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Parity-violating anomalies from stochastic quantization
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It is shown that the anomalous contribution to the vacuum current in (2n + 1)-dimensional
theories of massive fermions interacting with classical Yang-Mills and gravitational fields at zero
and finite temperature is correctly reproduced by the stochastic quantization procedure. For mass-
less fermions an ambiguity arises. This can be traced to the fact that the stochastic time acts as an

additional IR cutoff.

Since it was first proposed by Parisi and Wu,! stochas-
tic quantization has received much attention. In particu-
lar, the stochastic quantization of fermions and the
derivation of, possibly anomalous, Ward identities was
studied in detail.>~* It turned out that stochastic quanti-
zation correctly reproduces the anomalies associated with
chiral fermions. As is well known,’ these anomalies occur
in any even-dimensional space since there is no regulariza-
tion scheme which respects gauge invariance and chiral
invariance simultaneously. As was first shown by
Redlich,’® in odd dimensions there is a similar conflict be-
tween parity and gauge invariance. If one insists on gauge
invariance (which, of course, is mandatory for a fully
quantized gauge theory), the vacuum current induced by
an (external) gauge field contains a parity-breaking piece,
which gives rise to a fractional vacuum charge and a
quantum Hall effect.” The corresponding term in the ef-
fective (Heisenberg-Euler) action is given by the Chern-
Simons term of the respective dimensionality;*® in three
dimensions, this is the topological mass term for the
gauge field introduced by Deser, Jackiw, and Templeton.10
In this note we show how the anomalous part of the vacu-
um current arises within the framework of stochastic
quantization or, more precisely, stochastic regularization.
For massive fermions we describe a computationally sim-
ple procedure which evaluates the anomaly in a unique
way. Then, we show that in the massless case there is an
ambiguity within the stochastic quantization scheme.
This gives an interpretation in more physical terms of the
inconsistency found in Ref. 3.

Let us consider fermions of mass m interacting with an
SU(N) gauge field 4,=A4,7° in a (2n +1)-dimensional
(flat) Euclidean space-time. The generators 7 are taken
to be in the fundamental representation of SU(N). The
action reads (our conventions are those of Ref. 9; in par-
ticular, the metric is g,,= —3§,,)

S= [ d**'x¢iD—m) (1)

with D=y"(3,+i4,).
from the action (1) are!!

The Langevin equations derived
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Here, 7 denotes the fictitious time and the random sources
n and 7 satisfy the relation

(N, (X", 7)) =28 4pa p(T—7)8(x —x') . (3)

The regulator function @, introduced by Breit, Gupta,
and Zaks'? has the properties

ap(r)=ap(—71),
[ drasir—7)=1, 4)

lim ap(r—7")=8(r—7") .

A—
The limit A— « will be performed after all calculations
have been done, i.e., after the 7— « limit has been taken.
The solutions of the Langevin equations (2) read

U(x,7)= fofdr’e —(D2mir—7) (i p +mn(x, ),

. — y (5)
Uyx,m)= [ driix,re P Hmir=
K 0

Any field-theory vacuum expectation value can be ex-
pressed in terms of these as

(O F[¢,¥]]0)= lim (F[v,(7),0,(7)]), . (6)

The operator F we are interested in is the SU(N) current
Yy*T% and the U(1) current ¢Yy*¢. The former, say,
gives
JHUx)= (0| )y T%%(x) | 0)

= lim (&,(x, T )WF T, (x, 7)), . (7)
To find the anomalous piece contained in (7) we make the
assumption that the background field is purely magnetic:
A°=0, A¥=A4%x"). [We use the convention x*=(x%x*)
with i,j,k,. .. =12,...,2nand u,v,p, ... =0,...,2nl]
At the end of the calculation, the general result can be de-
duced from covariance arguments.7 Hence we obtain,
from (5),

,(@'+m')(77721(iﬂ+m)n(x,T2)>n ) (8)
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Performing the 1 average yields, according to (3),

~(D2+m2)(27—‘rl~1'2)

j%(x)=—2 lim lim f drlf dryap(ti—7){x | try°T {iy%Qo+iv Dy +m} |x) , 9)

A—>w T

where tr denotes the trace in spinor and group space. To be able to combine the two exponentials we assumed that A4, is
chosen so that it commutes with 7 for a fixed value of a. Again, the general result will follow from invariance con-
siderations.® Note that the first two terms in the curly brackets of (9) do not contribute. Going to momentum space (see
below), the first one is odd in kg, and the second one vanishes since ° anticommutes with v*D,. At this point it is ad-
vantageous to introduce new integration variables:

t=71—7,

T= _;(7'1 +7,) .
Thus, one gets

—32+D2,,2+m22(r—T)
t){(x | try°T%% 0 % 2n

/2 27— Tl
N de dit [ ar [T
Here we introduced the 2 n-dimensional Dirac operator

Don =73k +idi(x"] . (1

Taking the properties (4) of the regulator function a, into account, it is easy to evaluate the ¢ integration for A— oo

j%(x)=—2m 11m lim

A—> o T

T 1 1
f 2TdtaA() ® T—;{\—z +0 F ,
(12)
Ar—T) 1
fAZ(-r—T)dtaA(t):G) T_W_T +0 *I{?
Hence, we end up with
— a2 2 2y5(r_
j%(x)=—2m lim lim f 120 T (x |ty O %~ o0 a2 (13)

A—> o0 T>w
This integral is convergent at the upper limit so that one now can perform the 7— oo limit for fixed A. Defining
D= —3y>+P,,>+m?, one has

T—1/2A2 Y 1 . Yy 72 2 A2 72 /A2
fl Te 27" -D_Llg-21ime 2920029 g — T2/, T2/A%)

T— 0 A? T—> 00

:%,@‘Ze—"z/"z:% fwdwe_‘/z“”“/"z) . (14)
0
In the last line of Eq. (14) we introduced a parameter integral for the inverse of £ 2. To compute the matrix element in
(13) one uses a plane-wave basis;'? setting z=w + (1/A?), it follows that

o 2
(x|e=7%|x)= lime 75 5(x —y)

2n+l g )
— f k zkxe = ze—zkx' (15)

(277) 2n+1

After having done the trivial k, integration, the charge density reads

.0a _ m . *® —1/2,—m?%z
JH == WV Algnm fl/AZdZZ ¢
opa [ 47k K220k DY+ Do+ Ly FY (16)
Xtry (277_)2,, €xXp +2i Jj n+D2"+ 27/17/1 z
To extract the anomalous part from (16) we rescale z by z— A%z and k, according to k#—>kﬂz'/2A‘1:
j%(x) = — Hm A2n—1 f © dz z—1/2—np—(m2/AN)z try°7
\/_ A oo 1
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Now the structure of the k integral is similar to what appears in the evaluation of the chiral anomaly using Fujikawa’s
method!® or {-function techniques.!* In both cases, only one term of the expansion of the last exponential in powers of
z!72A~! gives a nonzero contribution. In the present case, all powers of z!”2A~! contribute to the vacuum charge.
However, using simple scaling arguments, one can show that higher powers of z!/?A~! cause higher powers in 1/m.
There is only one term which does not vanish for m — o. This is the anomaly we are interested in. As an example, let

us consider the case n =1. Expanding to order (z'/?A~!)? and performing the k integration, one obtains

J

m 1

1 N
— A(TF9) 40
87 [m | €;;tr( )+

Imposing gauge and Lorentz covariance, the complete
anomalous vacuum current reads

JH9x) = T o(TF,) | (19)
8 |m |
[From now on we ignore the regular O(1/m) terms.]
This is the result first obtained by Redlich.® In his ap-
proach the sign factor m /| m | refers to the mass of the
Pauli-Villars regulator field, whereas in our case m is the
mass of the physical fermion field. As is well known,®°
the piece in the effective action belonging to (19) is, up to
a normalization constant, the Chern-Simons term wj:
MyAl=- " [t(ddd+24%) .
87 |m |
Here, we used the standard differential form notation
with A =iAfT%x*. Similarly, for n =2, one has to ex-
pand the exponential in (17) to order (z!/2A~1)* and one
then finds the current
1 m

JHUx)=— a ’—ﬂe”v”")‘tr( T°F,,F ) (20)
T

and the effective action

MAd]=— —”’—|ftr[A(dA)2+§A3dA+%A5],

487° |m

which is proportional to the Chern-Simons term ws. In
this way it is straightforward, though increasingly tedious,
to confirm the expressions

n

j“(x):—%% i %tr T“*F"], 1)
RLEY
an+1[A]=~%(—n§_1—)! 21—77_ fa)z,,+|(A),
(22)

which originally have been derived using the chiral anom-
aly in 2n dimensions.®® The result for the U(1) current is
obtained from (21) by omitting the gauge group generator
T°.

A particularly interesting quantity is the U(1) vacuum
charge, i.e., the space integral of (13) with 7% omitted. If
one introduces in (15) a & function for the x° component
only and integrates over k, one finds

'Oa(x)ZJ-E[jtr(TaFij) lim 1 flwdzz—l/ze—(mz/AzF[l+0(zl/2A—1)]

25

f"" dss—1720—m
1/A2

»,, 2s

m .
Q2n+1=—m lim

A— oo

X Tr(y% ~ ). (23)
Here Tr denotes the sum over spinor and group indices as
well as an integration over x*. If one recalls that y° an-
ticommutes with D,,, it is obvious that for all s40 the
trace appearing in (23) is nothing but the index of the 2n-
dimensional Dirac operator P,, (Ref. 15):

Tr(yoe_wz"s):index D, = f exp (24)

i
—F
2T
The last equality follows from the Atiyah-Singer index
theorem for the twisted spin complex, which can be con-
sidered an integrated version of the chiral anomaly in 2n
dimensions. (To have a well-defined index problem, we

could assume x*-space to be a large 2n-sphere.) The
field-strength form

F=SiF4T%x* Ndx'

is constructed from the spatial components of F,, and the
integral is over 2n-dimensional x* space with all terms ig-
nored which do not contain the appropriate volume form.
Equation (23) with {24) implies

L F

Y- . (25)

o= [
This is the desired result. It shows that the vacuum
charge produced by topologically nontrivial field configu-
rations such as monopoles, vortices, etc., is an integer or
half-integer. Equation (25) is exact to all orders in 1/m.
On the other hand, the same result also is obtained by tak-
ing the spatial integral of (21) with T¢ omitted. This
proves that it is the anomalous part of the current alone
which causes the (fractional) vacuum charge.

The present approach can be generalized to nonzero
temperatures T=f3"!. The spinor fields are required to
be antiperiodic in ordinary Euclidean time with period f3
and so the trace in (23) has to be performed using a com-
plete set of antiperiodic spinor functions. This means that
the temporal 8 function in (15) has to be represented by a
discrete sum over momenta rather than by an integral.
Evaluating this sum for A— « and proceeding as above
yields for the temperature dependence of both the SU(N)
and U(1) charges
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Q(T)=Q(T =0) tanh

dm| ‘ | 26
2T

This coincides with the results of Refs. 9 and 16. Obvi-
ously, the magnitude of the vacuum charge depends on
the boundary conditions imposed on 1. We therefore con-
clude that Q receives contributions of fermionic field
modes with arbitrarily large wavelength. This has to be
contrasted with the case of chiral anomalies in even-
dimensional spaces. One finds!” that there the anomaly
factor is the same for all values of 3. The reason is that
chiral anomalies are associated with short-distance
operator-product singularities which are insensitive to glo-
bal properties such as the antiperiodic boundary condition
imposed here.

Another interesting generalization is the vacuum charge
induced by a combined Yang-Mills and gravitational
background field."® Then Euclidean space-time has the
structure R X.#,, with a static space .#,,. Therefore
the metric may be written as

—1 0

0 g;lx ky (27)

8uv(x)=

The derivation of Eq. (23) remains unaltered if we also in-
clude the spin connection constructed from g;; into B,.
(For this connection to be well defined, we assume .#5, to
be a spin manifold.) It is known from the general index
theorem!® that for a curved background the index density

ch(F)= exp

>

i
—F
21

the Chern form, is replaced by
ch(F)NA( M 3)

with the 4 polynomial
172
Q/4m

A(M )= S L VA N
(A on) sinh(Q /41)

det

constructed from the curvature forms
Q}:%R‘jk,dxk/\dxl, where R is the Riemann tensor
belonging to g;;. Therefore we expect the U(1) vacuum

|
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charge to be given by
—_Ll_m_ h(F)NA( 28
Q2n+1—_2 Iml _//ch A 2n)- (28)

This equation can be obtained directly in the present ap-
proach if one represents the § function appearing in (15)
in a way which respects covariance under general coordi-
nate transformations. (Just as we are not interested in
regularization schemes spoiling gauge invariance, we also
want general coordinate invariance to stay intact at the
quantum level.) We therefore use the representation'?

d2n+1k
(277_)2" +1 e

in terms of the geodesic biscalar o(x,x’) which can be
considered a generalization of +(x—x')? for curved
space.!® Using (29) in (15), applying the operator 2?2 and
making the rescalings which lead to (17), it is then a
matter of straightforward algebra to expand the exponen-
tial to the desired order. For n =2 and for a pure gravita-

tional field, say, one finds, in agreement with (28),

ik#D“a(x,x')

8(x,x)= [ (29)

1 N
Qs=—12 - [ d*x €MR,, R™, . (30)

[m | 1536w
An example of topologically nontrivial field configura-
tions with Q5540 are the monopole solutions of the five-
dimensional Kaluza-Klein theory.!%%°

Up to now we have shown that for massive fermions
the same anomalies are obtained as by using conventional
regularization schemes to evaluate the fermionic deter-
minant (such as {-function or heat-kernel methods). Next
let us look at the case m =0. In standard field theory one
uses a Pauli-Villars regulator of mass M and subtracts its
contribution for M — « from the effective action.® This
contribution is precisely the anomalous part of the com-
plete Heisenberg-Euler action. Thus, for m =0 we obtain
the same anomaly as for m=£0. In stochastic quantiza-
tion the situation is different. The first possibility is to
again use a Pauli-Villars regulator field. Then the above
calculation applies to this field and for M — « we again
recover the anomaly. To show that there is a second pos-
sible regularization scheme we recall the form of the
charge before the 7— o limit has been taken:

. . 27—A—2 i p2an2
Qui1=— lim lim m [ ds Tr(y% ~(P*+ms)
A—>w 7> A2
1 : : 27—A? —1/2,—m?2s ;
=——— lim limm dss e index D,, . (31
2,7T1/2 A—> w0 T— o A2 "

For any finite value of the stochastic time 7 the integral is
well defined even for m =0. We therefore may set m =0
in the whole expression which amounts to starting with
massless fermions from the very beginning. Hence, we
have a vanishing contribution for every finite value of 7
which in the 7— oo limit implies Q,,,; =0, i.e., there is
no anomaly in this scheme. (This ambiguity is investigat-
ed in Ref. 3 using different methods.) The freedom to set

m =0 in expressions such as (31) does not exist in conven-
tional field theory, because there in all comparable calcu-
lations®® the upper bound of the proper-time integral is
equal to infinity from the outset. This ambiguity arises
because the stochastic time 7 acts as an additional infrared
cutoff which is not present in ordinary field theory.
[Note that integrals such as (31) are a proper-time repre-
sentation of momentum-space integrals and k2—0
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(k>— o) corresponds to s — oo (s—0).] The limit m —0
does not commute with the limit 7—> . In physical
terms the reason is that, as we discussed in connection
with Eq. (26), the vacuum charge receives contributions
from fermionic field modes with arbitrarily small values
of k2, i.e., arbitrarily large values of s. For Q to become a
finite quantity, an IR cutoff has to be present in order to
suppress the contributions from k?—0. In standard field
theory, this role is played by the physical fermion mass or

lim lim fjj”'ds Trlay (B> +m e~ 2 +ms]

A—>ow T

= — lim lim Trlays(e "2 +mIA™" _¢

A—ow T— o

Contrary to (31), this expression is entirely determined by
the behavior of the heat-kernel {(x | exp(—P%)|x) for
s—0 and s— . For 7— the second exponential in
(32b) vanishes and from the first one the anomaly is
recovered by the usual Seeley—De Witt expansion. This
holds for ms0 and m =0 alike [the zero modes of P
cancel between the two exponentials of (32b)]; i.e., this
time the limits 7— oo and m —0 commute and stochastic
quantization uniquely produces the correct answer. This
reflects the well-known fact that chiral anomalies have
their origin in short-distance operator-product singulari-
ties, which is not true for the parity-violating anomalies.
In conclusion, one can say that the failure of stochastic

7(E3+m2]121'7/\73))]

by the mass of the regulator field. In stochastic regulari-
zation, the Langevin time 7 is introduced as a new dimen-
sionful quantity which cuts off the proper-time integral
for large s. To further clarify this point let us compare
the parity-violating anomalies considered here with ordi-
nary chiral anomalies. Using the above formalism, the
anomaly factor for a chiral rotation with parameter a(x)
is essentially given by

(32a)

(32b)

I

quantization to give regularization-prescription-
independent anomalies in odd dimensions is due to the
fact that the stochastic time r acts as an additional regula-
tor which has no analogue in the standard regularization
prescriptions for the fermionic determinant. In the first
one of the prescriptions discussed above, where a Pauli-
Villars regulator was used, this fact has not been exploited
and therefore the correct anomaly is obtained.
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