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Abstract. The local generators of symmetry transformations which have 
recently been constructed from a quantum field theoretical version of 
Noether's theorem are shown to converge to the global ones as the volume 
tends to the whole space. The proof relies on the continuous volume 
dependence of the universal localizing maps which are associated to the local 
split W*-inclusions. 

1. Introduction 

A new approach to a quantum Noether theorem has recently been set up I-1-3] in 
the algebraic formulation of quantum field theory 14]. In a given theory, let ~(C) 
be the yon Neumann algebra which is generated by the field operators which are 
localized in the bounded space-time region (9. Let G be the group of space-time and 
internal symmetries, and let J~ for each u in the Lie algebra f~ of G denote the 
corresponding selfadjoint generator of the global symmetry transformation. The 
quantum Noether theorem then asserts that there exist local field operators which 
induce that symmetry locally. 

The construction of these local generators is based on the so-called split 
property [5] (see below) which may be understood as the possibility to decouple a 
region (9 completely from any other region which is separated from (9 by a finite 
spacelike distance. Assume that ~ possesses the split property, and let (9 and (~ be 
bounded space-time regions such that (9 + x C ~ for all x in some neighbourhood of 
the origin. Then for each u ef¢ there is a selfadjoint operator J~'e which is affiliated 
to ~ ( ~  and induces on ~((9) the infinitesimal symmetry transformation u, i.e. 

and for sufficiently small 2 

e i'~f' ~Fe -~'~J~' ~ = e~'~J"Fe -i;J~,. (1.2) 
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Actually there is a canonical choice for J.*'b which depends only on the triple 
A = (~((9), ~(~) ,  I2), where f2 is the vector representing the vacuum [2]. 

The local generators J~'~ are analogues of the (regularized) integrals of the 
zero-component of the Noether current associated to u in a Lagrangian field 
theory. Similarly to them they transform covariantly under global symmetry 
transformations. It is a major open problem in the general setting to recover such a 
current from the correspondence (9, ( ~ J ~ ' f .  

However, the correspondence u~J¢, '~ has some unexpected remarkable 
properties which are not shared by its analogue in Lagrangian field theory: 

(i) It is a representation of f#. This leads to a rigorous variant of current 
algebra, which relies on first principles only [2]. 

(ii) It is quasi-equivalent to the global representation u ~ J ,  off#, in particular, 
the local energy momentum operators have the same spectrum as the global 
ones [3]. 

The construction of J~' ~ is rather indirect, and it seems to be very important for 
further applications to understand the functional dependence of J ,  on the pair (9, (~ 
in more detail. 

In this paper we want to study the question whether J~'~ tends to J ,  as (9 and (~ 
tend to ~ 4  in a suitable way. Actually, for the integrated densities this question is 
nontrivial either; in this case, it has been answered in a satisfactory way first by 
Requardt [6]. 

In Sect. 2 we prove a very general result: for every non-decreasing sequence of 
regions (9, there is a sequence ~.  3 (9, such that 

J°"'~" ~ . l  (1.3) U - - t t  

in the strong resolvent sense. 
Actually we find a convergence which is even somewhat stronger. To explain 

this recall that 
e,& J ,  = VA(J,), (1.4) 

where 14) a is the "universal localizing map" associated to the triple 
A = (~((9), ~(~) ,  f2) [5, 3]. ~PA is a *-isomorphism which maps @(~/g), ~ being the 
Hilbert space on which the von Neumann algebras ~((9) act, onto the canonical 
type I factor d a  between ~((9) and ~((~) [2, 5]. For the sequence (9,, ~,  alluded to 
before we show that ~Pa., A. = (~((9,), ~((~,), £2) converges pointwise strongly to 
the identity, 

VA,(B) , B strongly for all Be~(.Jt°).  (1.5) 
n---~ oo 

Now let A be a (possibly unbounded) selfadjoint operator on ~ .  Then 
A n =lPaJA ) is a selfadjoint operator with the same basic measure class 1 as A and 

g(A,) ~ g(A) strongly (1.6) 

for each bounded Borel function g on F-,. 
The convergence (1.5) of the localizing maps follows from a generalized cluster 

property. Let ~o 0 denote the vacuum and q~, the product state on ~-((9,). ff(~,) ' ,  

1 By the split property ~ is automatically separable [5] 
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which coincides with co o on ~((9,) and on o~(~,)'. Then (1.5) is a consequence of 

lira I1~o.-cooll--0. (1.7) 

The generalized cluster property (1.7) is always fulfilled in theories with the split 
property if (~, tends to R4 sufficiently fast. In general, there is no control on the 
required increase of ~,. In the special case of a dilation invariant theory, with (9, 
and (~, denoting the double cones centered at the origin with radii r, and R,, 
respectively, (1.7) holds if and only if R,/r, tends to infinity (Sect. 2); in the case of a 

c 
massive scalar free field with mass m it suffices that r , ~  oe and R , - r ,  > m logr,m 

for some constant c which depends on the space-time dimension (Sect. 4). 
In more general theories information can be obtained from the behavior of a 

generalized "partition function" ZBw(~, (9). This quantity has been introduced in 
general quantum field theories by Buchholz and Wichmann [7] and is defined as 
the nudeari ty index of the set e-Pno~((9)lf2, where H denotes the Hamiltonian, f2 
the vacuum vector and ~-~((9)1 the unit ball in ~((9). If the Buchholz-Wichmann 
partition function is finite for finite volumes and does not increase too fast with the 
temperature, the theory has the split property [7, 8]. Moreover, if the volume 
dependence is reasonable, one expects that KMS-states for all positive tempera- 
tures exist [9], and one may hope that the theory has a complete particle 
interpretation (asymptotic completeness) [10]. In Sect. 3 we show that the 
generalized duster  property (1.7) and therefore also the convergence of local 
generators of symmetry transformations can be controlled by the Buchholz- 
Wichmann partition function. This yields the desired convergence whenever 

t 

and R , - r , >  m(logmr,)2, for a suitable constant c' depending upon the rn---~ o0 

"effective" space dimension. 
In the second part of Sect. 4 the estimates for the norm difference between the 

product state and the vacuum in the case of the free scalar massive field are used to 
construct theories which have a minimal splitting distance. 

We close this section with some comments on our basic assumptions. They 
concern the local field algebras ~((9) which, in presence of superselection rules, are 
not generated by observable quantities. However, it is worth stressing that the 
existence of the compact group G of gauge transformations of the first kind, and of 
the net ( 9 ~ ( ( 9 )  of algebras of field operators with normal commutation 
properties [so that the G-invariant part of ~((9) coincides with an appropriate 
representation of the algebra 96((9) of all observables that can be measured within 
(9] can be derived from few basic principles on the net of local observables (9 ~96((9) 
given as von Neumann algebras on the vacuum sector Hilbert space ~ o  [11]; 
when G is commutative, see [12]. 

Our  main assumption is that, whenever (9, (~ are double cones and (9 lies in the 
interior of C, (~((9), ~ ( ~ ,  O) is a standard split W*-inclusion. 

Recall that a standard W*-indusion is a triple A = (96, ~3, O) consisting of von 
Neumann algebras 96 C ~3 acting on a Hilbert space ~ and a vector f2 E ~ which is 
cyclic and separating for 96, ~3 and 96.1' ̂  ~3, 962[' denoting the commutant  of 96. 
Moreover A is split if there is a type I factor X so that 96 C Jg" C ~3 [5]. 
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Under the split assumption, by the normal commutation properties of 
spacelike separated field operators, the standard character of the vacuum vector f2 
follows from the Reeh-Schlieder theorem [2]. The most characteristic assumption 
is the split property, which as discussed above seems to be characteristic of 
reasonable theories. 

The split property for the net of observables 9.1 can be interpreted as a principle 
of local preparation of states [3, 27]. The split property for Y implies the split 
property for 9/; the converse holds in special cases, e.g. if G is finite abelian, and 
it is an interesting open problem whether it holds more generally [i] .  

2. Cluster Properties and Continuity of W*-Inclusions 

In this section we shall investigate the connection between clustering and 
continuity properties of inclusions of von Neumann algebras. 

Given a standard split W*-inclusion A there is a normal state (Pa (the product 
state) on 9 /v  ~ '  (the yon Neumann algebra generated by 9 / a n d  by ~')  with 

~pA(AB') = coo(A)~%(B'), A ~ 9/, B' ~ ~3', (2.1) 

where coo denotes the state on ~ (W)  induced by ~, and a uniqt~e vector t/z in the 
natural cone P~,~ v ~, which induces ~PA" t/a is cyclic and separating for ~ v ~3' 
(hence for 9/'c~B). 

The vector t/A can be used to define a unitary operator Ua from Yg onto the 
tensor product space W ® - ~ ,  

UAAB'tlA = Af2®B'Y~, A ~ 9,I, B' ~ ~ ' .  (2.2) 

The universal localizing map ~A is now defined by [5, 3] 

~VA(T) = U,~ I (T®I)UA. (2.3) 

~A is a *-isomorphism of ~(Yg) onto the canonical type I factor JV a between 9/and 
S$, and it acts trivially on 9/. 

Crucial for the following discussion is the fact that the distance of vectors in the 
natural cone can be estimated by the distance of the induced states, i.e. one has (see 

e.g. [ t3])  [I ~]A - -  6C2 t[ 2 ~ [I (~A - -  690 II" (2.4) 

This is the basis for a connection between the convergence of the universal 
localizing maps and the generalized cluster property (1.7). 

2.1. Theorem. Let A n = (gA,, ~ , ,  ~2) be a sequence of standard split W*-inclusions 
with 9/1C 9/, for all n. I f  [[ ~PA.-- COO [[ ~ 0  for n-~ ~ the universal localizing maps ~Pa. 
converge pointwise strongly to the identity. 

Proof. By (2.4) II ~Pa.- COo II ~ 0  implies qa. ~ 2 ,  hence from the definition of UA, and 
from 9/1 C9/, for all n 

U~(AY2®Y2)~AY2, A ~ 9/1. 

Q is cyclic for ~I~, hence for all ~ e  ;of, 
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In particular, for Te  N ( ~ ) ,  A e 911, 

U A)(TAY2®Y2)~ TA~2. 

But from the definition of ~oA, (2.3) this means 

tp ~,(T)AttA~ ~ TAO.  

t/an tends to g2, O is cyclic for 911 and ~A. is uniformly bounded, hence ~A~(T) 
converges strongly to T. q.e.d. 

2.2. Corollary. Under the same assumptions, the transpose of the maps ~A, of 
Theorem 2.1 converge strongly on the predual of JJ(W). 

Proof. By a 3e argument it suffices to consider vector states co = (~,- ~). By the 
relations 

(co o ~0,-co)(T)= (U,~, T ® I ,  U ,q~) - (¢® f2, T ® I ,  q~® f2); U,q~-~q~®f2, 

the assertion follows as in the Proof  of Theorem 2.1. q.e.d. 

As anticipated in the Introduction, a very restrictive notion of convergence on 
operators follows immediately from Theorem 3.1. 

2.3. Corollary. Under the same assumptions, for each selfadjoint (possibly un- 
bounded) operator A on Y f  , the selfadjoint operators A,  = Ip A.(A ) have the same basic 
measure class as A and, for each bounded Borel function f on R ,  f (A , )  con- 
verges strongly to f (A)  as n ~ .  

The generalized cluster property (1.7) holds under very general circumstances. 
The following result which we reproduce for the convenience of the reader follows 
from a generalized Powers argument [14-16]. 

2.4. Proposition. Let A.  = (91, ~3., f2) be a sequence of  standard split W*-inctusions 
with an increasing sequence f~.. Then 

II 0a°-cooll 
if  and only if ~ = U ~B, is irreducible. 

Pro@ Let f ,  be the ultraweakly continuous linear functional q~A.-- coO on the yon 
Neumann algebra ~ ,  = 91 v ~3',. By the standard split property, ~ ,  is spatially 
isomorphic to 91®~3', (see e.g. [17]). Thus if ~3 is irreducible we have 

Now f ,  = f l  I ~ ,  and f ,  [ 91 = 0. Then It f ,  Jl ~0 .  Otherwise I f,~(Tk)t > 6 for some 6 > 0 
and for a sequence Tke~,~, [ITkl[ = I ,  n k ~ .  The sequence Tk has a weak limit 
poi1~t T. T belongs to 91 and If~(T)l > 6, in contradiction with the definition of f l .  
Conversely, if iI q~a.-- 09o II ~0 ,  then ~Pa.- coo 1 91w~' = 0, i.e. coo(AC) = coo(A)coo(C), 
A e 9/, C e ~B'. Since f2 is cyclic for 9/and separating for ~3' ( ~B', we get CO = coo(C)O 
and C=coo(C)l. q.e.d. 

The application of the abstract results to the field theoretical problem is easy. 
Let ~((9) for bounded open regions (9 be the von Neumann algebras of local field 
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operators acting in some Hilbert space, and assume isotony, 

(9~c(92 ~ ~((9~)c~((92) 

and irreducibility 

(2.5) 

{ U ~((9)}' = {21 12 ~ cE}. (2.6) 

Furthermore, assume that for each (9 there is an g D(9 such that 
Ae, # = (~-((9), ~((9~, ~2) is a standard split W*-inclusion. Then we find immediately 
the following result: 

2.5. Corollary. Let (9, be a nondecreasing sequence of  regions. Then there is a 
sequence of regions ~,  D (9, such that 

II ¢oa~.,~° -cool l - ,0  

and tpA~.,~.--*id pointwise strongly. 

The results discussed so far yield the desired convergence of local charges. 

2.6. Theorem. Let (9, be a nondecreasing sequence of double cones. Under the above 
assumptions there is a sequence of double cones ~,  D (9, such that, .for each generator 
u ~  

U - - U  

in the sense that the basic measure classes are the same and for each L ~ function f ,  

f(J~,"~")~ f (J , )  strongly. 

More generally (even if the global gauge group is not a Lie group), given any global 
charge operator Q (i.e. Q belongs to the center of the yon Neumann algebra 
generated by the global internal symmetry transformations), the corresponding 
local charge operators, Q~"'~"=~pa~ ~ (Q) [2] converge strongly to Q. 

A further consequence of the p~eceding discussion is the convergence of 
"globalized partial states." Let co be any normal state on ~ ( ~ ) .  The globalization 
of the partial state co ~ ~(~,,) is co o ~PA~.,~ -- CO.. By Corollary 2.2 (co.) converges in 
n o r m  t o  co a s  n----~ o o .  

A purely algebraic argument as above cannot say how fast ~ .  has to grow with 
respect to (9. (cf. Sects. 3 and 4). 

For  instance in a dilation covariant theory there are automorphisms 3x of 
~ = c g .  (U ~((9)),  2 > 0 such that coo ° 6~ = coo, 6~(~((9~)) = Y((9;~), where (9~ is the 

/ 

double cone of radius r centered at the origin. Then for each 2 > 0, 1[ ¢ o ~ , ~ -  coo 1[ 
= 11 q~o~ , ,~ -  co o ][, and by Proposition 2.4 we have that [[ cPo~,o~-coo [[ ~ 0  as r ~  oo 
if and only if R/r-* oo. 

We conclude noting that similar convergence properties hold if we keep (~ 
constant and let (9, shrink to a point, using instead of the irreducibility assumption 
(2.6) the following property 

0 ~'~((9,) = ~E. 1 if 0 (9, = {point}, 

which follows from the general structure of quantum field theory [18]. 
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We turn now to a brief discussion of general continuity properties of standard 
split W*-inclusions related to the continuity of local currents at finite (9, (~. 

If 91, is an increasing (respectively decreasing) sequence of von Neumann 
algebras such that V91 .=91  (respectively/~91.=91) we shall write 91,/"91 
(respectively 91. h 91). 

Lemma 2.6. Let 91.1, be a monotone sequence of  yon N eumann algebras with 91,/~ 91,1 
or 91, ",~ 9,1 and f2, r 1 cyclic and separating vectors for 91 and 91, for all n. Let J,, J and 
A,, A denote the relative modular conjugation and the relative modular operators of  
91,, 9I, respectively, with respect to the pair O, q. Then Jn-+ J in the strong operator 
topology, and A , ~ A  in the strong resolvent sense. 

Proof. In the case 91, ~ 91 the statement follows by an application of Lemma A.1 
(Appendix) to the closure of the antilinear operator Af2~A*~h A ~ 91,. The case 
9.1. "~ 91 may be obtained from the first case by looking at the commutants, q.e.d. 

2.7. Proposition. Let 91, be a sequence of  yon Neumann algebras such that 91n "~ 91 
or 91, "~ 91 and let f2 be a cyclic and separating vector for all 91, and for 91. Let q~ be a 
faithful normal state of  V91  . and q,, q the vector representatives of  go [91, and go p91 
in P~(91,) and P~(91), respectively. Then ltrl,-~l[I ~0 .  

Proof. For simplicity we shall prove the proposition only for the following 
particular cases which suffice for our applications: 

(i) 91, N 91 and q 1 is cyclic for 91. 

(ii) 91. ,7 91 and q is cyclic for 91. 

The general case can be obtained similarly. 
(i) Since r/1 and q, induce the same state on 91,, the formula (91+ =91, t/+ = q) 

VnA~ll = A q . ,  A~91. ,  n e N w { o o } ,  

determines a unitary V. e 91'.. Since V. maps P~1(91.) onto P~,.(91.), V. is nothing but 
the standard implementation (cf. e.g. [5, Appendix]) of the identity on 91. with 
respect to the cones P~,,(91.) and P;.(91.)= P~(91.), and therefore 

V - -  j (n) j (n)  

where J~) and J~!~ are the modular conjugation and the relative modular 
conjugation of 91,, n ~ N u { ~ } .  By Proposition 2.7 we have J(~)--+J(~) and 
j{,) ~r{®) in the strong operator topology, and hence I2, r/1 '~ I2,~l 

- - l ( n )  1(n) ,n __). 1"(~)1(~) 
qn - - ' J  f~ of2, q l q l  o12 o0 ,~11 ,11=q~-- - -~ .  

(ii) In this case r/. and q induce the same state on 91., thus one defines a unitary 
V, ~ 91~, by 

One finds 

and proceeds as in the first case. 

V,A~I = Aq, ,  A ~ 9.I,. 

_ j (n) l (n)  
n - -  ~ "J f~,~l 

q.e.d. 
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2.8. Theorem. Let (9~,, 98,, ~Q) and (9.1, 98, ~2) be standard split W*-incIusions acting 
on ~ such that 9A, /~ 9,i and 98, "~ 98 (or 9.1, ",~ 9,I and 98, / 98). Then the canonical 
product vectors converge in norm and the universal localizing maps converge 
pointwise strongly. 

Proof. Due to the split property 9A, v 98',/~ ~R v 98' (respectively 9.1, v 98', N 9/[ v 98'). 
Thus the first assertion follows immediately from Proposition 2.7 applied to the 
canonical product state. The convergence of the universal localizing maps follows 
then as in Theorem 2.1. q.e.d. 

The last theorem tells us that the natural interpolating type I factor 
X .  = ~p,(~(~)), ~p. denoting the universal localizing map associated to (gA,, 98,, ~2), 
converges in a precise sense to X = ~v(N(~)). A similar continuity property holds 
for semistandard pseudonormal W*-inclusions (as defined in [5]). 

In Quantum Field Theory, Theorem 2.8 applies immediately to yield the 
continuity of the local generator j e,~ provided the correspondence (9---,~'((9) has 
certain continuity properties. Let us write (9, N (9 (respectively (9,/" (9) when (9, is a 
nonincreasing (respectively nondecreasing) sequence of double cones with the 
double cone (9 as intersection (respectively as closure of the union). We call the net 
6~-+.~((9) continuous ff 

~((9,)'~ ~-(C) if (9,'~ (9, (2.7) 

~((9,),* ~((9) if (9,/* (9. (2.8) 

Note that (2.7) would follow from twisted duality [12, 1]. 
Now let (9--+=+-((9) be continuous and let (9, ,7 (9, (~, "~ 0 or (9, ~ (9, (9, ,* (~ Then 

~p~,.~ -+,p (2.9) 

pointwise strongly, and the local generators j e.,~. converge as above to J~'~. 

3. The Rate of Clustering and the Buchholz-Wichmann Partition Function 

Buchholz and Wichmann [7] have shown that the split property of local algebras 
can be derived from a so-called nuclearity condition. This condition expresses in a 
certain sense the expectation of old quantum mechanics that locally there are only 
finitely many states with finite energy. It is stronger than the similar Haag-Swieca 
compactness criterion [19] and is thought to imply the existence of temperature 
states for all positive temperatures. It is based on the set of operators 

Te, ~: ~(C)-+ Jt a , r--+ e - ~B(F -- Coo(F))O, fl > O, 

where H is the Hamiltonian 2. T~, e can be represented as a pointwise converging 
sum of rank 1 operators 

t~o,+:ff((9)--+gg ~ , t+,+(F) = ~p(F)~, (3.1) 

where q~ is a bounded linear functional on ~,~((9) and q~eJf .  The Buchholz- 
Wichmann partition function ZBw(fl, (9) is now defined by 

ZBw(fl, (9)= 1 + o/~(fl, (9), (3.2) 

2 o is the ground state vector of H, unique up to a phase, and co o is the state induced by O 
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where Y(/~, (9) is the nuclearity index of the set T~,~(Y((9)l), ~((9)~ denoting the 
unit ball of ~((9), 

rank for 

We assume that Z~w satisfies the bound 

ZBw(fl, (9) __< e "(e)#p(#) , (3.4) 

where in analogy to thermodynamics v((9)> 0 may be interpreted as the (spatial) 
volume of the system and p(/3) as the pressure,/3 denoting the inverse temperature. 

Buchholz and Wichmann have shown that for the free massive scalar field one 
gets 1 

v( (g r) <= cr 3 , r > -- 
m 

and 
p(/3)__</3-% -"# . (3.5) 

One may therefore assume in (3.4) 

p(fl) < fl- (, + 1)e - ~# (3.6) 

for some n > 0. According to Buchholz and Wichmann the bound (3.6) on the 
pressure implies the "distal split property," i.e. for each (9 there is an (~ D (9 such that 
(o~((9), ~((9), Q) is a standard split W*-inclusion [7]. 

The proof of this fact relies on an estimate of the norm distance between the 
product state ~0a~,e and the vacuum. Thus we can use the methods of [7] for our 
problem. 

Let (9 C (gd be double cones with (9 + te C (ge for It] < d, where e denotes the unit 
vector in time direction. Let Aie o~-((9), B~ e ~-((ga)', i=  1,..., n, n ~ N, such that 
IlZAiB~II < 1, and consider the function 

t ~ Ale BiO)-(~?,AiY2)(g2,BIQ)} , I m z > 0 ,  { ( n ,  ~,x , 

f(z)=t..{(~?,B,ie_iZ,AiC2)_(~2, A ~ ? ) ( F 2 , B , i C 2 ) } , ~ i  I m z < 0  or tRez l<d .  
(3.7) 

A t  / 

Due to the spectrum condition, f is analytic in the cut plane 

Ca=  { I m z # 0  or 1Rezl <d} .  (3.8) 

Moreover, f is bounded by }~ IIAill lIBel[ and satisfies according to (3.2) the estimate 

If(z)] <= ~A*(]Im z]), (3.9) 

where the r.h.s, is independent of A~, B~. 
Buchhotz and Wichmann have already shown that this implies that If(0)l is 

bounded by a constant c (X ,d )  with c(X,  d ) o 0  for d - - ,~ ;  thus 

[t q~o, ~ - -  COo II = sup ]f(0)l < c(~C, d) (3.10) 
f 

tends to zero for d ~  oo. 
We want to give a more explicit estimate. For  this purpose we use the following 

lemma whose proof is deferred to the Appendix (Corollary B.2). 
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3.1. Lemma. Let f be analytic and bounded in the cut plane Cd, and assume that f 
fulfills for Imz:~0 the inequality 

if(z)1 < U(lImzD, (3.1t) 

where N is a positive, unbounded, twice differentiable, monotonically decreasing and 
strictly logarithmically convex function on ]R+. Then 

[f(0)[ < N(flo)e - ~o0ogm'(~o), (3.12) 

where 13 o satisfies the condition 

d > 2 po.~ ( . . . .  (logN)"(fl)] 
= ~- Jo a # ~ ' ° g z - P i ~ ; "  (3.13) 

3.2. Theorem. I f  the nuclearity condition (3.4), (3.6) is fulfilled, there are constants 
c1,c2>0 such that for d>cl/m,  

II q¥, ~d - COo tl < exp {c2v(C)m"e- vTma°} - 1. (3.14) 

Proof. For all a e 1R the function f in (3.7) satisfies the bound 

l l + ei~f(z)l < Zsw(lImzl, (9), (3.15) 

N(13) = ZBw(13, (9) = exp {v((9)fl-%- me} fulfills the conditions of Lemma 3.1, thus 

t + If(0)[ = sup 11 +ei~f(z)l <N(13o)e -p°O°gm't~°) . (3.16) 
a ~ R  

To determine flo we evaluate (3.13). We obtain 

13o < l ( ] f  ~ t ~ -  c'), where c' > 0  depends only on n. Inserting this upper Thus 

bound for 13o into (3.16) we obtain the estimate 

If(0)l < exp {c2v((9),n"e-~ =/~a} _ 1 (3.18) 

for d>cJm,  where c~,c2>0 depend only on n. The statement on the norm 
difference I['p~,~,,-COol] follows now as in (3.10). q.e.d. 

The function v((gr) is expected to be bounded by the volume in general [7], i.e. 
for large r 

v((gr)_-< constr 3. (3.19) 

In theories fulfilling (3.19), by the discussion in the previous section, Theorem 3.2 
yields the convergence of the localizing maps ~P~,o~+~ and of the associated local 
charges or currents provided that (r is bounded below and) 

d/(logr)2-~ ~ ; (3.20) 

when r-~ oo it suffices that md> C(togmr)2 for a constant c > n 2, where 

v((9~) __< const r", r > l/m. 
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As discussed in the next section, explicit bounds on I] ~0~,¢~+ ~-o% [I in the case 
of a free massive field [which could be extended to generalized free fields with a 
sequence of masses compatible with assumptions (3.4)-(3.6)] yield a condition 
weaker than (3.20) [cf. (4.14)]. It is an open problem whether by a different method 
condition (3.20) can be improved in a general theory. 

4. The Rate of Convergence in the Free Massive Case; 
Models with Distal Splitting 

For the free massive scalar field the estimates of Buchholz and Wichmann of the 
nuclearity index [7J together with the results of the preceding section lead to an 
estimate of the rate of convergence of local charge operators. These estimates can 
be improved by a different method. 

According to Sect. 2, it is sufficient to estimate the norm distance 
]l~0~r,,r+d--co01 t. In the present case such an estimate can be obtained in the 
following way. Using the method of E17] one finds two vectors f2®f2 and ~ in the 
duplicated theory inducing the states co o and q~¢,,e~+d respectively. The norm 
difference of the states can then be estimated in terms of the norm difference of 
these vectors. 

4.1. Theorem. In the vacuum Hilbert space of the free massive scalar field there is a 
vector q) inducing the product state (Per,~+d such that 

II~-g2112=211-(~,f2)i~const(m(r + d)6)(md)2e - '~.  (4.1) 

Proof. We choose ~ as that vector representative of q~*r,er*d having the smallest 
distance from Q, 

I[ ~ -  f2112 =inf  { II ~ ' -  f2ll 2, co,, = ~0~r,¢+,} = d(co0, ~OOr,¢r+~), (4.2) 

where d denotes the Bures distance [20, 12] 3. Clearly (~, f2)> 0, thus 

II ' ~ -  0 II 2 = 211 - ('~, 0 )1 .  (4.3) 

To estimate the Bures distance we construct a vector representative of (P~r,e~ + 
in the vacuum Hilbert space of the duplicated theory (_9~((9)®Y((9).  The 
duplicated theory is the theory of two hermitian fields ~b~ = ~b ® 1 and q~2 = i @ ~,  
where q~ denotes the free field in the original theory. There is a global gauge 
symmetry ~b 1 + i02~ei~(chl + iq~2) with a corresponding conserved current 

j~(x) = ~ l(X)~u~bz(X ) -  q~2(x)d.q~ l(x). (4.4) 

For  a suitable test function f, 

eU°m~ l(x)e- Uom = ~ c~2(x)" x e (9~, (4.5) 
(4q(x), xe(9;+~. 

3 The Bures distance of states is equivalent to the distance given by taking vector representatives 
in the natural cone [13, 18] 
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we find 

and 4( 
I~(p)I__< ~ r+ ~ , (4A~) 

Jljo(f)(~aQg2)ll2<c ~rc r+ sup Io~3~(o9)1 z (4.12) 
ca>rod 

Proceeding as in the proof of exponential clustering by Haag and Swieca [19] we 
now take the infimum over all admissible g on the right-hand side. In the Appendix 
(Lemma C.1) we show for a > 0  

+L - ~  
inf suplc93~(co)l<consta 3 2 e 2. (4.13) 

g e ~ ( -  1, 1) e~>a 
~g= 1 

Inserting (4.13) into (4.12) and (4.12) into (4.7) gives the desired upper bound on the 
Bures distance, q.e.d, 

4.2. Corollary. For the free massive scalar neutral field one has the estimate 

II~o0-qg¢~,¢,+~l[<const m r+ rode -'el2. 

Hence ~ =  e*J°(Y)f2®~2 induces the product state ~%r,¢,+~, 

(~:, (A ® 1)~:) = ~%r, ~ + ~(A), A e : ( C , )  v ~((9 r + a)', (4.6) 

and fa®f2 induces the vacuum state. We have 

II~:-(fa®f2)ll = ll(e ~j°(:)- 1)(ga®Q)II < Iljo(f)(~2®f2)l[, (4.7) 

where the last inequality comes from the functional calculus since [ e" -  11 < [tl. A 
standard computation yields 

m 3 
Iljo(f)(~2®fa)llz= ~2deOc2)~_ dzP~2I~(  p]/-~:Z,p)lZIpl2, (4.8) 

deOc 2) = const (1 where 
\ 

It remains to find a suitable function f. Adopting an idea of Requardt [6] we 
use a variable time smearing and define 

2 
f(x°,x)= ~Z(x)~g(~-) ,  (4.9) 

d 
where )~ is the characteristic function of the 3-ball of radius r + ~ and g e @(1R) with 

5 g = l  and suppgC( -1 ,1 ) ,  f has the desired properties (cf. [17]). Using the 
estimates 

oO 

P/~+-~ iPle(iPl 2 + 1~2)-3 < 0(7) (4 .10)  
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Pro@ If the vectors • and f2 induce the states (D(~r, Or+ d and COo, respectively, one 
has the bound 

Ilco0 - ( ° ~ . , ~ .  + d H 2 < 4 ( 1  - I ( ~ b ,  ~e~)[2). 
The statement follows now from Theorem 4.1. q.e.d. 

Therefore we have the desired convergence of local currents whenever (r is 
bounded below and) 

d/log r-~ oe ; (4.14) 

when r--* Go is suffices that md > 2c logmr for a constant c larger than the space time 
dimension. 

The estimate obtained in Theorem 4.1 is good enough to construct examples of 
theories with a nonzero splitting distance, i.e. there is a "splitting distance" d(r) > 0 
such that the inclusion ~,~((gr)C~((gr+e) is split for d>d(r) and is not split for 
d < d(r). 

The idea is to consider generalized free scalar fields q~. with K¢llen-Lehmann 
measure 

d#(tc 2) = ~ C,(3(~c 2 - m~)dx 2 (4.15) 
n = l  

such that Z C, e"m" < oo for some a > 0. In [5] it has been shown that the algebras 
~-((9) generated by q~u are isomorphic to infinite tensor products of the algebras 
~m,(~)) of t h e  free field with mass m, with respect to the product state 
coo = co(o "1) x . , .  x CO(o " )  x . . . ,  where co(o ") denotes the vacuum state for the free field of 
mass m. These theories have (for a suitable sequence of masses m,) a maximal 
temperature Tmax [9]. Here we show that (under essentially the same conditions) 
they also have a nonzero splitting distance d ~ Tmax ~- 

4.3. Theorem. Given any do > 0  there is a generalized free field with splitting 
distance d(r) such that 

d o < d(r) < 2d o 
for  all r > O. 

Proof. According to Theorem 4.1 there is for each m > 0 a vector q~(') in the Hilbert 
space ~f(") of the free field with mass m which induces the product state --(") tUOr, (gr + a 

and satisfies the bound 

l1 - -  (f2 ("), ~(m))[ ~ k(r, d)mSe - ,,e (4.16) 

for some constant K(r, d). Let m, = 2~o log(n + 1). Then for d > 2do 

[l-(O(m),~(m))[~k(r,d) ~ ( log(n+l))8(n+l)  2eo<oo, (4.17) 
n = l  n = l  

thus @~(m,) is an element of the incomplete tensor product (@Jr ~(""), @g2("")). 
Since it induces a product state the inclusion ,~'(Or)C~(6~r+a) is split, hence 
d(r) < 2do for all r (cf. [5]). Below we shall establish the lower bound 

co m)-  "~(~) >_ C(r, d)ml/Ze - '~  (4.18) 0 "4~Or, O~+a - -  
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for mr > 1 and some constant  C(r, d) > 0. Thus for d < do, 

~ ~,,(m.) ~(,~.) 2> ~ C(r,d)Z l o g ( n + ! ) ( n + . l ) - a o = o e ,  (4.19) ~**0 - - tP '~ ) r , (Pr+a = 
n : l  n : l  

mnr> I 

hence from [5] the inclusion ~-((gr)C ~((9,  + a) is not  split for any r, i.e. d(r)> d o. 
It remains to prove the bound  (4.18). Let f ,  g be real test functions with 

s u p p f c ( g r  and suppgCC'r+a. The Weyl operator  e *6{y+°) is a unitary in 
~((9~) v ~((9~+d)' hence 

I] c°(o ~ ) -  "̀~")~'o.,~.+~,~'l > I(CO(om) __ q~o.,. +)  (e¢O(f + g))l 

= e -  ~(IlIll~ + II~ll~)[e - ( I ' ° ) -  I t (4.20) 

with (f, g)=(q~(f)f2, ~(g)f2) and Ilfl/2 = ( f , f ) .  Note  that  (f, g) is real by locality. 
Replacing f and g in (4.20) by 2 f  and 2g, respectively, with !1 f ]l = II gll = 1 and 2 > 0 
and maximizing with respect to e-  x: we get 

,) 
~.,(m) _ .~(,,) > b ( l  + b)  + ~'o v'¢~.~+~ = ~ ¼b (4.21) 

with b = [(J~ g)l, where the second inequality holds since 0_< b < 1. 
A bound  which though not  optimal is sufficient for our  purpose can be 

obtained by choosing f ,  g as appropriate translates of the same function. Let Z be 
the characteristic function of B~ = { x ~ IN 31 Ix[ < e}, 0 < e < r and h(x) = Z(x)5(x°). 
Then choose a, b ~ 1113 such that  lal + e < r, Ibl - e > r + d and l a -  bl < d + 3e. Then 
inserting f =  h, II h II - 1, g = hull h II - t into (4.21) gives 

][ CO(o,. ) _ ..(.,) ,, > (h~, hb) (4.22) 
v'¢~,~,.+all = 4tlh112 • 

One has 

(ha, hb)= ~ d3xd3yA+(O,b-a+y-x,  me)>(~Ire3) 2 inf A+(O,e,m z) 
txt__<~ ]e l<d+5e  
lyl _<~ (4.23) 

with 

and 

d 3 
A+(x, m2)=(2=)-3S_, 2 p s:ei ~/~+~-~x°-~p "x 

2Vp +m 

d3p 1 4 3 
Hhl]2= $ 2]/p2/~--m~ 12(p)12 < ~mm 3 roe . 

Using the lower bound  (Lemma D.1) 

m 2 
A +(0, e, m 2) > (2n)- 3/2(rnlel)- 3/2 T e- ' lc l  ' 

we find (4.18) by setting e=  1_ which is admissible if rm> 1. 
m 

(4.24) 

(4.25) 

q.e.d. 
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Appendix 

A. Monotone Continuity of the Polar Decomposition 

A.1. Lemma. Let A be a closed densely defined linear (or antilinear) operator on a 
Hilbert space ~ with domain D(A). Let D, C D(A) be an increasing sequence of dense 

oo 

vector spaces such that D = U D, is a core.for A. Denote by A, the closure of A f D, 
n = l  

and put 
A = VH, A, = v ,n ,  (A.1) 

for the polar decomposition. Then 

V.--+ V strongly (A.2) 

and 
H , ~ H  in the strong resolvent sense. (A.3) 

Proof. We follow [21] (see also [22]). Let ovf A be the Hilbert space D(A) with the 
graph norm 

I[XH~= I[xll2 q - ttAxl[ 2 , xED(A). (A.4) 

Let F denote the identification map from ida onto D(A) as a subset of ~ .  Clearly 
]IF]I ~1.  For x, yeD(H 2) we have 

(F- Xx, F-  ly)z = (x, y) + (Ax, Ay) = ((1 + A*A)x, y) 

= ((1 + n2)x, y) = ((1 + H 2) X/2x, (1 + H 2) 1/2y), (A.5) 

and since D(H 2) is a core for/4, i.e. F -  1D(H2) is dense in JFA, W =  F -  1(1 + H z)- 1/2 
is a unitary operator from X/g onto ~/FA; analogously W. =F-1 (1  +H,2) - 1/2 is an 
isometry from ~ onto the closure of F -  1D, in ~a .  Since D is a core for A, the 
projections W,W* converge strongly to i in -gga- By the formulas (A.5) we also have 
FF*= (1 + H 2)- 1, F W, I/V,*F* = (1 + H2) - 1 hence H,  converges to H in the strong 
resolvent sense. 

It follows that for y e D((FF*)-1)=D(H2), and x e 

(r-ly,(W,-W)x)=((rr,)-,y,[(l+H2.)-l/2-(l+n2)-l/2]x)-~o. (A.6) 

As F-  1D(H2) is dense in ~ a ,  this proves that the isometries W, converge weakly 
(hence strongly) to the isometry W. Furthermore, IIA.FII <1 and A.F--,AF 
strongly, hence 

A.FW.-+AFW strongly. (A.7) 

+H,) , AFW= VH(1 +H2)  - 1/2, thus But A.FW, = V~Hn(1 2 - 1/2 

(V , -  V)H(I + n 2)- 1/2 ~ - -  AW W.- ArW + V,(HO + H 2)- 1/2 _ H,(I + H 2)- 1/2) 

- ,0  strongly, (A,8) 

where we used (A.7), the strong resotvent convergence H , ~ H  and the uniform 
boundedness of Vn. We conclude that V,~ V strongly on (kerH) ± = (ker V) ± hence 
everywhere, since ker V, C ker V. q.e.d. 
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13. An Inequality of the Phragmen-Lindel6f Type 

In this appendix we prove Lemma 3.1. 
First we derive a class of estimates which are related to Jensen's inequality by 

suitable conformal mappings. 

B.1. Proposition. Let f be an analytic bounded function in the cut plane lea = {z ~ IE, 
]Rez] < d or Imz ~e 0}, and assume that f fulfills for Imz 4= 0, the inequality 

ff(z)[ _-<N(flmzT), (B.1) 

where N is a positive continuous function on •+. Then one has the followin G 
estimate 

[f(O)l<=exp{2~o~odh-~logN(h(s))}, (B.2) 

where h is an arbitrary positive continuous function on IR+ with 
2o~ 
-- ~ dsh(s) < d. (B.3) 
7~ 0 

Proof. Let f ~ 0  (otherwise the statement above is trivially satisfied). Let g be 
analytic in the unit disc {z e ~; 1 Izl < 1} with g(0)= 0 and g(z)~ Ca. Then f o g  is 
analytic in the unit disc, and according to Jensen's inequality one has for 0 < r < 1, 

,f(O)l=,f o g(O)l <exp { l i~dO log,f  o g(rei°),}. (B.4) 

To perform the limit r ~ l  in (B.4) we consider the sequence of nonnegative 
functions 

- l o g  f og  (\-~ln e,O~ / l+C (B.5) 

with c = log sup tf(z)t. Fatou's temma yields 
z~C.a 

2re 2~ 

lim inf I dOq,(O) > j' dO lim inf ¢p,(0), (B.6) 
n O 0 n 

hence 

2,~ n io up log f o g (B.7) limsup ! d01og f og  ~-~-fe < ! d01ims \ n+  l /1" 

According to the assumptions one has the estimate 

limsuplog f o g (  n _eiO ~ < l imsuplogN( Img(---n---n e i°) )  (B.8) 
\ n + l  Jl = \ n + l  /I; 

[we set N(0)= Go]. If Img(re i°) converges almost everywhere for r tending to 1 to 
hi(O) 4 = O, the limit on the right-hand side of (B.8) is equal to 

IogN(th~(O)l) (B.9) 

almost everywhere. Thus we find under these conditions the estimate 

l f(0)[ < exp I dO logN(thl(O)l ) . (B.10) 
0 
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Now we want to use the function h of the theorem for the construction of an 
analytic function g with the desired properties. Let h e LI(~+) be a positive and 

continuous function with -2 [I h It i < d. We set 

hi(O) = ah(-  log tan 0/2), 0 < 0 < 3, (B.11) 

where a > 0 will be fixed later on, and extend ha to a periodic function of 0 with 
period 27z by 

(i) hi(0)= - h i ( - 0 ) ,  

(ii) ha(re- 0) = h~(0), (B.12) 

(iii) ha(0)=0. 

We then define g by the formula (Izl < 1) 

dOh ei° + z i 2~ ~(0) e~T-- z (B.13) g(z) = ~ o -- " 

g is the unique analytic function in the unit disc with g(O)= 0 and lim Img(re i°) 
r-~l 

= h~(O) for 0 + O, r~. Moreover, g(z) e Ca for a suitable choice ofa. In fact, for Imz + 0 
one has 

1 2,~ (eiO+z e-iO+e'~ 
Img(z)= ~ ! dOh,(O)~e~77_z + ~ z J  

1 = 
= 27 ! dOh~(O)(l - I z l  2) 

x {[1 + I[zl 2 - 2lz[ cos (a rgz-  0)] - 1 _ [1 + [zl 2 - 2lzl cos(argz + 0)3 - 1} 

(B.14) 

from the antisymmetry of h 1, thus from the positivity of h I in the interval (0, ~) 

~Tt < argz ( 2n, 
Img(z)><0 for [ 0 < a r g z ( x .  (B.1 5) 

If on the other hand Imz=0 ,  one finds from (B.12), 

IReg(z)l = ! dOhl(O)~ ei°+z 
e-iO q_~'~ 

[ e ' °  - z e - '° - ~. J l 

2 ~/2 . ~f Izl + Izl t 
= ~ ! dOhl(O)slnt~l-]_l_z2 ~2zcosO l +z2_}_2zcos 0-., . (B.16) 

The expression in the curly brackets is always smaller than (sin0) -1 for z~N,  
dO 

[zl < 1. Thus by the substitution 0=2arc tane  -~, ds= s~nO one obtains 

IReg(z)l < 2a ~ dsh(s)<ad (B.17) 
g o 

and for a = 1, g has all properties required before. 
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Finally we make the substitution 0 = 2 arctan e-* also in (B.10) and arrive at the 
theorem, q.e.d. 

To apply Proposition B.1 one has to find appropriate functions h. If for 
example N(fl) = e-"a,  m > 0, the infimum of the right-hand side of (B.2) is obtained 
by choosing a a-sequence of positive functions k,, j k, = 1, and setting h, = ~dk,. 
Then 

lim -2 ~ c~shs (_m~dk,(s)) = - rod ,  
n- -+~  ~ 0 

thus lf(0)l_-< e -ma, which is the bound obtained in [26] by a direct application of 
Jensen's inequality. 

The main interest on Proposition B.1 is its applicability to unbounded 
functions N. This will be treated in the following 

B.2. Corollary (Lemma 3.1). Let f and N be as in Proposition B.1 and assume that N 
is unbounded, twice differentiable, monotonically decreasing and strictly logarithmi- 
cally convex. Then a function h with the desired properties for which the right-hand 
side of  (B.2) is finite exists if  and only if" log I(log N)'I is locally integrable. In this case 
the best bound for If(0)l is obtained by choosing 

h(s) = ((log N)')- 1( _ 2 cosh s), (B. 18) 

where 2 > 0 is determined by the condition 

2o0 
- [. dsh(s)=d. (B.19) 
7C 0 

A more explicit (but not optimal) bound is 

I f(0)l < N(flo)e p°ltl°~m'to°)l , (B.20) 

where flo > 0 satisfies the condition 

2 8o 
- 5 dfi[log2--fl(togN)"(fi)/(logN)'(fi)] <=d. (B.21) 

0 

Proof. A minimum of the functional 

r (h )=  2 ~ ~oshs_(logN)(h(s)) (B.22) 
7~ 0 

with the constraint (B.19) must satisfy the equation 

(logN)'(h(s)) 
+ 2 = 0 ,  (B.23) 

hence coshs 

h(s) = ((logN)')- 1( _ 2 coshs) = ha(s), (B.24) 

where the Lagrange multiplier 2 > 0 has to be determined by the constraint. 
Now let 2 > 0  be arbitrary and assume that there is a positive continuous 

function k with j dsk(s) < oe and F(k) < oo. We consider the convex combinations 

k,(s) = #k(s) + (1 - I~)hz(s), 0 < # < 1. (B.25) 
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We have for ha(s)# k(s), 

d [(logN)(ku(s))+2ku(s)] 

= [(log N)'(ha(s) + kt(k- ha)(s)) - (log N)'(ha(s))] (k - ha)(s)(cosh s)-1 :> 0 

(B.26) 

due to the strict logarithmic convexity of N, hence 

F(h~o) + )~ dsh~.(s) < f(k) + 2 f dsk(s) (B.27) 
o o 

if h a + k. Thus provided some admissible function k exists for which F is finite, ~ hA 
and F(ha) are finite for all 2>0. Moreover, 2~Ihz is continuous and strictly 
monotonically decreasing, and ~ h~--,0 for 2 ~  oo and ~ h ~  oe for 2--*0, hence there 

is a unique 2-2(d)  with ~-~ h~ = d. Inequality (B.27) then implies that ha(a) is the 

unique solution of the minimum problem. 
We now want to investigate under which conditions the functional F is finite 

for some admissible k. According to the preceding discussion this amounts to 
check whether hz is integrable and F(hz) is finite for some (hence all) 2 > 0. 

Actually F(hz) is always finite. This may be seen as follows. We substitute 

( 1 ) ,  ds _d~and 
s = cosh- 1 ~ thus coshs s = cosh- 1 ~ thus coshs 

2~/2 
F(hz)= ! da(logN)(fi(a)), (B.28) 

where fl(a)=((logN)')-t ( -  co@~ ) • 
(~o=~(o)) 

F(h~) = 

Then ~0~(]~)~cos-11 (logN)(~)) t and 

po da 
! dfl(logN)(fi)~-fi. (B.29) 

By partial integration of the right-hand side of (B.29) we obtain 

F(hz)= lim 2 ~ dfl(logN)'(fl)a(fl)J. ~, orc [(logN)(flO~(fl,)-- (logN)(flo)~(flo) + poa~ 

(8.30) 

Using e(flo)= 0, (logN)'(flo)< 0 for all fl < 0 and the inequality 

~(1 - x)_-< cos- 1 x N ~, (B.M) 

which holds for 0_< x_< 1, we find the desired bound 

F(hz) ~ (logN)(flo)- flo(log N)'(flo) (B.32) 

with fl0 =((logN)')-1(-2). Equation (B.20) now follows by inserting (B.32) into 
(B.20) and applying Proposition B.1. 
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Hence 

In contrast to F(hz), 5h a is not always finite. By the substitution fl=fl(s) 
= ((logN)')- 1( _ 2 coshs), we find (flo = fl(0)), 

i d s h z ( s ) = -  d f i f i ~  =-floS(flo)+ lira ills(ill)+ dfls(fl) (B.33) 
pl~O 

where s(fi)= cosh-l(_(logN),(fi)/2) and s(flo)= 0. Using the inequalities 

logx __< cosh - 1 x __< log2x, (B.34) 

po 
which hold for x > 1, we conclude that ~ dfls(fl) < co if and only if log [(logN)'(fi)[ is 

0 
locally integrable. Since s is monotonically decreasing, we have in this case 

O<fi,s(fi~)<= 5 dfls(fl)~O, fl, +O. (B.35) 
0 

flO 09 flO 
dfl log(-(logN)'(fl)/2) < ~ dsh~(s) < ~ dfi l o g ( -  2(log N)'(fl)/2), 

0 0 0 

(B.36) 

thus ha is integrable if and only if log [(logN)'] is locally integrable. Equation (B.21) 
follows now from the right inequality in (B.36) by partial integration and by 
2 = -  (logN)'(flo). q.e.d. 

C. Inequalities in g-Spaces 

C.1. Lemma. Let k~7Z+ and m>max(2k,2).  Then 

1 - 2 [ / 2  1/4 inf sup Icok~(co)l _--< m k + ~e ~ -  ~ , 
o__>m 

where the infimum is taken over all g 6 @ ( -  1, 1) with ~g= 1. 

Proof. We have for all n ~ N, n__> k 

sup [O~kg(~O)l<mk-nsuplofl~,(o~)l<mk-n~Sdtlg(n)(t)l. (C.1) 
V2rc 

In Lemma C.2 below we show 

inf I dt[g(n)(t)[ = ½2"n!. (C.2) 
g 

Inserting this formula with n = [ m ] we find for m > max(2k, 2) 2- ' [ ] denoting the integer part of a real number, 

k I 1 n / m \ - "  
inf sup . ( c . 3 )  

Using Stirling's formula 

n! < n" + l12e- n l / ~ e l l 4 n ,  (C.4) 
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and the estimate 

I +  e"< 1+  

m 
for e = ~- --n < 1, we obtain 

k~ k + ~ - 5  . q.e.d. (C.5) inf sup ]co g(~o)l<m e 81/4 
0 ~>=m 

C.2. Lemma. inf Ilg(")ljl =½2"n!, n e N .  
ge~(-- i ,  i )  

.fg=l 

Proof. First we show that for all g ~ ( - l ,  1) and h e N ,  

IIg(")l[ 1 > 2"-in! fg .  (C.6) 

By multiple partial integration 

g(x)dx = ~ f dxx"g(")(x), (C.7) 

and for O<k <n, keZ ,  

dxxkg(")(x) = 0. (C.8) 
Thus 

1 inf max ](px)[ ~ Ig (")] (C.9) 

where P,  is the set of normalized polynomials of degree n. The normalized 
polynomial of degree n with the smallest maximum modulus in the interval 
[ -  1,1] is 21 -"T,, where T,(x) = cos(n arcosx) is the n-th Tschebyscheffpolynomial 
[23]. Thus (C.6) follows from maxlT,[ = 1. 

We now want to show that the bound (C.6) is optimal. Equation (C.9) becomes 
an equality if g(") has support  only at the extrema of T,, i.e. if it is of the form 

g(")(x) = 2k6(X-- Xk), Xk = COS-- (C.10) 
k=O n 

with 2k e 112, k = 0 ....  , n. The coefficients 2k are fixed by the condition that g(") is the 
n-th derivative of a function with compact support with integral 1. From (C.8) and 
(C.9) this is equivalent to the system of linear equations 

2kT,,(Xk)= {0, m = 0 ,  n - - l ,  (C.11) 
k=O 2n- trt!, m=n 

which has the unique solution '~o = C, 2k=(--1)k2c, k =  1, ..., n - 1 ,  2, = ( -1)"C,  
C = 2"- in !/(2n). 

The function g so found does not belong to ~ ( -  1, l), but can be approximated 
by functions in @ ( -  1,1). Let 0 < e < 1 and (p e ~(  - e, e) with ~ q~ = i and ~o > 0. Set 

g~(x)= ~ g  ~ . The convolution f~ = g , *  ~o belongs to ~ ( - 1 ,  1) and has 

integral 1. The n-th derivative is f~(")=g~")* q~= ~ ~ 2kq)(X -- (1-- e)ZXk), 
k=O 
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hence 
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inf Ilf~(")lla= ~ 12d=2"-ln! q.e.d. (C.I2) 
0 < e < l  k = 0  

D. A Lower Bound on A + (0, a; m) 

For the paper to be selfcontained, we add here a proof of the lower bound on the 2- 
point function of the free scalar massive field which has been used in Sect. 4. 

__ - 3  dak i k - a  
D.1. Lemma. Let A+(0,a;m)-(2rc) ~ 2 l ~ e  , a~0.  Then 

m 2 

A + (0, a; m) ~ (2re)- 3/2 2 -  (mla[)- 3/%- ml,I. (D.1) 

Proof. Let S(x) denote the euclidean 2-point function (Schwinger function), 

d 4 
S(x)=t2rc~ -4~ d~k e ikx k=(k0,k ), k2=ko~+k 2 (D.2) J a k 2 + m z  , 

We have A +(O,a; m)= S(O, a), and since S is rotation invariant, S(O, a)=S(lal, O), 
thus after integration over ko, we find 

d3k 
A +(0, a; m) = (2re)- a f - ~ 1 ~ 1  (D.3) ~ 2 ~  e 

(cf. e.g. [24]). Now by integration over the angles and by the substitution 

co= ~ ,  do)= Ikl d[kl, we obtain 
(D 

o0 

A +(0,a; m)=(2rc) -z ~ d o ) ~ e - ~ l ~ l - m 2 ( m t a l ) - l g l ( m l a ] ) ,  (9.4) 
rtl 

where K1 denotes the modified Bessel function of the third kind of order 1 [25]. We 

now set co=m I +  , dco=mxdx, ] / ~ - m Z = m x  I + ~ - ,  and using 

1 + -~- > 1, we find 

A +(0, a; m) > (2re)-2m2e-ml"l ~ dxx2e -ml"lx2/2 
0 

m z 
=(2rO-3/2~-(mlal)-3/2e -mt"l. q.e.d. (D.5) 

Acknowledgements.  We are grateful to Detlev Buchholz for many valuable discussions. S.D. and 
R.L would like to thank Ludwig Streit for the kind hospitality in ZIF, University of Bielefeld; 
C.D'A. and S.D. would like to thank Rudolf Haag and Detlev Buchholz for the kind hospitality in 
Hamburg University. 



Local Charges 

References 

347 

1. Doplicher, S.: Local aspects of supersetection rules. Commun. Math. Phys. 85, 73 (1982) 
2. Doplicher, S., Longo, R.: Local aspects of superselection rules. II. Commun. Math. Phys. 88, 

399 (1983) 
3. Buchholz, D., Doplicher, S., Longo, R.: On Noether's theorem in quantum field theory. Ann. 

Phys. 170, 1 (1986) 
4. Haag, R, Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 

(1964) 
5. Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. 

Math. 73, 493 (1984) 
6. Requardt, M.: Symmetry conservation and the integrals over local charge density in quantum 

fietd theory. Commun. Math. Phys. 50, 259 (1976) 
7. Buchholz, D., Wichmann, E.: Causal independence and the energy-level density of states in 

local quantum field theory. Commun. Math. Phys. 106, 321 (1986) 
8. Buchholz, D., D'Antoni, C., Fredenhagen, K.: The universal structure of local algebras (to be 

published) 
9. Buchholz, D., Junglas, P.: Local properties of equilibrium states and the particle spectrum in 

quantum field theory. Lett. Math. Phys. 11, 51 (1986) 
10. Buchholz, D.: On particles, infraparticles, and the problem of asymptotic completeness (to 

appear in the Proc. of the 1AMP Conf., Marseille 1986) 
11. Doplicher, S., Roberts, J.E.: Compact Lie groups associated with endomorphisms of C*- 

algebras. Bull. Am. Math. Soc. 11, 333 (1984); C*-algebras and duality for compact groups: 
Why there is a compact group of internal symmetries in particle physics (to appear in the 
Proc. of the IAMP Conf., Marseille 1986) 

12. Doplicher, S., Haag, R., Roberts, J.E.: Fields, observables and gauge transformations. II. 
Commun. Math. Phys. 15, 173 (1969) 

13. Araki, H.: Some properties of modular conjugation operator of avon Neumann algebra and a 
non-commutative Radon-Nikodym theorem with a chain rule. Pac. J. Math. 50, 309-354 
(1974) 

14. Powers, R.: Representations of uniformly hyperfinite algebras and their associated yon 
Neumann rings. Ann. Math. 86, 138 (1967) 

15. Haag, R., Kadison, R.V., Kastler, D.: Nets of C*-algebras and classification of states. 
Commun. Math. Phys. 16, 81 (1970) 

16. Hugenholtz, N.: C*-algebras and statistical mechanics. Proc. Symp. Pure Math. 38, Part 2, 
407 (1982) 

1% D'Antoni, C., Longo, R.: Interpolation by type I factors and the flip automorphism. J. Funct. 
Anal. 15, 361 (1983) 

18. Wightman, A.S.: La th6orie quantique locale et la th6orie quantique des champs. Ann. Inst. H. 
Poincar6, Ser. A 1, 403 (1964) 

19. Haag, R., Swieca, J.A.: When does a quantum field theory describe particles? Commun. Math. 
Phys. 1, 308 (1965) 

20. Bures, D.J.C.: Trans. Am. Math. Soc. 135, 199 (1969) 
21. Longo, R.: A simple proof of the existence of modular automorphisms in approximately finite 

dimensional yon Neumann algebras. Pac. J. Math. 75, 199 (1978) 
22. Fredenhagen, K.: On the modular structure of local algebras of observables. Commun. Math. 

Phys. 97, 79 (1985) 
23. Meinardus, G.: Approximation yon Funktionen und ihre numerische Behandlung. In: Tracts 

in natural philosophy, Vol. 4. Berlin, G6ttingen, Heidelberg, New York: Sprin~er 1964 
24. Streater, R.F., Wightman, A.S.: PCT, spin and statistics and all that. New York: Benjamin 

1964 
25. Erdelyi, A., Magnus, W, Oberhettinger, F.: Higher transcendental functions. New York, 

Toronto, London: McGraw-Hill 1953 



348 C. D'Antoni, S. Doplicher, K. Fredenhagen, and R. Longo 

26. Fredenhagen, K.: A remark on the cluster theorem. Commun. Math. Phys. 97, 461 (1985) 
27. Werner, R.: Local preparability of states and the split property in quantum field theory. 

Osnabriick 1986 (preprint) 
28. Araki, H., Yamagami, S.: An inequality for Hilbert-Schmidt norm. Commun. Math. Phys. 81, 

89 (1981) 

Communicated by R. Haag 

Received December 12, 1986 


