are identified. This means, 
that the monomers constituting the tree element become connected. 

(b) Place a new tree element onto the lattice in such a way that one of its links can 
be identified with the link under consideration. 

Repeat this procedure until a surface with the appropriate boundary has been 
created. The set of surfaces which can be built up in this way form the tree surfaces 
of the PRS. 

SARS. Here the tree elements are complexes formed by the edges of a cube. For 
the loops of length four we again have a choice: 

(a) Put a monomer onto the loop and identify its boundary with the links of the 
loop. 

(b) Place a new tree element onto the lattice and identify one of its loops with the 
loop under consideration. 

Iterate this procedure until a surface has been created which has a four-link loop 7 
as boundary. The set of self-avoiding surfaces which can be built in this way forms 
the tree surfaces of SARS. We see that tree surfaces are the "thinnest" possible 
surfaces in the considered model. 

What are the tree surfaces in PRSWS? At a first sight it may be tempting to think 
of cubes, cut along their edges, as the tree elements. However there is also the 
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possibility to have doubly occupied plaquettes if to all of its four boundaries other 
allowed configurations are attached. Of course then, if we want to prevent a finger 
from growing further, we have to glue a cube to its boundary. Let us adopt the 
notation from [2] and denote the loop-correlation-function defined through sums 
over tree surfaces by G~(~h,. . . ,  ~&). Furthermore the subset of tree surfaces with 
boundary y which cannot be divided into two pieces by cutting along a single link 
belonging to y define the reduced loop-correlation-function Xa(7). By using argu- 
ments similar to those of Durhuus, Fr~Shlich and Jonsson [2], we obtain for large 
dimensions: 

Xa (,/) (6.1) 
G~°('/) - 1 - Xa(3') 

and 

Xa(y)=2de-2a(G~('y))3+(2d)2e-6~(1 -}- G ~ ¢ ( ~ ) )  11 . (6.2) 

Here ~, stands for loops of length two. These equations only contain the leading 
terms for large d. The neglected terms yield subdominant contributions to the 
quantities considered in the following. If we define u .'= 2 d e  -2# we obtain from 
(6.1) and (6.2) 

u 3 + 2 d ( 1 -  x ) S X 3 u -  2 d ( 1 -  X ) n X =  O, (6.3) 

where X is shorthand notation for Xt~(3, ). At the critical point the derivative of X 
with respect to u has to be singular, which means 

du x, d X  = 0, (6.4) 

with X c .'= XOo(y ). Differentiating (6.3) with respect to X gives 

(1 - Xc)3(1 - 12Xc) 

u(Xc) = X Z(3 - 11Xc) (6.5) 

Inserting this into (6.3) implies 

2 d =  
(1 - 12X=) 3 

)(7((3 - l lXc)(1  - X~))2(2 + Xc) 
(6.6) 

Consistency requires 

0 < X c < 1 .  (6.7) 
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From (6.6) we can compute X c numerically, which, via (6.5) and the definition of u 
determines flo- Combining (6.7) and (6.6) we see that X c goes to zero as d goes to 
infinity. In this case we can expand the r.h.s, of (6.6) and obtain 

X c = ( 1 8 . 2 d ) - i / V ( l + O ( d - 1 / 7 ) )  for d-~ ~ .  (6.8) 

Therefore the critical coupling constant goes asymptotically to 

a l  £ fl~ym= ~41og2d + ~,og22 for d ~  oo. (6.9) 

Let us investigate what happens if we take cubes cut along their edges as tree 
elements. That  is we do not take into account the possibility of having doubly 
occupied plaquettes. In this case (6.1) is still correct, whereas in (6.2) we have to 
leave off the first term on the r.h.s. For the critical coupling constant we obtain 

1212 
fl~ube = {log2d + ~log 1111 . (6.10) 

In table 4 the behaviour of fl~ub~, fl0asym and the full mean-field result flo My, 
computed from (6.5), (6.6) is compared for various dimensions. The interesting fact 
is, that for small and intermediate d the full expression is almost saturated by the 
contribution from the cubes. At d = 10 8 it happens for the first time, that fl~sym is 
closer to /~o  ME than fl~ube. Finally at about d = 10 30 fl0MF and fl0 asym a re  in very good 

agreement, whereas fl~ube is significantly smaller. 
It is amusing to see, that in high dimensions 

flo PRs = ½1og2d + c, 

fl~ube .= ½1og2d + c ' ,  

flO SARS= ¼1og2d+ c" .  (6.11) 

In fig. 2 the behaviour of  fl0 MF and the measured values of fl0 is depicted. Below 
d = 8 the measured values are lower than fl0 ME ( = fl~ube), whereas above d = 8 the 
MC values show a trend to be slightly larger than fl0 ME. Nevertheless flo My seems to 
be a fairly good approximation for fl0 pRsws if one works in dimensions larger or 
equal to six. 

Let us emphasize a difference in the large d behaviour of PRS and PRSWS. In 
PRS the value of X at the critical point is ¼. For the model without spikes X c 
vanishes for d going to infinity, as has been noted before. Consider the string 
tension: 

1 
- lim GB(TL,M), (6.12) z ( f l )  := L , M - ~  LM l°g 
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TABLE 4 
Comparison of different 130 for various d 

407 

d /30MF /3~ube /3~sym 

3 1.1718 1.1709 0.7763 
4 1.2678 1.2668 0.8791 
5 1.3422 1.3412 0.9587 
6 1.4031 1.4020 1.0239 
7 1.4545 1.4534 1.0789 
8 1.4991 1.4979 1.1266 
9 1.5384 1.5371 1.1687 

10 1.5735 1.5723 1.2063 
12 1.6344 1.6330 1.2714 
14 1.6858 1.6844 1.3265 
16 1.7304 1.7289 1.3742 
18 1.7697 1.7682 1.4162 
20 1.8049 1.8033 1.4539 
22 1.8367 1.8351 1.4879 
24 1.8658 1.8641 1.5190 
26 1.8925 1.8908 1.5476 
102 2.3425 2.3398 2.0287 
103 3.1129 3.1073 2.8510 
104 3.8860 3.8748 3.6734 
105 4.6635 4.6424 4.4957 
106 5.4471 5.4099 5.3181 
107 6.2376 6.1774 6.1404 
108 7.0349 6.9450 6.9628 
101° 8.6461 8.4800 8.6075 
1014 11.9075 11.5501 11.8969 
1020 16.8325 16.1553 16.8310 
1025 20.9430 19.9929 20.9427 
103o 25.0546 23.8306 25.0545 

where YL, m is a rectangular loop of size LM. If the dominant contribution to 
Ga(~'LM) comes  from surfaces which are obtained by glueing trees to the minimal 
surface spanned by ~'LM, we have 

r°°(/3) =/3 + 21og(1 - Xt~(7)). (6.13) 

Therefore in PRS 

ryes(/3 o, a)  =/30VRS (d) + 2 log~ (6.14) 

and in PRSWS for d ~ 

'rp~RSW (fl0,  d )  = floaSym(d) "]- 2 log(1 - ( 1 8 - 2 d ) - 1 / 7 )  

""> /30asym ( d ) .  (6 .15)  



408 

2.0 

~o 

1.5 

1.0 

05 

B. Baumann / Noncanonical path and surface simulation 

I I I I I I I I I I 

/ 

I l l  I I I I I I 

4 5 6 8 10 12 15 20 25 

Fig. 2. The critical coupling constant versus the dimension of the embedding space. The dots represent 
the measured values obtained as explained in sect. 5. The error bars are smaller than the points. The 
upper  curve portraits fl~F (or fl~ube, which cannot be distinguished within the resolution of the drawing), 
the lower curve represents fl~ym. In three dimensions only a part of the surface space is accessible (see 
ref. [7]). The value in 5 dimensions is taken from ref. [6]. In d = 2 we define r0 as the value of r ,  for 

which the string tension vanishes. 

This means, that unlike the case of the PRS in infinite dimensions the string tension 
in PRSWS is dominated by the minimal surface alone-the trees are no more 
important! This shows that the PRSWS has features different from the PRS even in 
high dimensions. 
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