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Abstract. It is shown that a few physically significant conditions fix the global 
structure of the local algebras appearing in quantum field theory: it is 
isomorphic to that of 91(~3, where 9t is the unique hyperfinite factor of type 
III~ and 3 the center of the respective algebra. The argument is based on 
results in [-1, 2] relating to the type of the local algebras and an improvement of 
an argument in [3] concerning the "split property." 

1. Introduction 

Since the very beginnings of the algebraic approach to quantum field theory [4], 
there has been continuous interest in the structure of the local algebras appearing 
in this setting. This interest originates from the insight that the entire physical 
information of a quantum field theory is encoded in the map 

@-~9~(C), (1.1) 

assigning to each bounded region (9 of Minkowski space avon Neumann algebra 
~I((9) which is generated by the observables (respectively fields) associated with the 
region in question. So there naturally arises the question of the concrete algebraic 
properties of the images 9/((9) of this map. 

It is by now well known that the local algebras 93[((9) are, in generic cases, of type 
III~ according to the classification of Connes (cf. [5]). This fact has been 
established in several models by explicit calculations, and also by more abstract 
arguments (cf. [-6] for a review). But only recently this result has been derived from 
conditions which seem to be sufficiently general to cover most theories of physical 
interest [1 ]. Besides the standard postulates of quantum field theory the only input 
needed is the assumption that the theory has a scaling limit. This is expected to be 
the case in renormalizable field theories with an ultraviolet fixed point, hence in 
particular in all theories which are asymptotically free. 
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Although this result substantially restricts the possible structure of the local 
algebras it does not fix it completely since there exist non-isomorphic factors of 
type I I I  1. But, as was recently shown by Haagerup [2], there is only one such 
factor which is hyperfinite, i.e. generated by an increasing family of finite 
dimensional algebras. 

The idea that the local algebras ought to be hyperfinite sounds physically 
reasonable and has been confirmed in models (cf. [6]). But it should be noticed that 
this is a quite subtle propertY. For example, a subalgebra of a hyperfinite algebra 
does not need to be hyperfinite. It is therefore gratifying that the hyperfiniteness of 
the local algebras can be derived, as we shall demonstrate, from gross properties 
having a simple physical interpretation. 

Our starting point is the nuclearity condition proposed in [3] which restricts 
the number of local degrees of freedom of a theory in a sensible manner. We will 
show (Sect. 2) that theories satisfying this condition have the so-called "split- 
property" [7]. This means that for every pair of bounded regions (91 , (92 with 
(91 CC (92 (i.e. the closure of (91 has to be contained in the interior of (92) there exists 
some factor 9~A of type I such that 

~[((91) C ~ C ~[((92) • (1.2) 

This result is an improvement on the somewhat weaker assertions in [3], saying 
that this inclusion holds if the region (92 is sufficiently large compared to (91 ("distal 
split property"). In the present context it is, however, essential that the boundaries 
of (91 and (92 may be arbitrarily close to each other. For this implies that the local 
algebras can be approximated from the inside (respectively from the outside) by 
type I factors. As was pointed out in [8], it then follows that the local algebras are 
hyperfinite. 

The only remaining ambiguity in the structure of the local algebras is the 
question of whether these algebras can have a center. It was argued in [4] that this 
possibility can be ruled out in the presence of equations of motion ("primitive 
causality"). In this case it would follow that the local algebras are isomorphic to the 
unique hyperfinite type 1111 factor ~R [2]. But a rigorous proof showing that the 
local algebras are factors does not yet exist. 

In the presence of a center 3 the structure of the local algebras would, however, 
change only in a trivial manner. As will be discussed in Sect. 3, it then coincides 
with that of the tensor product of ~ and 3, 

9 / ( ( 9 )  _ !R(~ 3 .  (1.3) 

So the results of this discussion may be summarized by saying that the local 
algebras in a quantum field theory exhibit the universal structure (1.3), whenever 
the number of local degrees of freedom of the theory complies with certain 
moderate limitations, and the underlying fields have a tame ultraviolet behavior. 
(The precise quantitative conditions are given in Sect. 3.) One may hope that this 
very explicit information on the local algebras will be the key to further progress in 
the structural analysis of the maps (1.1), in each of which the specific features of a 
particular theory are encoded. 
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2. Nuclearity and the Split Property 

We turn now to the central part of this investigation, namely the demonstration 
that the split property (1.2) holds in theories satisfying the nuclearity condition 
proposed in [3]. The consequences of this result will be discussed in the subsequent 
section. 

Let us begin by specifying the assumptions entering into our argument. 
t. (Net structure) We consider a net g0-.N(@) ofvon Neumann algebras on a 

Hilbert space Yf which is associated with the open, bounded regions (9 of 
Minkowski space and satisfies the condition of isotony: 

~[((91)C~2I((92) if (91C(9 2, (2.•) 

Specific information about spacelike commutation properties ("locality") is not 
required in the present section. 

2. (Translations) On ~ there is a continuous, unitary representation t ~  U(t) 
of IR implementing the time translations on Minkowski space, i.e. 

U(t)gi((9)U(t)- 1 C~((9 + t-e). (2.2) 

Here e denotes the vector fixing the time direction. The generator H of the time 
translations U(t) has non-negative spectrum including the eigenvalue 0 with 
multiplicity one, and the eigenvector O corresponding to this eigenvalue is cycfic 
and separating for the algebras 9~((9). 

3. (Nuclearity) Let (9 be any fixed bounded region. Then each member of the 
family of maps O#, fl > 0 of ~[((9) into ~vf given by 

O#(A) = e-#~A~2, A e 9i((9) (2.3) 

is assumed to be nuclear. This means that for each O# there exists a sequence of 
vectors q~i e ~gf and of linear functionals q~i ~ 92[((9)* such that ~ Lt ~oitf II ~i!I < oo and 

i 

O#(. )= Z (P~(")~- (2.4) 

Moreover, defining the trace-norm of O# by 

110#[11 = in fZ  ][(0,]111~i1[, (2.5) 
i 

where the infimum is to be taken with respect to all vectors ~i and functionals (o~ 
complying with the above conditions, we assume the bound for fi "-, 0, 

II 0~111 _-< e (#°/#)", (2.6) 

where fl0, n are positive constants (depending only on (9). 
This third assumption is equivalent to the nuclearity condition proposed in 

[3]. The present formulation, suggested by R. Longo, turns out to be more 
convenient in our discussion. For a brief explanation of the physical significance of 
the nuclearity condition see the subsequent section. 

Our goal is the following 

Theorem 2.1. Let ( 9 ~ ( C )  be a net of yon Neumann algebras with the properties 
listed above. Then there exists for any pair of open, bounded regions (91, (92 with 
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(91 CC(92 some type I factor 9")2 such that 

9.t((91) c ~ c ~t((g j . 

For the proof of this theorem we need two auxiliary lemmas. The first one is a 
simple consequence of the nuclearity condition. 

Lemma 2.2. Let f(o)), co >= 0 be any continuous function such that ]br some e > O, 

sup If(co)le (2 + ~)" (t~°~)"/"+ ' < oo, 
to>__0 

where flo, n are the constants appearing in the formulation of the nuclearity 
condition. Then the map 0 of 9]((9) into Yd given by 

O(A) = f ( H ) .  A,.Q, A e ~((9) 

is nuclear. Moreover, there exists a sequence of vectors 7Ji ~ 9V and of ultraweakly 
continuous (normal) linear functionals ipi ~ 9]((9), such that 

211~P, l l l l~ i l l<~  and O(- )=2~p~ . )ke  i. 
i i 

Proof. Let E j, j ~ N be the spectral projections of H corresponding to the spectral 
values 09, j - I  <co<j .  Then the maps Sj given by 

Zj(A) = Ej" A(2, A ~ 9.I((9) 

satisfy for any fl > 0 the identity 

~j(.  )=  Eje an. 0~( . ), 

where O a are the nuclear maps defined in (2.3). Since the operators Ej- e a~/on J f  
are bounded, it is clear that each Sj is nuclear. Moreover, on the basis of (2.6) we 
obtain (for large j) the bounds on the trace norms 

II~jlll < inf IIEjeanl[.ltoalll 
#>0  

< inf e aj + (ao/a)- < e 2 ( # 0  J)"/" + ' 

p>0  

From this it follows that the map 

~ ( - ) =  Z e-(Z+~)(Po~)"/"+'~j(. ) 
J 

is nuclear too for any e > 0, since the sum is absolutely convergent with respect to 
the trace norm. Introducing now on ~ the (unbounded) operator, 

u(H) = V e (2 + e)(floi)"/" + 1E.  

J 

and using the facts that EfEj = 6uE ~, as well as Y. Ej = 1, we see that the given map 0 
can be represented by J 

0 ( .  )=f(H)u(H)-Y.(.  ). 

But from the postulated behavior of the function f(o9) for large ¢o it follows that the 
operator f(H)u(H) is bounded. Hence 0 is nuclear. 
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Now let T i e  YF and qhegi((9)* be sequences of vectors and functionals, 
respectively, such that Z lIqhll II TiII < oo and 

i 

o(.  )= Z ~o~(. )~'i. 
i 

As is well known (cf. [9, Chap. III.2]) every functional cpi e 9I((9)* can uniquely be 
decomposed into a normal part ,p~ e ~I((9). and a singular part a~e 9i((9)~,, i.e. 
~0i = ~'i + ai, and II q~ill = It t&ll + II o-~lt. Consequently O can be represented as sum of 
the maps, 

O(")( • )=  Z~pi(. )TJi and O(S)( • )=  Y, ai(" ) ~ ,  
i i 

each of which is nuclear. Since 9i((9), and 9i((9), l are norm-closed subspaces of 
9I((9)*, it is also clear that O (") is normal and that O (~) is singular. But O = O (") + O (~) 
is a normal map from 9.1((9) into -gf (equipped with the ultra-weak topology) as is 
obvious from its definition. Hence O (~) = O - O ("), being normal and singular, must 
be the zero map. [] 

In the second lemma we establish an identity for the vacuum expectation 
values of certain specific operators. In the proof we rely only on the assumed 
spectral properties of H. 

Lemma 2.3. Let 6 > O. Then there exists some continuous function f (e)), e~ ~ IR which 
decreases almost exponentially, i.e. 

sup [f(c~)le t~°1~ < oe for any 0 < K < 1 
to 

and which has the property that for any pair of  bounded operators A, B satisfying 
[U(t)AU(t)-  1, B] = 0 for It[ < 6, there holds the identity 

(0, ABO) = (~2, Af(H)B~2) + ((2, Bf (H)AO).  

Proof. Let z > 0 and let ~ = C\{z: Im z = O, IRe z[ >__ z} be the two-fold cut complex 
plane with cuts starting at z = ___ z. Making use of the invariance of (2 under the 
action of U(t), the positivity of H, and the commutation properties of A, B, it 
follows from standard arguments that there exists on ~ some analytic function 
h(z) such that for t ~ R,  

lim h(t + ie) = (f2, A U(t)BY2) 
~ ' , , 0  

and 

lim h(t - ie) = (f2, B U( - t)Af2). 
ex.O 

Now let w--*z = 2zw/(w 2 + 1) be the conformal mapping of the unit disk Iwl < 1 onto 
the cut plane ~ .  If 0 < z < 6, we have N~CNo, and consequently the function 
w--,h(2zw/(w 2 + 1)) is analytic on Jwl < 1. Its boundary values for w ~ e  ie, 0 < q~ < 2n 
a r e  

(f2,AU(z/cos~o)B(2) if O<~p<n,  (p+n/2 
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and 
((2,BU(--z/cosq~)AI2) if rc=<~o<2~z, q~:#37~/2. 

The function may be discontinuous at w = _+ i, but it stays bounded at these points. 
In fact we have the uniform bound 

lh(2zw/(w2 + l))l< tlA]t • tlBH for Iwl< l ,  

as is easily Shown. Thus Cauchy's formula applies to this function even if we extend 
the path of integration to the boundary of the disk Iwl < 1, giving in particular 

I z, dfp lira h(2zrei~°/(1 + r2e2i~)). 
h(O) = ~ o r ~ 1 

If we rewrite this result in terms of the vacuum expectation values we obtain 

(f2, ABY2)= ~ ! dq){ff2, AU(z/cos~o)Bf2)+ if2, BU(z/cosq))Af2)}, 

and this relation holds for all 0 < z < 3. Now we pick some testfunction ~(z) with 
support in 0 < z < 6 ,  whose Fourier transform g(co) is almost exponentially 
decreasing (in the sense made precise in the statement of the lemma) and does not 
vanish at co =0. For a proof that such functions exist cf. [10]. If we multiply the 
above relation for the vacuum expectation values with ~(z) and integrate with 
respect to z we arrive at the identity 

((2, ABf2) = (f2, A f(H)B(2) + (f2, Bf(H)Af2) , 

where f(co), co e ]R is given by 
i 

! dog(c°/c°s q~). f(co) = 2rcg(0) 

This function is continuous and decreases almost exponentially, as one easily 
verifies. So the proof of the lemma is complete. []  

With this information we can turn now to the proof of the split property: let 
(9 a, (9 b be two arbitrary open bounded regions such that (9aCC(9 b, and let 
N((9+)(3 9.I((9b)' be the algebraic tensor product of 9.I((9o) and 9.1((9b)' [the commutant 
of ~l((gb) in N ( ~ ) ] .  We consider two representations of this tensor product: the first 
one, denoted by ~, acts on ~ and is obtained by linear extension from 

7c(A(3B)=A.B for Ae~I((9~), BegI((gb)'. (2.7) 

This definition is obviously consistent, and it defines a *-representation of the 
tensor product since the operators in ~I((ga) and 9/((9 0' commute. The second 
representation, denoted by r~p, acts on ~ ® J f  and is fixed by 

~zv(A(3B)=A®B for Aeg.I((9~), Be~((gb)'.  (2.8) 

For the proof of the split property we must show that these representations are 
equivalent. 

To this end we consider the state o~ on 91((9,)(39.I((9b)' given by 

co(A (3 B) = (0, n(A (3 B)O) = (f2, ABY2) . (2.9) 
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We will demonstrate first that co is normal relative to the representation rcv 1: since 
(9, CC (9 b, there is some 6 > 0 such that U(t)9.I((9,)U(t)- 1 C 9/((9b) for It[ < @, of. 
relations (2.1) and (2.2). Hence there exists according to Lemma 2.3 some 
continuous, almost exponentially decreasing function f such that 

co(a G B) --- (0, AT(H)B(2) + ((2, B f ( H)A O) (2.10) 

for all A ~ 9.I(0.) and B ~ 9/((9b)'. With the help of the nuclearity condition, it is then 
easy to show that both functionats appearing on the right-hand side of this identity 
are normal relative to ~zp. Let us consider first the linear functional ~ on 
9.I((g.)Gg.I((gb)' given by 

~(A (S) B) = ((2, B f (H)AY2) . (2.11) 

Taking into account that (f~, is bounded as well as the specific properties of f it 
follows from Lemma 2.2 that the map O(A) =f(H)AY2, A ~ ~(d~a) is nuclear. Thus 
we can represent ~ as an infinite sum of functionals ~i of the form 

~,(A G B) = ~&(A) • (O, B ~ ) ,  (2.12) 

where ~#i ~ 9.I((9,),, ~i ~ our and ~ ll~Pi]l II ~1] < oo. So each ~i is manifestly normal 
i 

relative to sp, and since II ~ill _-< Ill'ill" II ~ll ,  we also have Y~ II ~,11 < oo. Hence 4, being 
i 

an absolutely convergent sum of normal functionals, is normal. The same 
considerations apply to the functional 

rl(A Q) B) = (g2, Af(H)B(2) = (Y2, B *f(H)A* Y2), (2.13) 

proving that co = ~ + q is normal relative to Tcv. 
Now since O is cyclic and separating for the algebras ~((9), the vector 

O® ~2 ~ ~ ®  9¢e is cyclic for the commutant of ~p(~((9,)Q~((gb)' ) in ~(ocf)®~(Yf). 
Hence every state which is normal relative to ~ can be represented by a vectorstate 
in this representation [11, Theorem 2.7.9]. In particular, there are vectors 
(2p~W®~tf  such that 

co(C) = (f2p, ~p(C)f2p) for C ~ 9~(Cga)Qg.I(Ob)'. (2.14) 

From this it readily follows that the representations rc and rcv are not disjoint. For 
the proof that they are even equivalent, one could then apply the general 
arguments expounded in [3]. But the more specific information provided by Eq. 
(2.14) also allows a simple direct proof of this fact. 

The essential step is the demonstration that the normal extension of co to the 
W*-tensor product 9A(C9,)@9~(~)' is faithful. For  this implies that the vector (2p in 
relation (2.14) can be chosen to be cyclic for roy [11, Theorem 2.7.9]. Since f2 is cyclic 
for ~ and since 

(f2,rc(C)a)=(f2v, uv(C)f2~,) for Cegct((9,)Qg.I((9~)', (2.15) 

cf. relations (2.9) and (2.14), it is then clear that n and roy are unitarily equivalent. 
For  the proof that co is faithful we first recall that the choice of the regions (9,, (gb 

in our discussion was completely arbitrary, apart from the condition that (9, CC (9~. 

A linear functional on 9.1((9 0Qg/(d)2)' is said to be normal relative to up if it is continuous with 
respect to the ultra weak topology determined by this representation 
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We may thus choose regions ~ ,  ~b such that (9, CC (~ CC (~b CC (gb and consider the 
representations ~, gp of ~((~,)C)9.1((~b)', which are defined as in relations (2.7) and 
(2.8), respectively. The corresponding state (5, defined as in (2.9), is an extension of 
o~ to the larger algebra under consideration. It is normal relative to ~p and may 
thus be represented by some vector ~ p E ~ ® W .  We note that, since ~®~2 is 
separating for ~(~,)Q 9A((~b)', there is also such a vector ~p which is not orthogonal 
to Q®Q. 

Now because of the choice of the regions ~,, ~b, relation (2.2), and the fact that 
gJ is invariant under the action of U(t) there exists some 6 > 0 such that for all 
C e 9.I((ga)(D~21(60b)' and It] < 6, 

w(C) = (~p, Up(t)ffp(C) Up(t)- ~ ~p), (2.16) 

where Up(t) = U(t)® U(t). Hence if X, e 9/((9.)@ 9.1(C9ff is any net which converges 
strongly to some X e 9/(Cg.)Qg/((~b)' and if tim co(X*X,)=0, it follows from (2.16) 
that for Itl<6, 

X .  Up(t)Dp = 0. (2.17) 

Since the generator of t---, Up(t) is positive, this equation extends by analyticity to 
any t e R. Taking also into account that the multiples of (2®~ are the only vectors 
which are invariant under the action of Up(t), we thus find, by taking in (2.17) a 
suitable mean over t, that X.  gJ®gJ = 0. Hence X=0 ,  so the normal extension of t ,  
to ~I(6,)<~gA((gb)' is faithful, as claimed. 

Having shown that the representations 7c and 7~p are equivalent, the proof of the 
split property is now easily accomplished: let V be any isometry mapping ~ onto 
J~®~t¢ ~ which establishes the equivalence of ~ and 7~p. We then have 

A . B = V - ~ A ® B V  for AegA((9,), Beg.I((gff. (2.18) 

Since 9l = V- ~ ( ~ ) ®  1 V is clearly a type I factor and since there holds the trivial 
inclusion 

V-  1,0~(~0a)@ l VC V-  l~(J/~)@ 1 V C ( V -  11 @~( (~b fV )  t , 

we arrive at 

(2.19) 

This completes our proof of the split property. 

(2.20) 

3. Quantum Fields and the Structure of Local Algebras 

We will establish now the universal structure (1.3) of the local algebras in quantum 
field theory by combining information about the type of these algebras with the 
results of the previous section. Strictly speaking, the present section is nothing but 
a summary of known facts. But we found it worth-while to bring together here the 
scattered information which is relevant in the present context. 

Our starting point is the standard formulation of local quantum field theory in 
terms of Wightman fields. Since this setting is well-known we can be very brief in 
stating the relevant assumptions. 
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1. (147ghtman axioms [•2]) We consider a *-algebra ~ of (unbounded) 
operators generated by a collection of Wightman fields F~ and acting on some 
domain in a Hilbert space Yt ~. So the fields F~ are temperate distributions on 
Minkowski space with values in ~3 on which the Poincar6 group (respectively its 
covering group) Nt+ acts by automorphisms. These automorphisms are 
implemented on ~f  by a continuous, unitary representation L~U(L) of N*+. In 
connection with the question of the type of the local algebras, it will be essential 
that the fields are finitely covariant, i.e. that each F~ transforms under the 
subgroup of Lorentz-transformations according to some finite-dimensional 
representation. The fields F~ are local and satisfy normal spacelike commutation, 
respectively anticommutation relations. At last, there is an (up to a phase unique) 
unit vector f2 which is invariant under the action of the unitaries U(L) and which 
is the ground state of the Hamiltonian H (the generator of the time-translations). 
We assume that f2 is cyclic for the algebra q3 and that the resulting domain 

= ~3f2 is a core for the field operators F~(f) for any testfunction f. 
This setting is familiar from many field-theoretic models. We emphasize that it 

also applies to gauge quantum field theory if one restricts the algebra ~3 to local, 
gauge-invariant fields and observables, respectively. 

Given this structure, we can define a Poincarr-covariant net ( 9~ ( (9 )  of von 
Neumann algebras on ~ as follows: let @ be any open, bounded region in 
Minkowski space and let 6P(C) be the subspace of all testfunctions with support in 
(9. Picking any field F~ and any f ~  50((9), we obtain a field operator F~(f) ~ ~3 which 
is associated with the region (9. This operator, being an element of a *-algebra, has 
a densely defined adjoint, and hence is closable. It thus determines in a canonical 
way the algebra 9~,y= {F~(f)*, F,(f)**}", which is the smallest yon Neumann 
algebra to which the closure of F~(f) is affiliated. We then define ~((9) as the von 
Neumann algebra generated by all 9t,, ~ with fE  5e((9), 

_9.I((9)= V ~,~-- (3.1) 
~, f~5,'(~) 

It follows immediately from this definition that the family of algebras ~((9) so 
defined satisfies the condition of isotony, cf. relation (2.1). Moreover, since the 
support of a function is a closed set (by definition), the algebras ~((9) are 
"continuous from the inside," i.e. for each increasing family of open regions (9~ with 

? (9~ = (9, we have 

~((9) = V ~((9~). (3.2) 

From the Poincar6 covariance of the fields F~, it is also clear that the Poincar6 
transformations act on the algebras N((9) in the geometrically obvious manner 

U(L)~_ ((9) U(L)- 1 C ~_ (L(9). (3.3) 

The only feature which does not immediately carry over from the Wightman fields 
to the corresponding net of yon Neumann algebras is the property of locality. 
Disregarding the fact that the field operators are unbounded one would deduce 
from the spacelike commutation relations of the fields the following specific 
structure of the algebras _~((9): each operator C e _~1((9) is composed of a Bose part 
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C+ and a Fermi part C_, given by 

C +_ = ½(C ++_ UoCUo), (3.4) 

where U o = U* = U o 1 is the operator inducing the sign change of Fermi fields 
("rotation by 2n"). If A e 9i((9~) and B e 9i((9b) is any pair of operators associated 
with two arbitrary spacelike separated regions (9, and (gb there holds the 
commutator equation 

[A,B+ + UoB_ ] =0,  (3.5) 

combining in compact form the normal spacelike commutation and anti- 
commutation relations of Bose and Fermi operators, respectively. 

The question of whether these locality properties persist in the transition from 
the Wightman fields F, to the net (9 ~ _~I((9) is a subtle mathematical problem due to 
the fact that the field operators F,( f )  are unbounded. Several regularity conditions 
in terms of the fields are known which guarantee that no pathologies occur in this 
step (cf. [13] and references quoted therein). In the cases where the fields F~ 
generating the algebra ~3 are to be interpreted as observables, the locality property 
of the corresponding net of von Neumann algebras has to be demanded also on 
physical grounds. We therefore assume that the underlying Wightman theory is 
sufficiently regular and postulate 

2. (Regularity) The net (9~( (9 )  defined in (3.1) satisfies the spacelike 
commutation relations (3.5). 

It is a well-known consequence of the structure described so far that the vector 
~2 is cyclic and separating for the local algebras ~((9): it is cyclic since the 
polynomials in the field operators F,(f),  f e  5:(0) generate a dense set of vectors 
from ~2 according to the Reeh-Schlieder theorem [14]. From the locality condition 
(3.5), it then follows that g2 is also cyclic for ~((9)', and hence separating for 2((9). 

Another feature which is of interest here is the fact that the local net (9~( (9)  
can always be extended to a net (9~g[((9) which satisfies the condition of duality 
[I 5], and hen6e is the maximal net with the properties mentioned above. This net is 
obtained by first constructing for all open wedge-shaped regions ~#* bounded by 
two characteristic planes algebras ~(~tK) as in relation (3.1). Then one defines the 
algebras gI((9) associated with "causally convex" regions (9 (i.e. open, bounded 
regions, such as double cones, whose closure (~ is the intersection of wedges ~1/'), 
setting 

~((9)= /~ ~( '~) .  (3.6) 

(An extension of this definition to arbitrary regions can be accomplished by 
additivity.) It is obvious from relation (3.6) that the algebras so defined are 
"continuous from the outside," i.e. if (9i is any decreasing family of regions such that 
0 (92 = (9, we have 

~[((9) = /~  ~I((gi). (3.7) 

The subsequent discussion applies to the "minimal net" defined in (3.1) as well as to 
the "maximal net" defined in (3~6). We therefore introduce the notation (9--.~I((9) 
for either one of these nets. 



Universal Structure of Local Algebras 133 

We supplement now this general setting by two more specific assumptions 
distinguishing a physically significant class of models. Firstly, we assume the 
nuclearity condition employed in the previous section. We recall here in brief this 
postulate. 

3. (Nuclearity) Let (9 be any fixed bounded region. Then the maps 

Ot~(A ) = e-~nAf2, A e 9.1((9) 

are nuclear for any fl> 0. Moreover the trace-norms of these maps satisfy the 
bound in the limit fi ~ 0, 

Tt Opttl < e  (~°/p)" , 

where rio, n are certain constants. 
As already mentioned, this condition restricts the admissible number of local 

degrees of freedom of a theory. As a measure of this quantity one takes the energy- 
level density of the states which are well-localized inside the region (9. The quantity 
I10/~ll 1 is the analogue of the partition function in statistical mechanics, and the 
bound on II Op II 1 says that the level density should not grow substantially faster 
than that of an arbitrary number of indistinguishable particles confined to a box of 
finite volume. We note that in asymptotically free theories, where Stephan- 
Boltzmann's law can be applied at high temperatures, one expects that the 
constant n appearing in the bound can be put equal to the dimension of space. For 
a more detailed discussion and justification of the nuclearity condition we refer to 
[3], cf. also [16]. 

The following result concerning the intrinsic structure of the local algebras is a 
straightforward consequence of the preceding discussion. 

Proposition 3.1. The algebras 9/((9) associated with causally convex regions (9 are 
hyperfinite. 

Remark. In the case of the minimal net this statement holds in fact true for 
arbitrary regions, including unbounded ones such as ~K. 

Proof. It follows from the preceding assumptions and the analysis in Sect. 2 that 
the local net has the split property. Moreover, the algebras 9.I((9) are continuous 
from the inside (in the case of the minimal net) or from the outside (in the case of the 
maximal net), respectively. In the first case we choose a sequence of regions (9~ such 
that (9~CC(9~+~ and U(91=(9. Then there exists an increasing family of type I 

factors 93~ such that 9.1((9~) CgJI~C 9.I((9~+ 1), and hence 

V = V 9n . 
i i 

Similarly, we find in the case of the maximal net a decreasing family of type I 
factors N~ such that 

9/((9) = A 
i 

Since type I factors on a separable Hilbert s p a c e / f  z are clearly hyperfmite it is 
obvious from these approximation formulas that 9/(0) is hyperfinite, too. (For an 

2 That J f  is separable is a trivial aspect of the nuclearity condition 
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account of the standard properties of hyperfinite von Neumann algebras 
cf. [5].) [] 

It remains to discuss the type of the local algebras. This property has been 
determined in [1] for local nets constructed from Wightman fields admitting a 
scaling limit. For the convenience of the reader we recall here the precise 
assumptions: given any positive, monotone function N(2), 2 > 0 one first defines a 
scaling transformation of the testfunctions f(x) on Minkowski space, setting 

f~(x) = N(2)f(x/2). (3.8) 

One then obtains a corresponding transformation of the field operators F= (f) by 
replacing the testfunctions f by iS. Now according to the theory of the 
renormalization group (cf. [17]) one expects that in renormalizable theories with 
an ultraviolet fixed point the vacuum expectation values of products of the scaled 
fields F=(fz) have a non-trivial limit as 2 ~ 0 for an appropriate choice of the 
function N(2). In asymptotically free theories N(2) should be of the form 2a-a 
being the canonical dimension of the field and d the dimension of Minkowski 
[6 space], possibly modified by logarithmic corrections. But the precise form of N(2) 
is irrelevant here. In fact one needs for the determination of the type of the local 
algebras only, the following mild assumption concerning the scaling properties of 
the underlying Wightman theory. 

4. (Asymptotic scale invariance) Amongst the Wightman fields F~ generat- 
ing the local net (9--,9.I((9) there is some field F with vanishing vacuum 
expectation value such that for a suitable choice of N(2) the scaled field 
operators F(fz) have the following properties: the expectation values 
(f2, F(fa)*F(fz)g2) converge for all testfunctions f in the limit 2 "~ 0 and are non- 
zero for some f, and the norms Hf(f~)*F(fa)f2]l and ]lF(fx)F(f~)*f21] stay 
bounded in this limit. 

Combining this input with information about the modular groups associated 
with the algebras 9.I(~/U) and the vacuum state f2 [15], one can determine the 
Connes invariant of the local algebras, and hence their type. This was demon- 
strated in [1] under the assumption that the field F having the required scaling 
properties transforms as a scalar under Lorentz-transformations. But it is evident 
from that argument that the conclusions hold just as well if F is finitely covariant. 
So there holds the 

Proposition 3.2. The algebras 9i((9) associated with causally convex regions are of 
type II11, i.e. only factors of type III 1 appear in the central decomposition of 9i((9). 

Remark. Again, one can extend this result to algebras associated with a larger class 
of regions, cf. [13. 

In case that the local algebras are factors we thus have reached our goal: 
according to the result of Haagerup already quoted, the hyperfinite type III 1 factor 
9t is unique, so all local algebras are isomorphic to 9t. Taking atso into account the 
possibility that the local algebras have a center we can summarize the results of this 
discussion in the following 

Theorem 3.3. Let (9~9i((9) be a (minimal or maximal) local net constructed from a 
Wightman theory which satisfies the conditions of nuclearity and asymptotic scale 
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invariance. Then the algebras 92((9) associated with causally convex regions (9 are 
isomorphic to 9103, where 91 is the unique hyperfinite factor of type 111 1 and 3 the 
center of 9.1(0). 

Proof. Since in the central  decompos i t ion  of  a hyperfini te  von N e u m a n n  a lgebra  
there  a p p e a r  only  hyperfini te factors  [5], it follows f rom the preceding two 
propos i t ions  tha t  92((9) can be expressed as a direct integral  9.1(0) = ~ d#(z)91(z) of  
hyperfini te  type 1111 factors  91(z). Because of  the uniqueness  of  this factor  it is then 
clear (cf. [1 t ,  Chap.  4.5]) tha t  92((9) is i somorphic  to  9 t O 3 .  [ ]  
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