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We consider diagrams of order 2 2 a s G F for the K°-K. ° mixing, topologically different from the 
gluon-corrected standard box. The treatment of three-loop diagrams is simplified by factorizing 
them in terms of momentum-dependent effective vertices for s ---, dG and s ~ dGG transitions. 
An enhancement from the remaining loop-momentum integration compensates for the extra 
powers of the strong coupling. This gives a significant contribution to the CP-violating part 
( -  15% to -40% of the standard-box value). The dependence of the results on the involved mass 
parameters is illustrated by LEGO plots for both the CP-conserving and CP-violating parts. 

1. Introduction 

The  K ° - K  ° mixing  represents  an exquisi tely sensitive test bo th  for the min ima l  

s t a n d a r d  m o d e l  (SM) and its poss ible  extensions.  The  ext remely  small  K L - K  s 

mass  d i f ference  

A m ~  p = 3.5 × 10 -15 GeV (1.1) 

requi res  the  effective A S  = 2 in terac t ion  produc ing  it to be  O(G~) .  Indeed,  in the 

lowes t -o rde r  in te rac t ion  in G F, the SM provides  only the AS = 0, 1 t ransi t ions,  and  

the first  m o d e r n  t rea tment  of  the A S  = 2 t ransi t ion was represented  by  the calcula-  

t ion of  the box- loop  d iagram (fig. 1) by  Ga i l l a rd  and Lee [1]. This ca lcula t ion  also 

n ice ly  exh ib i t ed  the G I M  cancel la t ion [2] opera t ing  at  the one- loop level and  led to 

the p red i c t i on  of  the cha rmed-quark  mass. However ,  the most  cri t ical  test  of  the SM 

seems to res ide  in the explana t ion  of  CP violat ion.  The  only  observed CP-vio la t ing  

q u a n t i t y  is still  the pa ramete r  E of  the K ° - K  ° system, 

e = 2.27 × 10 -3 (1.2) 
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Fig. 1. Scattering and annihilation channels of the standard-box diagram. 

In the minimal SM, CP violation appears only as a loop effect and, in addition, 
represents the single low-energy amplitude given by the high mass scale (of the third 
generation of fermions). If there exist new interactions, these should influence the 
sensitive O(G~) quantities (1.1) and (1.2). Thus, the quantities (1.1) and (1.2) lead to 
bounds on various "beyond the SM" models: the extension by a fourth generation 
of quarks [3], left-right symmetric theories [4], supersymmetric theories [5], extra 
Higgs bosons [6], composite models [7] and even Lorentz non-invariant couplings 

[81. 
From the theoretical point of view, the extreme experimental precision of (1.1) 

and the uniqueness of (1.2) require a very precise computation. Before having 
precise theoretical values for these quantities, the recent claims of deviations from 
the standard model seem to be premature. However, there is a well-known obstacle 
in obtaining precise predictions in hadronic physics: it comes from the problem of 
separating short-distance (SD) from long-distance (LD) dispersive effects [9], and 
from the theoretical uncertainty in the latter. In order to remedy for this difficulty, 
we focus on the effects dominated by trustably calculable SD contributions. The 
effect which we consider here is the imaginary (CP-violating) part of the K°-K ° 
mixing; this part seems to come mainly from the SD effects [10]. In a separate paper 
we intend to consider the B°-B ° mixing [11], for which the real part (AraB) also 
appears to be SD dominated [12]. 

The latter effect is interesting in view of the increasing body of data from 
heavy-quark physics [13]. The progress in this direction has a chance to remove the 
kaon from the distinguished place of being the only physical system providing a 
measured CP non-invariance. 

In this paper we make an attempt to recheck with more accuracy the predictions 
of the minimal SM for the K°-K ° system. We lay special emphasis on double 
penguin-like (DPL) diagrams, which have recently been studied with considerable 
interest [14-18]. These diagrams represent potentially important effects from 
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higher-order loops. This is because the particular loop integrals under consideration 
give an enhancement which might compensate for the extra powers of the strong 
coupling invoked in such diagrams. However, explicit calculations are needed in 
order to know the importance of such loop effects. A nice feature of such new 
contributions is that they lead to a local four-quark operator of the same type as the 
one of the simple box diagram. Thus, the ratio of the DPL matrix element to the 
standard-box matrix element is free of ambiguities. However, the well-known 
ambiguity (phrased as the "B factor" [19]) enters when we want to know the 
net value of the new contributions to the experimentally measured quantities (1.1) 
and (1.2). 

The paper is organized as follows. Sect. 2 is the central part of the paper, with 
subsect. 2.1 restricted to the general properties and the leading approximation form 
of the three-loop diagrams and subsect. 2.2 exposing the results of numerical 
evaluation. Details of vertices, approximate analytical results and colour factors are 
given in appendices A, B and C, respectively. Sect. 3 is devoted to conclusions. 

2. Box diagrams of penguin variety 

2.1. GENERAL STRUCTURE OF DOUBLE PENGUIN-LIKE DIAGRAMS 

In our recent short papers [17,18] we reported briefly on an additional class of 
diagrams contributing to the K°-K ° mixing. Their importance was measured in a 
ratio to the standard box. In our first paper [17] we resolved the "double penguin" 
controversy raised by papers [14,16] and [15] concerning the importance of a 
particular class of double penguin (DP) diagrams (fig. 2) for the mass difference 

s w ~ d 

,c. t  

d -  d ~ s 
W 

+ 3 crossed 

5 =- __ u.c,t G 

~ d w &  ,, 3 crossed 

Fig. 2. Original double-penguin diagram, its annihilation-channel counterpart and indication of their 
crossed diagram companions. 
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Fig. 3. Siamese-penguin diagrams, here as a first example of the QCD gauge-dependent extension of 
double penguins. 

S - ~ d 

u.c,, H s 
~ U.C.t d-'- ~JoooiollliL~u.c, t s 

2 crossed 

2 2 Fig. 4, Diamond box, another gauge-dependent diagram of order a~ G F. 

(1.1): the new contribution to Am K, being of the order of one percent, was entirely 
negligible. In our second paper [16] we considered a full class of double penguin-like 

2 2 (DPL) box diagrams of order asG F. As well as the original DP there is a "siamese 
penguin" (SP) box (fig. 3), a "diamond" (D) box (fig. 4) and a "mixed penguin" 
(MP) box (fig. 5). As a result we obtained (for some average choice of the 
parameters involved) that such a new contribution to the CP-violating parameter e 
(eq. (1.2)) constitutes approximately -25% of the standard-box value. The present 
paper is intended to have a wider scope. As well as giving a detailed presentation of 
the calculation, we also investigate the stability and (for a reasonable range of 
parameters) the range of the new CP-conserving and CP-violating parts of the 
K ° - K  ° mixing. 

The vertices appearing in the diagrams of figs. 2-5 include not only the ordinary 
flavour-conserving gluon vertex, but also the induced flavour-changing vertices 

s d 

d d s 

* I/. crossed 

Fig. 5. Mixed-penguin diagrams, representing the largest subclass under consideration. 
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s W d 

p 

Fig. 6. Induced flavour changing s --* dG (penguin) vertex (given in (A.2)-(A.4)). 

s W d s d 

° 1 ° 
P -p 

749 

Fig. 7. s --, dGG penguin vertex, reducing to a triangle anomaly vertex for the heavy W-boson (given in 
(A.6)-(A.14)). 

s d 

d s 

Fig. 8. A schematic presentation of the momentum-dependent penguin-type vertices entering a common 
loop-momentum integration. The dashed line represents a quark or a gluon. 

s ~ d G  and s ~ d G G  (figs. 6 and 7). We list them systematically in a separate 
appendix  (app. A). The diagrams at hand are apparent ly complicated three-loop 

diagrams. However,  they can be considerably simplified by neglecting the external 

quark  m o m e n t a  for the kaon system* and by factorizing the loop integration into 

the momentum-dependen t  effective vertices and a c o m m o n  loop-momentum in- 

tegration, as shown schematically in fig. 8. In such a treatment we insert the Q C D  
running  coupl ing a s ( p  2) under the loop integrals, as inspired by previous loop 
calculat ions [21, 22]. 

Let  us explain our  evaluation of  loops in more detail by using the example of  the 

double  penguin displayed in fig. 2. The relevant s -~ d G  vertex is represented by a 

sum of "s ingle"  quark contributions Lq (q - u, c, t) (eq(A.5)): 

X~L u + XcL c + XtL t , 

x q  = vqdVqs* • 

where 

(2.1) 

* The externat mass effect for the standard box has recently been considered by Datta and 
Kumbhakar [20]. 
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Since the Kobayashi-Maskawa (KM) factors are constrained by the relation 

X u + X c + X t = 0 ,  (2.2) 

eq. (2.1) can be cast into the form 

xo[Lu-Lc]- X,[Lc-L,]. (2.3) 

This relation representing the GIM cancellation mechanism leads to the expression 

where 

fv( p2 )Cv( p2, rn 2, M 2) ~T~taLsPT( p );, (2.4a) 

M2 +p2x(1 -x) 
Cp( pZ, mE, M 2) =6fol dxx(1 - x)ln m~ + p~x(1- x) ' (2.4b) 

and fv-Gvgs is defined in (A.3). In eq. (2.4b), (rn, M) refers to either the 
(mu, mc) or (mc, mr) pair of current quark masses. 

Attaching to this vertex the accompanying gluon propagator results in an effec- 
tive penguin vertex which is QCD gauge independent: 

] P"Pa pT(p),DG(p)O13= pT(p),_~22 g,#_ , ~  =g,,13_ p2 (2.5) 

When the external quark momenta are neglected, such a vertex enters the schematic 
diagram (fig. 6) already mentioned. Its amplitude is given by a single loop-momen- 
tum integration 

d4p r 
f ~ - ~ t  fP (p~)l ~( d-r,, tas~(-p)vat"L* )?~( p)~Do( p)~° 

where 

× Cv(p2)l( dyotosa(-p)yxtaLs)Pv(p)XDG(p)"~Cv(pZ)z, (2.6a) 

Ca(P2)i=Cp(pZ, mZ, MiZ). (2.6b) 

Among the terms resulting from the insertion of (2.5) in (2.6) we choose those 
involving the second term ("non-local" part of the penguin) in the r.h.s, of eq. (2.5). 
These terms introduce loop integrals involving extra four momenta in the numera- 
tor. In our case (neglecting external momenta), such terms can be easily handled by 
making replacements such as p~,p~--+ ¼pZg~,~ (app. B of ref. [23]). Then such loop 
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integrals reduce to the expressions proportional to the "local" contribution of the 
penguin: 

1 d4p 1 
36 f (-i-~)" p~ Ce(p2)ICp(P2)2" ( 2 . 7 )  

As shown in our previous paper [17], inclusion of the "non-local" parts for the DP 
diagrams effectively gave a minus sign (the factor ~s - g )  to the purely "local" part 
treated in ref. [14]. In contrast to [14], we conclude that the pure DP-diagram 
contribution to A m  K was negligible in comparison with the standard box contribu- 
tion. Still we conjectured about the possible new contributions to the CP-violating 
parameter e. A realization of this conjecture was demonstrated in our subsequent 
paper [18]. In contrast to the DP box, the additional diagrams in figs. 3-5 are not 
gauge independent by themselves. In order to show that the diagrams in figs. 3-5 
complete to a gauge-invariant set, we have expressed their explicit contribution in 
the leading log approximation as* 

- 2 2 1 a f , ,~(p2) ~2( M s)5.  
ai,_~og= (d-/.Za)(2V~Gr) 1-g-~ f dp I---gg--) /ln7 (2.8) 

Here the colour and Dirac-algebra factors are already extracted. Then, as shown in 
(2.5), the DP is gauge independent by itself 

ov _ 68 " (2.9) gl_log - - ~Ml.log, 

while the rest, namely the gauge-dependent siamese penguin 

sP ~ 32 M,-lo~ ( - ~ -  ~ )&. lo~ ,  

the diamond box 

and the mixed-penguin box 

Ml~og = (4 - ~ )  )Q,_,og 

MP ~ v,_lo~ = ( - 8 + ~ )  v,. ,o,,  

(2.10) 

(2.11) 

(2.12) 

obviously add up to a gauge-invariant result. However, the 1-10g expressions cannot 
account for the dominating CP-violating part (the interference K-term defined 
later). Thus we find the analytical expressions which give the interference CP-violat- 
ing term -Xu)~t in the leading approximation, for which (L c - Z t ) -  l n ( m 2 / p  2) 

* In eq. (2.8) we have used "l-log" to denote l-log for individual penguin loops. This does not mean 
that the total integral in (2.8) is leading log (after integration over p2). 
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2 2 We obtain the following total and ( L  u - Lc)  - mZc/p 2 in the region m e <p2 < mt ' 
(crossed plus uncrossed diagrams, scattering and annihilation channel included) DP, 
SP, D and MP contributions: 

DP 68 
Mnext_lead = -- 576R(Q),  

sP = ~ f ) 6 R ( Q } ,  Mnext_lead (3227 

D = 8 R ( 1 -  ~)<Q} Mnext-lead 

MP = - 8 [ ( 4 - 2 ~ ) R + ~ ( S - R ) ] ( Q > ,  Mnext_lead 13 

(2.9a) 

(2.10a) 

(2.11a) 

(2.12a) 

2 p2 where R, S and (Q> are defined in appendix B. This approximation for m c < < 
m 2 could be called "next  to leading", in contrast to the "leading-log" approxima- 
tion in (2.8)-(2.12). Then we can demonstrate the gauge independence of the 
dominating CP-violating part in this next-to-leading approximation. Beyond 
the approximations in (2.9)-(2.12) and (2.9a)-(2.12a) it is not so trivial to show the 
gauge independence of the sum of all diagrams explicitly. For instance, some 
additional non-leading diagrams involving the self-energy s ~ d transitions com- 
plicates the theoretical analysis. 

In appendix B we also give the approximate analytical results for the dominating 
CP-violating K-integrals. In spite of the crudeness of this approximation, the 
obtained results agree within a factor of two with the numerical integration done in 
the rest of the paper. The obtained analytical expressions may therefore give some 
insight in the variation of the K-integrals, discussed later. 

Once we have proved the QCD gauge independence at some leading level, we 
calculate the individual DPL-box contributions beyond the leading (log) order in 
the Feynman gauge (~ = 0 in eq. (2.5)). For the DP box, relations (2.8) and (2.9) and 
the corresponding relation (2.9a) get replaced by the full expression* 

M DP = 27 16~r 2 d p 2 [ O t s ( p 2 ) ] 2 C p ( p 2 ) l C p ( p 2 ) 2  (d'y. Ls) 2. (2.13) 

Thus far we have considered our second reference point, namely the DP boxes. 
Similar expressions for the other boxes of penguin variety are given by replacing the 
appropriate one-gluon vertices (2.4) by the corresponding two-gluon vertices (A.6). 

* This expression takes into account colour factors which are different for scattering and annihilation 
channels. Details of the colour factors are explained in app. C. 



J.O. Ee~ L Picek / K°-K ° mixing 753 

The SP box is given by the same loop-momentum integral as the DP box: 

32 ( 2~/2-GF 12 / 
M s P = - -  fdp2[~(p2)]2Cp(P2)xCe(p2)2}(d3,~Ls) 2. (2.14) 

27 16~r 2 ] 

The amplitude of the diamond box displayed in fig. 4 has the form determined by 
(A.6-11): 

f d4 p -~-~[fT(p2)]2(ay"Ltbt~s)T~oo(p2)DG(p) ~° 

X Do( p )~°T~#,( p2 )( dy" Lt'tbS ) , (2.15) 

and there are similar expressions for the crossed diagrams. In eq. (2.15), fT is of 
order GFa~ [(A.7)], while the tensor T~o consists of a symmetric and an antisym- 
metric part: 

T~p o = TSpo + T~o, (2.16) 

where 

T~Soo = A ( P  2, mZ)[guoPo + g~oPo] 

+ B( p 2, m2 ) gpopu + C( p 2, m2 ) p~popo , (2.17a) 

T~aoo = - iF (  p2, m 2 ) e t ~ p o r p ,  " (2.17b) 

After the extraction of the colour part of the D matrix element, the crossed and 
uncrossed diagrams give (see the last footnote) 

: 16~r2 dP 2 [~s(p2)12(Z[6A(p2hA(p2)2 + 3B(p2)le(p2h 

+ (2A(p2)x + 8(p2)l-p2C(p2)x)(2~(p2)2 + B(p2)2-p2C(p2)2)] 

-~e(p2):(p2h}(&,  c,)2. (2.18) 

Finally, the MP amplitude for the diagram displayed in fig. 5 is 

f ~g~(p2)fp(p2)fT(p2)(d2:, Ltbt~s) Cp( p2 )iDG( P )~PDo( p ) O~ 

× Pv(P),~Tuoo(P2)2[d3't~ t'Sa(-p)3,'Lt"s], (2.19) 
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and there are similar expressions for the crossed diagrams. As may be inferred from 
their name, these diagrams are determined by different vertices from appendix A. 
Summed up, after the extraction of the colour factors they give 

( )2 
MMP= 2v~GF fdp2[a~(p2)124{[A(p2) l_B(p2) l_~_F(p2) l]Cp(p2):  

16¢r 2 

+Cp(p2) l[A(p2)2-B(p2)2-~-F(p2)2l}(dy~,Ls)  2. (2.20) 

Now, we return to the schematic diagram in fig. 6. This diagram gives the K°-K. ° 
mixing matrix element basically determined by a square of eq. (2.3), and has the 

form 

X2ui(~2, m2)_2XuXtK(~2, m2t)+~I(m2,  m2 ) . (2.21) 

Each of the DPL boxes discussed above gives its own contribution to the three 
terms in eq. (2.21). Using the conventional choice of the KM matrix (where ~'u is 
purely real), we refer to these three terms as CP-conserving, CP-violating and 
KM-suppressed CP-violating terms, respectively. The terms contain an indication 
about the range of the loop momentum. Obviously, for I(/x 2, mc 2) and I(m 2, rot2), 
this range is given by the GIM mechanism [eq. (2.3)], while K(/~ 2, mt 2) represents an 
interference term. Note that in eq. (2.21) we have introduced an infrared (IR) 
cut-off/* in order to make the perturbative evaluation sensible. Thus tt is defined by 

a critical value of the strong coupling, 

as(/~ 2) = 1. (2.22) 

The form of the strong running coupling used to evaluate the loops at p2 < M 2 is 

as(p2)=as(M 2) 1 - b  4w In , (2.23) 

with b = 11 - ~Nf, where Nf is the effective number of quark flavours. 

2.2. RESULTS OF NUMERICAL LOOP EVALUATION 

The values of the integrals in (2.21), calculated previously [18] are worth examin- 
ing in detail. This applies in particular to the CP-violating part K(/x 2, mr2), which 
exceeds the bound up to which the LD contribution could contribute. However, 
there is an intrinsic uncertainty in our calculation in the form of the IR cut-off/~, 
reflecting our incapability of performing the non-perturbative calculation in the 
problem under consideration. Qualitatively, the LD contributions to e, where 
the virtual process K ° ~ 7/o ~ ~0 is thought to be most important, are related to the 
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-i'lo.Lm~l 

250- 

O, 
at 

1.1 ~ "J 

Fig. 9. LEGO plot for a dimensionless integral /(/z 2, m~) relevant for the CP-conserving K°-K ° 
mixing. 

uncertainty in the IR cut-off/~. However, the SD perturbative calculation, although 
dependent on the IR cut-off, can not give us information about the LD contribution 
(by extrapolating the perturbative calculation to the non-perturbative region). The 
eventual stability of the SD result on the IR cut-off merely indicates that the SD 
contribution by itself is well defined. The perturbative calculation performed 
requires a numerical treatment of multiple integrals over the loop momentum and 
the Feynman parameters. For this purpose, we have used the numerical routine 
VEGAS [24]. 

In the following we look for the dependence of the evaluated quantities on the 
variation of # and the top-quark mass (experimentally not yet determined). The 
suitable quantities are the dimensionless integrals [(m 2, M 2) defined by 

I (m 2, M 2) = [Mas(M2)]2[(m 2, M2), (2.24a) 

and for convenience 

K(/~2, m 2) = [mtCts(mZt )121~(t~2, mZt ). (2.24b) 

Their two-dimensional LEGO plots are displayed in figs. 9-11 for # in a rather wide 
range, (0.3,1.2) GeV, and for m t ~ (30,55) GeV. Since these integrals are fairly 
stable in rot, let us focus on their /z dependence (table 1). Obviously, only the 
CP-conserving integral f(/~2, m~) depends on/~ substantially. Furthermore, we may 
fix /~ at some average value to illustrate the relative importance of various DPL 
diagrams. As seen from table 2, the largest contribution comes from the largest class 
of MP diagrams (fig. 5) which add up coherently. It is also convenient to express the 
DPL contributions in terms of their gauge-independent subunit, DP, as shown in 
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Fig. 10. L E G O  plot  for a dimensionless integral /((~t 2, m 2) relevant for the 
mixing. 

CP-violating K ° - K  ° 

150 

100 _~ 

50- 

~" 0.9 1 . ~  1 
m~ 

35 ",,. p, 

Fig. 11. L E G O  plot  for a dimensionless integral /~(m~, mt 2) relevant for the K M  suppressed K ° - K  ° 
mixing. 

TABLE 1 
Range  of values of the dimensionless integrals in (2.24) when the IR cut-off is varied in the range 

(0.3,1.2) GeV and for fixed m t = 45 GeV 

CP -conse rv ing / (#2 ,  m~) 

CP-violat ing/~( /x  2, m t 2) 

CP-violat ing f ( m c  2, m t 2 ) 
suppressed 

( - 219.7, - 52.1) 

( - 4.2, - 5.6) 

( - 102.7, - 123.5) 
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TABLE 2 
Separate DPL box-diagram contributions to quantities in table 1, for ~t = 0.7 GeV 

(the colour factors in DP and SP are already extracted) 

757 

Loop integral DPL box DP SP D MP 

/(/z 2, m~) 12.9 12.9 15.1 - 82.8 
/~(/~2 mt 2) 0.6 0.6 0.8 - 3.6 
- 2 m~)  I( m c , 13.3 13.3 21.7 - 79 

2 2 t a b l e  3. T h e n ,  n o t e  tha t  the s u m  E D P L  ove r  al l  new d i a g r a m s  of  o r d e r  asG F gives 

M DPL = 
16¢r 2 

2V~-]2(  ~ 2 i ( / z 2 ,  mc2 ) _ 2Xu~tK(~2, m2t)+ X2I(m2'm2t)} 
4~r ] 

× ( ) o2o,our,os s . (2.25) 

I t s  s e p a r a t e  p a r t s  can  be  d i r ec t ly  c o m p a r e d  wi th  a Q C D - c o r r e c t e d  [25] s t a n d a r d - b o x  
resu l t ,  w h i c h  is n u m e r i c a l l y  as fo l lows:  

Mstand" box = G2 
16~r 2 ( h2u X 25.12 - 2~k u~k t × 61.92 

+ ~2t x 19380 } (dy~  Ls)~olo~less. (2 .26)  

( T h e  c u r l y  b r a c k e t  is g iven  in the  un i t s  G e V 2 ) .  Eq. (2.26) y ie lds  the  las t  c o l u m n  in 

t a b l e  3 ( fo r  m t - - 4 5  GeV,  /~ = 0.7 GeV) .  Howeve r ,  i t  is i n t e r e s t i ng  to  k n o w  h o w  

m u c h  these  p e r c e n t a g e s  va ry  wi th  the  v a r i a t i o n  of/~2 a n d  m t z. Th is  is s h o w n  in t ab l e  

4 fo r  a f ixed  v a l u e  of  mr,  m t = 45 G e V  (as in t ab le  1) a n d  for  the  who le  r ange  of  

va lue s  of  d i m e n s i o n f u l  in tegra l s  (2.24) f rom figs. 12 -14 .  Thus ,  the  m o s t  i n t e r e s t i ng  

TABLE 3 
DPL-box contributions from table 2, giving dimensionful quantities according to (2.24); 

normalized to the DP box and compared with the standard box 

DPL boxes in units of DP % of the QCD corrected 
DP SP D MP YanDPL standard box 

CP-conserving 1 0.47 - 0.46 2.52 3.53 - 10% 
CP-violating 1 0.47 - 0.51 2.45 3.41 - 25% 
CP-violating 1 0.47 - 0.64 2.32 3.15 - 2% 

suppressed 
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TABLE 4 
Range of the net DPL contribution for fixed m t and for a whole range 

of values for ~ and m t 

For m t and ~ from table 1 
% of the 

the net DPL contribution standard box 

For a whole m t and ~t region 
from LEGO plots 

% of the standard box 

CP-conserving l(/.t 2, m 2) ( - 41.9, - 68.6) - (8-14)% 
CP-violating K(/z 2, m 2 ) ( - 196.4, - 445.6) - (16-36)% 
CP-violating l(m~,, m 2) ( - 4 7 9 8 ,  -9856)  -(1.2-2.5)% 

suppressed 

- ( 8 - 1 4 ) %  

- (13-39)% 
- (1 -5 )% 

-I(#,m9 

8o j 

• 0.7 
0'7 0 9 ~ 1 . 1  

mt 

35 

Fig. 12. Dimensionful quantity related to fig. 9 by the relation (2.24). Note that the pattern of fig. 9 
changes because of the rapid variation of a s. 

-K([.2,m~/ 

Loo . . . . ~ ~  

~'~ 0 . 7 ~  

Fig. 13. Dimensionful quantity related to fig. 8. 
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-I(m~,m~) 

15000 
I0000 

5000 0 . ~  

-'-1.~ 
~ m t  
35 

Fig. 14. Dimensionful quantity related to fig. 9. 

result 

- 25 % for # = 0.7 GeV and m t = 45 GeV, 

which refers to the CP-violating part of the DPL boxes, gets replaced by the interval 

from - 13% to - 39% for/~ ~ (0.3,1.2) GeV, 

m t ~ (30,55) GeV. 

Both columns containing percentage in table 4 are presented in order to demon- 
strate that the variation in m t for a given range is immaterial. The middle row in 
table 4 is the most interesting one since the first row is in competition with equally 
(and even more) important long-distance (dispersive) effects, while the third row, 
being heavily KM suppressed, cannot compete with the dominant CP-violating 
contribution from the middle row. 

3. Discussion and conclusion 

The numerical results presented in LEGO plots and tables 1-4  show that the 
DPL diagrams, although being higher than the standard box by the order of a 2, 
cannot be neglected. The reason for this is twofold. First, DPL diagrams have a 
topological structure different from that of the standard box and therefore are not 
included in the QCD-corrected box-graph analysis of Gilman and Wise [25]. 
Second, the [as(m2)] 2 factor of the (CP-violating) amplitude is compensated for 
partly owing to the fact that penguin diagrams inserted in higher loops introduce 
the extra gluon momenta in the numerator which are the loop momenta for the 
last loop integration. However, the new contributions from DPL diagrams appear 
to be the most relevant ones for the CP-violating part. The reason is that the 
DPL contribution to AmK, although not entirely negligible*, faces the other, even 
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larger contributions. The most important contribution is the long-distance 
dispersive contribution, associated with large uncertainties, but generally giving [26] 

A m ~  D - Am b°x ( -  10 -15 GeV).  

Let us emphasize that there are diagrams corresponding to DPL diagrams which by 
themselves acquire some LD contribution [15, 27]. 

Furthermore, such LD uncertainties are due to replacing the A S  = 2 effective 
interaction by the (AS = 1) 2 one, and we distinguish them from the LD uncertainty 
associated with the evaluation of the B factor. There is also a potentially large 
correction to the real part of the K ° - K  ° mixing coming from non-vanishing 
external quark momenta. For example, the correction due to the non-vanishing 
external quark mass calculated in ref. [20] constitutes 30% for A m  K, but is 
considerably smaller for the imaginary part of the K ° - K  ° mixing. 

Since there is much less uncertainty in the imaginary part of the K°-K. ° mixing** 
our new contributions are more important for the CP-violating parameter e. Even 
more so in view of the possible " C P  crisis" of the standard model [29]. 

Note  that the " C P  crisis" has recently undergone a relaxation [30]. From the 
experimental point of view, the relaxation is due to the fact that the bound on the 
ratio (b ~ u ) / ( b  ~ c) has become less stringent (8% instead of 4% reported previ- 
ously). From the theoretical point of view, the relaxation is due to the possible value 
B = 1 and not necessarily = ~ (table 6 in Langacker [19]). 

However, the " C P  crisis" announced on the basis of the parameter e resides in the 
problem of accommodating the experimental results (1.2) by the standard box alone. 
Thus, lowering the standard-box value in the range from 15% to 40% obtained here 
might increase the potential "danger" for the minimal standard model. Still, in our 
opinion, we cannot point to the crisis of the standard model. Rather, we have 
illustrated the "crisis" of the precise calculation in contrast to the existing precise 
measurements of Am K and e. In particular, the fact that the DPL class of diagrams 

2 turns out to be important (when compared with characterized by a single order as 
the leading log contribution of the standard box summed to all orders in as) 
indicates that more precise calculations are needed. As well as short-distance effects 
(of the type considered here) there are also long-distance effects which require still 
more work to be done (the B factor, for example) in order to infer from CP 

violation that some new physics is present in the neutral-kaon system. 

We would like to thank B. Guberina and R. Peccei for the helpful comments, 
to F. Cornet and J. Sola for their valuable help in computational matters, and 

* The neglect of the pure DP class [17] was somewhat relaxed by the increase caused by the full set of 
DPL diagrams [18]. 

** Here the LD contributions are bounded to be less than 20% [28]. 
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the Norwegian Research Council of Science and Humanities for a travel grant. 

Appendix A 

VERTICES APPEARING IN DOUBLE-PENGUIN-LIKE DIAGRAMS 

Our calculation involves the ordinary quark-gluon coupling 

gs(p2)qy~t"q 

as well as the s ~ dG vertex (fig. 6) 

where 

f p ( p 2 ) L q ( p 2 )  dy~ taLsPv(p ) ; ,  

v/2Gv gs(p  2) 

(A.a) 

(A.2) 

f p ( p 2 )  = _ 3 4~r 2 (A.3) 

and PT is the transverse projector 

px ( p ) - a  =pZg,,a _p,~p/~. (A.4) 

After the Wick rotation, we obtain 

= 6 f o l d x x (  1 _ x ) l n M 2 ( 1  - x ) +  m2x + p2x(1 - x )  L q ( p  2) 
m 2 + pZx(1 - x)  (A.5) 

The analogous s ~ dGG vertex (fig. 8) is somewhat more complex: 

f T ( p  2) dt6tay~T~po(p2)Ls, (A.6) 

where* 

0ts(p 2) 
f T ( p 2 )  = 2V~GF 4~r (A.7) 

The tensor T~,oo, defined by eqs. (2.16) and (2.17), is expressed through the functions 

* Note that g Jr, = - ]fT. 
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A, B, C and F. After taking the euclidean momenta we obtain 

A(p  2, m 2) = ¼f(n)foldX (1 - x ) { ( 2 -  n)(1 - x ) I  2 

+4[x2(1 -x )p  2+m2(1-x ) ] I3 ) ,  (g.8) 

B(p 2, m 2) = ¼f(n) foldx (1 - x ) { - ( 2 -  n)(1 + x) I  2 

+4[x2(1- -x )pZ- -m2(1  + x ) ] 1 3 }  , (A.9) 

1 1 C(p 2, m E ) = J ( n ) f  ° dx (1 -x )16x2(1  - x) I  3, (1.10) 

F(p 2, m 2) = ~f (n ) [F  2 + F 3 + mEG], (A.11) 

where 

Finally, 

fo 
F 2 = dx (1 - x ) (  - x ( 2  + n) + (6 - r/)}/2 , 

F 3 = fo 1 dx (1 - x)24x2p213, 

/0' G = 4 dx (1 - x 2 ) I 3  , 

f (n )  = Tr 1Dira c = 2n -- 4 ~ 4. (A.12) 

12 represents a divergent expression which, in dimensional regularization, 
takes a form i(1 / 

I 2 -  16-~r 2 2 - ½ n  ~z+ln(4~,2)-ln[m2+x(1-x)p 2] . (A.13) 

Here, the last term leads to the so-called leading logarithmic (1-10g) behaviour, while 
the constant terms cancel by the GIM mechanism. In contrast to 12, 13 is the finite 

expression 
i 1 

(1.14) 
13 - -  3 2 ~  "2 m 2 + x(1 - x )p  2 

and offers no leading-log behaviour. Thus, in the l-log limit, our expressions reduce 
to those of ref. [31]. However, only the functions A and B contain l-log behaviour. 
The l-log behaviour in F 2 is only apparent since there is the cancellation of the pole 

for n = 4: 

i 4 F 2 -  1 - ~ 2 ( 5 - 2 f o X d x ( 1 - x ) ( 1 - 3 x ) l n [ m 2 + x ( 1 - x ) p 2 ] ,  

and there is no l-log, due to 

f d x  (1 - x ) ( 1  - 3x )  = O. 
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ANALYTICAL APPROXIMATION AND THE DEMONSTRATION OF GAUGE INVARIANCE 
FOR THE CP VIOLATING INTERFERENCE TERMS ( -  hu)~t) 

The dominating CP-violating contributions -)~uXt are obtained when the c and 
t quarks are running in one penguin (or triangle) loop, and the u and t quarks are 
running in the remaining loop (see eqs. (2.2) and (2.21)). The main contributions to 

2 <~ p 2 <~ m 2 t . such loop integrals are obtained for loop momenta in the range m~ 
Inspired by the previous work of refs. [17,18], we stick to the leading approximation 

2 ~<p2< m 2 in the whole region. Thus one obtains which uses m~ 

m 2 
( L c -  Lt) _ lnp2__L, (B.la) 

2 m 2 _2 
(L u - L ¢ ) - - ~  ¢ /' , _-27 In ..--25" ( B . l b )  p -  P mc 

This approximation underestimates L c - L t for p2 < m E and overestimates L u - L¢ 
for p2 > m~. In (B.1) Lq m a y  symbolize both the s ~ dG and the s ~ dGG loop, 
respectively. Defining the integrals (O~s(p 2) is given in (2.23)): 

R= fm~'dpR[a~(p:)l:[lnm~] m~ J"~ [ ~ ] - ~ ,  (B.2a) 

s =  2 [as(p2)]E[ln m2] [m2 p2 ] 
[ 7 ][-~-lnm-~2] ' (B.2b) 

we obtain the expressions (2.9a)-(2.12a), where (Q) is the matrix element of the 
operator 

1 (2! /~G F 
Q =  1--~21 ~ ] 2 ( d T ~ , L S ) c o l o u r l e s s .  (B.3) 

The combination (SR) in (2.12a) is due to the antisymmetric part of the triangle 
diagram. We observe that the gauge-dependent ( - ~ )  part of the SP, D and MP 
diagrams mutually cancel. The integrals R and S in (B.2) can be integrated 
logarithmically (d p 2fp 2 ~__. d (In p 2 ) ) ,  and one obtains 

R =  ~ - - l - I n  , (B.4)  

(B.5) 
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as(m2t) as(mr 2) rnt 2 
= 1 - b l n - -  (B.6) 

2 " mc 

Numerically, (2.9a)-(2.12a) give numbers of the right order of magnitude. For the 
quantity 6k -  6[mtas(m2t)]-2R which corresponds to /(i)p defined in (2.24) and 
tabulated in table 2, we obtain 6k = 0.64 (0.91) for as(m 2) = 0.5 (0.6). Furthermore, 
for the ratios between the DP, SP, D and MP contributions the results are 
practically unchanged compared with the numerical integration result presented in 
the middle row of table 3, 

D P : S P : D : M P  = 1 : 0 . 4 7 : ( - 0 . 5 2 ) : 2 . 3  (2.4) (B.7) 

for as(m 2) =0 .5  (0.6). From (B.4)-(B.5) we observe that the contributions in 
(2.9a)-(2.12a) do not depend critically on m t. The indirect dependence of/~ through 
as(m 2) is more pronounced (which is also visible through the LEGO plots). 

Appendix  C 

C O L O U R  F A C T O R S  

In order to compare the standard-box contribution and various DPL contri- 
butions, we have to extract colour factors, i.e. to evaluate the colour part of the K ° 
to ~ o  matrix element. DPL diagrams, involving the exchange of two gluons, lead to 

= ! ~ )  colour operators (t ~ 2 

(t~t b) ® (t~t b) and (t"t b) ® (tbta) .  (C.1) 

Using the properties of the SU(3) )~-matrices 

)ka)kb = ~2 ab "4- F"bc)~ ~ , F ~h~ -- d ~h¢ + if abe (C.2) 

and the relations 

daub __-- faab ---- O, dabCd abd = 3 '~ca , f~b~f~ha = 33~a , (C.3) 

we obtain for a given diagram and its crossed counterpart, respectively, 

1 5 3 ) t  ~ (,~t b) ® (tb, ~) = 21® 1 + a(5 + ® t", 

Thus there 
diagrams 

are 

(C.4) 

: 1 5 ( t~ tb )®( t~ t  b) - ~ 1 ® 1 + ~ ( ~ - 3 ) t  a t a. (C.5) 

two relevant four-quark colour singlet operators for the DPL 

Q0 = (d" / "  Ls ' ) (  dJ'l, LsJ ) ,  (C.6) 

Q1 = ( dY~'Ltas)( dY~, Ltas) " (C.7) 

Furthermore, the mesonic colour states 6ik/7~- and 6Jt/v~ - give different matrix 
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I , t  o 
i = ~ - j  

I 

k = • = [ 
1, t a 

(o )  

765 

1 . . . . .  1 

k I 

(b) 

Fig. 15. Schematic presentation of the extraction of colour factors for the operators giving the K°-K. ° 
mixing: (a) for the scattering channel, (b) for the annihilation channel. 

elements for the scattering (fig. 15a) and annihilation (fig. 15b) channels. The 
well-known example is the standard box containing the Q0 operator only, for which 
the evaluation of the colour part yields 

(Q0)scattering = - 2 
( d ~ " / ~  )colo~,ess, (c.8) 

(Q0)annibSlati°n = 3 ( d"/~ Ls ) c2olourless . (C.9) 

This suppression of the scattering channel by a factor of 3 may be viewed as an 
1 / N  c correction [32] to the annihilation channel (N C = number of colours). Similar 

- / ~  2 reductions to (dy~Ls)  2= (d7 Ls)co]ourless for DPL diagrams lead to colour factors 
explicitly given in sect. 2. 
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