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We discuss cosmologies where the cosmological constant X depends on time. The requirements of realistic cosmology 
impose restrictions on the functional dependence of J~ on the Hubble parameter H. We show that for a wide class of functions 
with X of the order H 3 the system of field equations leads to a stable fix-point behaviour with h naturally very small today. 
The age of the universe, critical matter density and deceleration parameter may be modified. 

Today's  value of the cosmological constant is at 
most of the order 

I Xl _< (10 -2 eV) 4- (1) 

This is extremely small compared to other mass 
scales of the standard model like the Fermi scale 
q0 L o r  AQC D. The tiny ratio I X I a/4/epL < 10 -13 is 
difficult to understand since phase transitions in 
the early universe (weak symmetry breaking, chiral 
symmetry breaking and confinement of QCD) 
presumably could induce a change in the cosmo- 
logical constant of the order of the fourth power 
of the relevant mass scale (tO L or AQco). For the 
cosmology after these phase transitions, there exist 
in principle two possibilities: either X was tiny 
[obeying (1)1 immediately after the phase transi- 
tion or it must have evolved with time in order to 
reach its very small value today. In this letter we 
explore the second alternative, i.e., cosmologies 
with variable cosmological constant d X/dt-4= O. 
We concentrate on the kinematics of the problem: 
given some mechanism for a time variation of X, 
what will be the consequence for the evolution of 
the universe? 

Suppose that the effective action (which in- 
cludes quantum fluctuations) for the metric and 
matter  fields would be known. General coordinate 
invariance dictates the gravitational field equa- 
tions to have the form 

R . . -  = 8 cL.. (2) 
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The covariantly conserved ene rgy-momentum 
tensor has a variety of contributions: the effects of 
coherent ("background")  matter fields (including 
their potentials and kinematic terms) are obtained 
by a variation of the matter part  of the effective 
action with respect to g"". In the same way one 
finds the contributions from higher-derivative in- 
variants in the effective action like R~°xR~°x or, 
more general, the complicated (possibly non-local) 
terms induced by quantum effects (for example 
the Casimir energy for the zero point fluctuations 
of a matter field in a curved background). In 
addition there is the contribution of classical par- 
ticles and fields (they are also solutions of the 
field equations) moving incoherently in a volume 
with characteristic length much larger than their 
wavelength. Here statistical methods can be ap- 
plied to obtain energy density and pressure for a 
particle plasma or for dust. 

We consider a homogeneous and isotropic uni- 
verse with a Rober tson-Walker  scale factor a(t). 
The symmetries require the energy-momentum 
tensor to be of the form 

r0o = (X + p)g0o, r , j  = (X - p ) g i j ,  

roi = o. (3 )  

Covariant conservation of the energy-momentum 
tensor reads (with dots denoting time derivatives 
and H = d/a) 

X + tb + 3 H ( p  + p )  = 0. (4) 
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Obviously, the energy density p(t) ,  pressure p(t) 
and cosmological "constant"  ~( t )  constitute more 
free functions than needed for the most general 
description of T~ in a homogeneous and isotropic 
universe. We keep this additional freedom in order 
to allow for easy comparison with standard cos- 
mology in the matter-dominated (p  = 0) or radia- 
t ion-dominated ( p  = 1 /3)  universe. Specifying a 
relation between p and P defines ~ uniquely. 
Motivated by the success of inflation for the un- 
derstanding of some of the puzzles of very early 
cosmology we restrict our discussion to Robert-  
son-Walker  metrics with k = 0. (This means that 

- 2  a can be neglected compared to H 2. Generali- 
zation to the k ~ 0 case would be straightforward.) 
The time component  of the gravitational field 
equations relates the Hubble parameter  to p and 

/ 4  2 = + x )  - + ( 5 )  

To specify the system completely, we need an 
equation of state. In addition to the relation be- 
tween p and p defining ~, we assume that the 
dynamics of matter  fields and gravitation gives a 
time evolution of ~, 

~ = F { H ,  X, 0} (6) 

with F a functional of the functions H(t), ~(t) 
and 15(t) describing the system. [If there are other 
degrees of freedom relevant for cosmology, we 
assume that we can solve their field equations in 
dependence of H, ~ and 15 and insert these solu- 
tions to obtain (6).] Eq. (4) can be rewritten in the 
form 
L 

)~ + ~ + nH15 = 0 (7) 

with n = 3 and 4 for the matter- and radiation- 
dominated period, respectively. Our aim is to find 
cosmological solutions for the system of eqs. (5), 
(6) and (7) for given functionals F. 

As a first simple exercise consider 

F= --aliNe, a > O. 

As long as ~ is small compared to 15 one has 

( d /d t  )( ~/15 ) = - ( a l l  N -  ~ - n ) H ~ / 1 5 .  

(8) 

(9) 

Consider the case N = I ,  a > n :  if we start at 

some time after the last phase transition with [Y, [ 
smaller than 15 so that (9) is valid, the ratio ~/15 
subsequently decreases continuously with the 
evolution of the universe. We can therefore ne- 
glect the effects of ~ to a good approximation and 
obtain an approximate Friedmann universe. (We 
may call this scenario a o-dominated universe.) 
Even if the cosmological "constant"  was of the 
order of the characteristic scale immediately after 
the phase transition, it would be tiny today and 
fulfil (1). This is the type of solution of the cosmo- 
logical constant problem we are looking for. 

For a more general discussion we observe that 
and t5 can be expressed in terms of H and /4: 

15 = -  ( 2 / n ) / 4 ,  X=HZ+(2/n) t : I .  (10) 

Using these relations, we can treat F as a func- 
tional of H alone. Furthermore, for realistic cos- 
mologies (after inflation) /~ is of the order H 2 
and H is very small in units of the Planck mass. 
Let us assume that one can expand F in powers of 
H and its derivatives. We count every time deriva- 
tive as a factor H: 

F( H) = aaH + a~H 2 + a2IgI + a13 H3 + a2H12I 

+ a3/~ + o ( a 4 ) ,  (11) 

and keep only the lowest non-vanishing terms (the 
non-zero a{ with the lowest 0 .1. If  the dynamics 
leading to the time evolution of ), respects time 
reversal symmetry all a{ with even i must vanish. 
The case a l =~ 0 is highly unlikely and would lead 
to an unacceptable logarithmic dependence of 
on a. We take a 1 = 0 .  What form for F ( H }  is 
required for realistic cosmologies? 

A useful quantity for a discrimination between 
different cosmologies is 

a( t ) =- (1 /H )(d/dt  ) ln(X/tS) 

= n + ( F ( H ) / H ) [ 1 / 1 5 + 1 / X ] .  (12) 

~:1 We have of course no guaranty that a polynomial expansion 
of F is always possible. One could imagine that F depends 
on [H] or that the coefficients a{ are functions of "dimen- 
sionless" ratios like I:I/H 2. We will not discuss these possi- 
bihties in this letter. 
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If  a goes asymptotically to a constant, one has 

lim a ( t )  = a~ ,  lim X ( t ) / H ( t )  - a ( t )  ~ .  

(13) 

For ao~ > 0 the ratio X/t5 diverges, leading to 
unrealistic X-dominated cosmologies ,2. (This also 
holds for a ( t ) - ~  +oo.)  for aoo = 0  one finds 
asymptotically a constant ratio between 2~ and p. 
Finally, for a ~  < 0 [or a ( t )  ~ - oo] the universe 
becomes p-dominated with ?~/0 going to zero. 

Let us first study the conditions for a p- 
dominated universe with lim t ~ ooa(t)< 0. In this 
case we can neglect the first term in the square 
bracket in (12) and solve (6) or (11) in the p- 
dominated background with H =  (2//.n)/-1. Sup- 
pose that the leading contributions to h are of the 
order H m. Unless these contributions cancel to 
leading order one has 

F =  - d t  -m,  d=g O, 

7~ = Xoo + [ d / ( m  - 1)] t - m + l .  (14) 
The appearance of an additive free integration 
constant X~ shows that fine tuning would be 
needed to obtain X(t)--+0. Therefore the O- 
dominated  universe requires for consistency that }, 
vanishes as X goes to zero and asymptotically 
~ =  - a H m - 2 ) ~  ( d = 0 ) .  This fix-point behaviour 
of F was discussed before (8) and we find that a 
p-dominated universe is impossible for m > 3, re- 
alized for 1 < m < 3 only if F - X  and possibly 
realized for the interesting limiting case m = 3. 

For the second case of interest, a ~  = 0, one 
needs asymptotically 

lim ~ / ~  = coo, lim F =  [ 2 c ~ / ( c ~  + 1)] H/4.  
t - - -~  t---+ O0 

(15) 

This is again impossible for m > 3 and requires 
m = 3 at least asymptotically. We conclude that 
no realistic cosmology is possiblg without a special 
choice of initial conditions if 1~ I is smaller than 
of the order H 3. For m > 3 the change in X is 

:~2 We consider here cosmologies which are characterized today 
by their asymptotic behaviour. We do not discuss cosmolo- 
gies which are similar to a Friedmann universe today but 
change their qualitative behaviour in the future. 

simply too slow - the universe is driven to an 
unrealistic X-dominated cosmology with O de- 
creasing faster than X. 

In the remainder of this letter we concentrate 
on the interesting case F -  H 3 [one or several a~ 
in eq. (11) are different from zero]. The three field 
equations (5), (6), (7) can then be combined into 
the second-order differential equation 

[4 + AHI:I + B H  3 = 0, (16) 

with 

1 2 
n - 7na 3 (17) A = B = - ½ n  a~ 

1 3 '  1 1  3" 1 -- ~na 3 -~ na 3 

The initial values X(t0) and tS(to) appear here as 
H o = H( to )  and/40 = R-jr(t0). Eq. (16) is the master 
¢quation for cosmologies with a time evolution 

- H  3. For B = 0 the solutions are known ex- 
plicitly. They depend critically on the ratio be- 
tween /40 and H2: 

H (  t ) = b H° + b + ( H o -  b)  e x p [ - A b ( t -  to) ] 

H 0 + b - ( H  0 - b )  e x p [ - A b ( t - t 0 )  ] ' 

_ 1  2 [ / #  + 1 .  forH0> :Am, a =  (2/a)H0] , 
(18) 

n ( t )  = [ n o  I --[- ½ A ( I -  t o )  ] - 1 ,  

for/40 = - i 2 7AHO . (19) 

n (  t ) = b tg[arctg( H o / b  ) - ½Ab( t - to)],  

1 2 f o r / 4 0 <  ~AI-I~, b = [ - H 2 - ( 2 / A ) / 4 o ]  w2 

(20) 

As a special case we recognize standard cosmology 
[1] ,3 with X constant ( F -  0, A = n). The cosmo- 
logical constant appears here as an initial value 
for (16) and the solutions (18), (19) and (20) 
correspond to positive, zero and negative values of 

with b = I ~ [ 1/2. 
For  cosmologies with B 4:0 it is instructive to 

introduce new variables: 

h ( t ) = H ( t ) t ,  ~ = l n ( t / t o ) .  (21) 

In these variables eq. (16) may be interpreted as 

,3 See ref. [2] for an extensive list of references. 
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the equation of motion for a particle in a potential 
with velocity-dependent damping (accelerating) 
forces (primes denote derivatives with respect to 
~-): 

h " + 3V/3h = 3h' - Ahh', 

V (  h ) = h 2 - 1Ah3 -Jr- 1Oh 4. (22) 

Static solutions for h, i.e., solutions with H ( t ) -  
t -1, exist for the extreme of V. We do not expect 
of course that the initial conditions exactly corre- 
spond to one of these static solutions. We need a 
stability analysis for the extrema: will some nearby 
solution asymptotically approach the static solu- 
tion or will the "part icle" move away from the 
extremum? We have performed the stability analy- 
sis at the linearized level (for small deviations 
from the static solutions). 

Stable solutions only exist for 

0 < B ~< ~A 2. (23) 

In this case there is a second minimum of V at 
h = ~ (besides the trivial minimum at h = 0 which 
does not lead to stable solutions). We find the 
asymptotic solution ,4 

= t-l(  + c l t  - '  +c2t ), 
~ = ( A / 2 B ) ( 1  + ~/1- 8B/A2 ), 

3 = AT - 4 > 0, (24) 

with integration constants c i fixed by the initial 
values H 0 and /t0. All other extrema of V are 
unstable. In particular, for B ~< 0 the potential has 
only maxima (besides the minimum at h = 0). For 
all maxima there exist ingoing and outgoing solu- 
tions. Unless the initial conditions are fine tuned 
so that the "part ic le"  asymptotically stops at the 
maximum [this is the case for standard cosmology 
with vanishing ~, compare (19)], the "part icle" 
will move away from the maximum for large ~-. 
Such solutions do not correspond to realistic cos- 
mologies - except the limiting cases where the 
"part icle" stays very long near the maximum which 
again needs fine tuning of initial values. 

:~4 For the limiting case B = 18A2 the minimum becomes a 
(stable) saddle point with a corresponding logarithmic mod- 
ification of (24). 

Let us concentrate on the state solutions for 
0 < B ~< -~A 2. [This case includes our example (8) 
with N = I ,  A = n + a ,  B = ½ n a .  Realistic cos- 
mologies require A > 0 so that ~ is positive. 
Asymptotically the solution (25) is given indepen- 
dently of the exact initial conditions for tS(t0) and 
X(t0) by 

n ( t ) = ~ t  - t ,  a ( t )=ao  tn. (25) 

The ratio between ~ and t5 approaches a constant 

~,/t5 = ½n~/-  1. (26) 

The most striking consequence of X playing a role 
in cosmology is the power of the time dependence 
of a(t) which could be different from the stan- 
dard behaviour a -  t 2/~. This has several im- 
mediate consequences for the matter-dominated 
evolution of the late universe. 

(i) The age of the universe is given by 

= n ~  -1, (27) 

with H the Hubble constant observed today. For 
> 2 / 3  the universe would be older than in the 

standard model. This could be a possible explana- 
tion of the discrepancy between H and the age of 
globular clusters [2]. 

(ii) The critical energy density corresponding 
to k = 0 is now given by  

t5 = H 2 - X = (2 /37 / ) f f  z. (28) 

For  71 > 2 / 3  the critical density is smaller than in 
standard cosmology. 

(iii) The deceleration parameter  q = - (I2I/H: 
+ 1) is given by 

q = (1 - ~7)/~. (29) 

For ~ > 2 / 3  it is smaller than 1 / 2  and becomes 
even negative for 7/> 1. This may restrict allowed 
values of ~7, although q is difficult to measure 
accurately. 

What about the crucial tests of hot big bang 
cosmology - the background radiation and 
nucleosynthesis? Today's  temperature of the back- 
ground photon gas indirectly tests the evolution of 
the universe between the time of nucleosynthesis 
t N and combination of electrons and protons to 
atoms tcomb [ l ] .  For the standard radiation- 
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dominated universe (7/= 1/2)  the product of tem- 
perature T(t) and a(t) is conserved (for p = 3p = 
cT4). If this product changes by a factor of fl 
between t N and tcomb , 

a( Icomb)Z( tcomb) = fla( tN)T( tN), (30) 

the estimated value of today's temperature of the 
background radiation changes by a factor ft. Thus 
/3 should not deviate from one by more than 
about an order of magnitude. For the asymptotic 
solution (25) one obtains for 

/3 = ( t comb/ t  N ) n - 1/2. (31 )  

The ratio between t N and tcomb being huge we 
conclude that ~ must be very near 1 /2  for the 
radiation-dominated epoch! It is amazing that we 
have much better information on the time evolu- 
tion of a(t) for the radiation-dominated period 
than for the matter-dominated period! For general 
solutions one has 

/3 = exp dt  ~--Tf.~ l ,  I;tN ztl  ] (32) 

illustrating again that the change in X must have 
been very small compared to the change in H 
between t N a n d  /comb" 

Is there anything special about ~ = 2/n? In- 
deed, this value is always obtained if the evolution 
equation for ~, has a fix-point at [ = 0 and if the 
fix-point is approached sufficiently rapidly: }~ = 
-aHh,  a > n (o-dominated universe). One finds 
for the fix-point behaviour (8) 

~l=2/n for a>~n, 

=2/a  for 0 < a < n .  (33) 

The evolution equation for [ has exactly this 
fix-point behaviour if the coefficients a~ defined 
in eq. (11) fulfil 

a13 = ½n(a~-na~), a = - 2 a l / ( 2 - n a 3 ) .  (34) 

We may conclude that for the radiation-dominated 
period after the QCD phase transition the only 
realistic evolution equation for [ which can be 
expanded in powers of H, H , . . .  is 

h = - a H ~ ,  a > 4 .  (35) 

(Otherwise X must have been tiny immediately 
.after the phase transition with no contribution to 

of order H3.) In this case, X is already much 
smaller than t5 at the time of nucleosynthesis and 
calculations of the helium abundance remain un- 
affected. In the following period until recombina- 
tion the ratio K/t5 decreases even further so that 
the temperature of the background radiation is 
not strongly modified. For the matter-dominated 
period there exist two alternatives: If the fix-point 
behaviour of F with the approach (8), a > 3 con- 
tinues, no effects of the cosmological constant will 
be observable today. If, on the other hand, the 
matter-dominated universe reaches the asymptotic 
solution for a more general evolution F -  H 3 (11) 
we expect modifications of the age of the universe, 
the critical matter density and the deceleration 
parameter.according to (27), (28) and (29). Both 
alternatives would give an explanation why ~ is so 
small today! In any case, the really difficult task 
remains to be accomplished: to find contributions 
to ~ of order H3! Our scenario fixes the general 
form of the background, namely H =  ~/t -1, ex- 
pected for realistic cosmologies with ~ becoming 
.naturally very small. The various contributions to 

should be estimated on this background and 
then checked for consistency if there are contribu, 
tions of the order/-/3. As an example we take the 
contributions to ~ from vacuum fluctuations of 
quantized matter fields [3]. The contribution of a 
minimally coupled, massless scalar field for a Ro- 
bertson-Walker spacetime with a ( t ) - t  ~ was 
calculated by Bunch and Davies [4]. From their 
expression for the renormalized expectation value 
(0 [T~ 10)re,, one obtains for the time variation of 
the cosmological constant 

X-F(H) 
= - (G/9~r~4)[3~/3- 12~12(~ - 1) 

+ 3 ~ (~ / -  1) 2 + 4~/(~/- 1 ) (7 / -  2) 

+ 2 ( ~  - 1)(71 - 2)(71 - 3)] H 5 l n ( H / # )  (36)  

with the renormalization scale # chosen such that 
F(/~) = 0. Obviously, the effect is of order H 5 and 
therefore too small to explain the tiny valu.e of h 
today. One also expects a contribution to K from 
the continuous production of particle pairs in an 
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expand ing  universe [3,5], bu t  it  se~ms very dif-  
f icult  to get a large  enough effect X > H 3. Mos t  
p romis ing  for a so lu t ion  of  our  p r o b l e m  are  per-  
haps  effects of  the t ime evolut ion  of  a scalar  field 
whose evolut ion  equa t ion  responds  to the curva-  
ture of spacet ime,  as is suggested b y  higher-di -  
mens iona l  models  where  s tat ic  classical  solut ions  
wi th  a rb i t r a ry  X exist [6]. 
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