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We present several novel relations for Selberg's zeta function for compact Riemann surfaces. The results find direct application 
in calculating determinants entering multiloop amplitudes in string theory, and in determining the energy spectrum of chaotic 
motion on a surface of constant negative curvature. 

In recent years the geometry of  the Laplace operator on compact  Riemann surfaces with two or more handles 
[ 1-3 ] and the corresponding Selberg zeta function [4 ] play an important  role in a variety o f  physical applica- 
tions. We mention only two examples: 

(i) The first example is the string theory path integral [ 5,6] for the closed bosonic Polyakov string in the 
critical dimension d =  26. It turns out that the loop expansion for on-shell amplitudes is an expansion in the 
number  of  handles of  the two-dimensional surface, the world-sheet o f  the string [ 7 ]. Since the Polyakov action 
is quadratic in the space-t ime coordinates, the path integration can be carried out and one is left with integrals 
over Teichmfiller (or moduli)  space. The integrals o f  the multiloop amplitudes contain the determinant of  the 
laplacian acting on functions and vectors on compact Riemann surfaces. Recently it has been realized [ 8 ] that 
the relevant determinants can be expressed in terms of  the Selberg zeta function. In the mathematical literature 
similar results have been discussed [ 9,10 ]. 

(ii) In his work on quantum chaos, Gutzwiller [ 11 ] has studied the spectrum of  enery levels in a beautiful 
chaotic hamiltonian system, the free motion (quantum billiard) on a surface of  constant negative curvature. 
Applying his trace formula [ 12 ] (derived from a semiclassical approximation to the Feynman path integral) 
he was able to express the trace o f  the Green's function by a sum over the classical periodic orbits on the given 
Riemann surface with genus g>~ 2. This "closed orbit sum" is nothing but a special case of  Selberg's trace for- 
mula [4] as applied to compact  Riemann surfaces, and the final result can again be formulated in terms of  the 
Selberg zeta function. 

It is obvious from the above examples that a detailed knowledge of  the Selberg zeta function is most  desirable. 
In this note we shall present several new relations for the function in question. Detailed proofs and applications 
will be given elsewhere. 

Let M be a compact  Riemann surface of  genus g~> 2. M can be identified with H / F ,  the action o f  a fuchsian 
group F on the upper half-plane H =  { z = x + i y :  y >  0} endowed with the Poincar6 metric d s 2 = y - 2 ( d x 2 + d y 2 ) .  
This is the classical model for hyperbolic geometry of  constant negative curvature, R = -  1. F is a discrete 
subgroup of  PSL (2, R) = SL (2, • )/( + 1 }, the group of  M6bius transformations. From the Gauss-Bonnet  theo- 
rem we infer R A  = 2nZ = 4n(1 - g ) ,  where A denotes the area of  M and Z its Euler characteristic, i.e. A = 4 n ( g -  1 ). 
In the Poincar6 metric the laplacian on M (Laplace-Beltrami operator) is given by A = y2 (d2/0x2 + 02/0y2), 
and we are interested in the eigenvalue problem - A u = 2 u .  The spectrum of  A on M is discrete and real :1, 
0=2o<21 ~<2e~ <... with # (eigenvalues 2n with 2n~<2) ~ (A/4n)2 asymptotically (Weyl's law) [ 13-15].  

Since the elements 7 = (ca 5 ) e F  are hyperbolic, i.e. I Tr 71 = l a +  d l >  2, they are conjugate with F to a Mrb-  

~.1 For quantum billiards on Riemann surfaces of constant negative curvature R, the energy spectrum is given by E.= (h2/2mR2)2n. 
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ius transformation of  the form z- ,N(y)z ,  1 < N ( 9 ' ) < ~ ,  where N(9') is called the norm of  y. (7,, 9'2 6 F  a r e  

conjugate within F if there exists a 73~F such that 9'1= 739'2731 .) The class of  all elements in F which are 
conjugate to a given 9' is called the conjugacy class of  9' in F and is denoted by {9'}. The number  N(9') is, of  
course, the same within a conjugacy class and measure the "magnification".  N(7) has, however, another strik- 
ing geometrical interpretation, since there exists a unique relationship between the conjugacy classes in F and 
the homotopy classes o f  closed paths on the surface M. In each class one defines a length l(9') by the length of  
the shortest closed path measured by means of  the Poincar6 distance. One then obtains N(7) = exp [1(9') ], l(7) > 0. 
Thus the conjugacy classes in F can be uniquely parametrized by their length spectrum {/(7)}. Given any 9' e F 
there is a unique 9'0 such that 9' = 9'~, ne~;  9'0 is called primitive element of  F ,  since it cannot he expressed as a 
power of  any other element of  F .  The corresponding closed orbit with length/(9'o) is called a prime geodesic 
on M. Obviously 1(7) = 1(9'~) = nl(70), since in this case the prime geodesic is traversed n times. For the length 
spectrum of  M one has Huber 's  law [ 16] v(x)  ~ eX/x for x--,oo, where v(x)  is the number  of  inconjugate pri- 
mitive 7's with l(9') ~x .  

Our starting is the Selberg trace formula [4] which can be considered as a generalization and non-commuta-  
tive analogue of  the classical Poisson summation formula 

A i l(9') h ( r . ) = ~ - ~  drrtanh~zrh(r)+ ~, ~ g(n l (y ) ) .  (1) 
n=o {~}p n=l sinh ½nl(7) 

Here all series and the integral converge absolutely under the following conditions on the function h (r):  (i) 
h ( - r) = h (r),  (ii) h (r) is holomorphic in a strip I Im r[ ~< 1 + ~, e > 0, (iii) I h (r) ] ~< a ( 1 + [ r l 2) - ~ -. ,  a > 0. The 
function g (u )  is the Fourier transform of  h (r) 

1 i g(u)=~-n~ d r e x p ( - i u r ) h ( r )  . (2) 

On the left-hand side o f  (1) the sum runs over the eigenvalues o f  A parametrized in the form 2n = ~ + r~, i.e. 
over the pairs (r~, - r~), r~eC; r =  0 has to be counted twice if i happens to be an eigenvalue. On the right-hand 
side the sum is taken over all primitive conjugacy classes in F ,  denoted by {9'}p. The trace formula (1) estab- 
lishes a relation between the eigenvalues o f  z~ on M and the lengths of  the closed geodesics on M, i.e. a very 
striking duality between the quantum mechanical energy spectrum and the lengths o f  the classical closed peri- 
odic orbits. 

In order to calculate the trace o f  the resolvent of2~, T r ( - z X + z )  -J,  one is lead to substitute h(r) = (r2+z) -~ 
in the trace formula. This function violates, however, the growth condition for I r l --, ~ .  The reason is that the 
resolvent operator is not o f  trace class, since the eigenvalues behave as 2~ ~ (4g /A)n  for n--, ~ as follows from 
Weyl's law. Thus the resolvent has to be regularized properly. A very convenient regularization is given by the 
following choice (Re s, Re a > 1 ): 

1 1 
h(r )=rZ+(s_½)  2 r 2 + ( a _ ½ ) 2  , (3) 

which fulfills all the conditions in the trace formula. Here a plays the role of  a regulator. With (3) we find from 
(1) the "sum rule" (see also refs. [ 14,15]) 

.=o + s ( s -  1) 2 . + o ( o - - 1 )  

= - 2 ( g -  l ) [gt(s)  - gt(a)] + - -  
l Z' (s)  1 Z ' (a)  

2s -1  Z(s)  2 o - 1  Z(a)  ' 
(4) 
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where ~t (s) - F '  (s ) /F (s) is the d igamma function and Z (s) denotes the Selberg zeta function on M defined by 

z ( s ) =  H f i  { 1 - e x p [ - ( s + n ) l ( y ) ] }  . (5) 
W}n n=0 

Huber ' s  law assures the convergence of  (5)  if  Re s >  1. Notice that  on the left-hand side of  (4)  the term in 
brackets cannot  be broken up, otherwise convergence is lost. F rom (5)  follows Z(s ) ,  Z '  ( s ) >  0 for s real and 
> 1, since the "neck"  of  M, the length of  the shortest path, is larger than zero, r Tr ~ I = 2 c o s h  ½l(?)  > 2 for all 
y e F .  

To get rid of  the a terms in (4) ,  we make use of  the following observation. Isolating the zero mode  on the 
left-hand side of  (4) ,  we can take the limit a ~  1 +,  since the following limit exists: 

l i m + (  1 _  Z'(cr) l ) 1 Z " ( 1 )  l e B .  (6) 
2 1 Z(tr)  t r ( t r - 1 )  - 2  Z ' (1 )  

We thus obtain our fundamental sum rule for the logarithmic derivative of  Z(  s) ,z 

1 Z ' ( S ) _ B +  + l ( g - 1 ) [ ~ ( s ) - ~ , ( 1 ) ] + 2  " 1 1 (7) 
2 s - 1  Z(s)  n=, 2 , + s ( s - 1 )  2~ " 

[ ~u(1 ) = - ),, ?) = Euler's constant ] ,3. It is obvious that the sum rule ( 7 ) extends meromorphical ly  to all se C. In 
fact, the Selberg zeta function is an entire function of  s o f  order 2 whose " t r ivial"  zeros can easily be read of  
from (7):  s =  1 is a simple zero, s = 0  is a zero of  multiplicity 2 g -  1, and s =  - k ,  k e n  are zeros with multiplicity 
2 ( g -  1 ) ( 2 k +  1 ). Apart  f rom a finite number  of  zeros on the real line between 0 and 1 (corresponding to eigen- 
values 2, ~ 1 ), the "non-tr ivial"  zeros are located at s = ½ + irn, r,s R +, i.e. they lie on the critical line Re s = ½. 

From (7)  we deduce the following Laurent expansion near s= 1: 

1 Z ' ( s )  1 ~. 
2 s -  1 Z(s)  -s-----( ~- ( B -  1 ) +,=l ~ a , ( s -  1 ) " ,  

[ (;) ] a n = ( - 1 )  n+' l + 2 ( g - 1 ) ~ ( n + l ) +  2 ( - 1 )  ~+1 n 1 ( a ( n + l - l )  , n ~ l .  (8) 
/=0 

Here ( ( s )  is the Riemann zeta function, and Ca(s) denotes the zeta function of  Minakshisundaram-Pleijel 
(MP)  [ 17 ] for the laplacian on M 

1 
(~(s)  ~ T r ' ( - A ) - s =  n ~ i ~ .  (9)  

(Notice that  the zero mode has been omitted. For a definition of  ( -  A ) - "  see ref. [ 18 ]). The Dirichlet series 
(9)  converges for Re s >  1 due to Weyl's law. By expanding Z(s)  on the left-hand side of  (8) in a Taylor  series 
around s =  1, we obtain explicit relations for the derivatives of  Z ( s )  at s =  1 

n n - l / n \  
n-~--~pn+ , = ( B +  l ) p , +  2 [ k~k!(ak + Zak-,)Pn-k , 

k = l \  / 

p n - Z ( m ( l ) / Z ' ( l )  . 

The first two non-trivial relations are 

P3 = Z ' ( 1  ) /Z ' (1  ) = 3 B ( B +  4) + n 2 ( g _  1 ) - 3ffA(2), 

:2 A similar but simpler relation was obtained in ref. [ 13 ], which is, however, incorrect. See also ref. [ 15 ]. 
:3 From (7) one derives immediately the well-known functional relation for Z(s) [4]. 

(10) 
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p4=Z(4) (1 ) /Z ' (1 )=4B(B2+9B+6)+4n2(g-1 ) [B+]- (4 /nz )~(3 ) ] -12(B+3)~(2)+8~a(3)  . (11) 

To obtain a meromorphic  continuation of  the zeta function (9) it is convenient  to introduce the trace of a 
generalized resolvent of A on M defined by 

o o  

k a ( s ; a ) - - - T r ( - A + c r ( a - 1 ) )  ~= ~ 1 ~=o [2~ + t r ( a _  1)]~ , Res ,  Re tx> 1 . (12) 

(Notice that  in this case the zero mode  has been included. ) The zeta function (10) can then be obtained by the 
following limit: 

1 1 ) 1 ,  ) (13) Ca(s) = ol~m+ ( k a ( s ;  a ) -  [ a ( a -  

The trace (12 ) is given by a Mellin t ransform of  the trace of the heat kernel (partition function) 
oo 

if kA(s; ~) =F- - -~  dt t S - ' e x p [  - ~ ( ~ -  1 )t]OA(t), O~(t) - T r  exp(At)  = ,.. e x p ( - 2 ~ t )  . (14a,b) 
n = 0  

0 

The trace of  the heat kernel is obtained from the Selberg trace formula ( 1 ) by substituting h (r) = exp [ - (r 2 + 1 ) t], 
which for t>  0 fulfills the required conditions. One then finds [ 13 ] 

O~(t) =0Xl)(t)  -4- 0~2)(t) , (15a) 

A e x p ( - t / 4 ) f  ,, b e x p ( - b Z / 4 t )  
O~)(t) - - (~37~  a°°  sinh ½b ' (15b) 

0 

0~2) (t) = e x p ( - t / 4 )  ~ ~ l ( y ) e x p { -  [nl(y)]2/4t} (15c) 
2 (4~ t )  1/2 ~y~o ~=~ sinh ½nl(y) 

Since 0~, 2) vanishes exponential ly for t--,0 + ,  the small - t  behaviour  of  the heat kernel is completely deter- 
mined by 0~ 1) , and is explicitly given by the asymptotic expansion 

1 N 

O~(t) = g - I  Z b , t"+O(tu)  
t n=o 

,S(.) ] 22.n ! 1 + 2  ( 2 2 * - l - l ) l B 2 k [  n ~  (16) 
1 k ~ 

w h e r e  Bzk are the Bernoulli numbers.  (b~ = - ~, b2 ~- 7!5 ). (Weyl 's  law follows immediate ly  f rom the leading term 
in (16). ) F rom (16) and the large - t behaviour  of  0a we can conclude that (14a) can be meromorphical ly  
continued to all seC with a simple pole at s =  1 if Re cr > 1. We get 

oo 
[r2 + (o r -  ½)2] l - s  I(s;  or) 

kzx(s; a) = s---~- n + - - -  (17a) cosh2 rrr F(s) ' 
0 

I(s;a) (20"--1)1/9 s - l(y) ~, [nl(y)]s-1/2Ks-'/2(½ nl(y)(2a-  1 )) (17b) 
x / ~  {r~, - = '  sinh½ nl(7) ' 

where K~(z) is the modif ied Bessel function. (For  Re s <  0, rr = 1, a similar result has been derived by Randol  
[ 19]). Inserting (17a),  (17b) in (13) we obtain for the MP zeta function 
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G(s )  = G') (s) + G ~) ( s ) ,  

oo 

- cosh 2 z~r - s -  1 
0 

C~=(g_l)(--1)~+l f [ l n ( ~ + l ) ]  n+l 
( n +  1 ) ~ 7 ~  dr cosh2 ~ r 

0 

,. fI(s; a) 1 ) 
' 

In (18b) FP denotes the finite part  

(18a) 

g - I  +_Fp~l) ( 1 ) +  ~ Cn(S_l)n , (18b) 
n = |  

~zx(0) = - l ( g -  1 ) .  (18c,d) 

FP~,~) (1) = 2 ( g -  1 )7 .  (18e) 

For seZ  + the above relations can be expressed in terms of  Riemann ' s  and Selberg's zeta function, respectively, 

~ ' )  (N) = 2 ( g -  1)N~ 2 ( N -  2 + .=0 n! n)!(N-l-n)~(N-n)'  N = 2 , 3  ..... (19a) 

I(N; a) = ( - 1 ) N-,  ~ Nln Z ( a ) ,  Ne  No,  (19b) 

( - - 1 )  N- '  
f f~2) (N)-  ( N - l ) !  o4,+lim ~ , U l n [ Z ( a ) / a ( a - 1 ) ] ,  N e N .  (19c) 

Here 5~ denotes the differential operator  (2cr - 1 ) - t d / d a .  Let us ment ion that ~ ( s )  can also be calculated for 
seT7-.) Eqs. (18e) and (19c) combined with (6) lead to the following explicit expression for the finite part  o f  
~ ( s )  at s =  1 

FP~a(1 ) = 2 ( g -  1 )y +B--- y~,  (20) 

where we have introduced the "generalized Euler constant" ya of  the laplacian on M. (See in this connection 
ref. [20] . )  

I f Z ( a )  in (19c) is expanded in a Taylor  series around a =  1 one obtains in combinat ion with (19a) explicit 
formulae for the MP zeta function at s =  2, 3, ..., which involve only the Riemann zeta function and the deriva- 
tives of  the Selberg zeta function at s = 1. (These are just the inverse relations of  (10). ) For  s = 2, 3 they read 

~a(2)  = In2 ( g -  1 ) + B ( B + 4 )  - IZ '"(1 ) / Z ' ( 1 ) ,  

~(3)=ln2[I+(6/nz)~(3)](g-1)+BZ(B+6B+15)-~(B+3)Z"(1)/Z'(1)+IZ(4)(1)/Z'(1). (21) 

The above relations can be used to derive bounds for the derivatives of  Z ( s )  and for the smallest non-vanishing 
eigenvalue 21. We give two examples. Since ~zx(s) > 0 for s >  1 we obtain f rom (21 ) 

Z"(1  ) < [ ~z2(g - 1 ) +3B(B+4)IZ'(1 ). (22)  

From the " sum rule method"  [ 21 ] recently introduced for the calculation of  small eigenvalues we get ~.4 

[ (~(2)1- , /2  <2 ,  < ( ~ ( 2 ) / ( ~ ( 3 ) ,  (23) 

:4 For simplicity we assume that 2~ is nondegenerate. 
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which can be optimized with respect to g. A detailed discussion of these bounds will be given elsewhere. 
Below we shall require the derivative of ~ (s) at s = 0. From (18b) one derives ++5 

d 
~ ~ )  (0) = 2 ( g -  1 )C ,  

oo 

t.-- - ~ j a r  ~ l l  - l n ( r  2 + ¼)] = ¼ - ½1n 2 r e - 2 ( ' (  - 1) = - 0 . 3 3 8 ,  (24a) 
0 

while (18c) and (19b) yield 

__~ ~2) (0) = [I(0; a) a ( a -  )] = - l n [ Z ( a ) / a ( a -  )] = Z'(1 ) .  lim + ln  1 lim 1 ~ln  (24b) 
~ r ~ l +  a ~ l +  

Thus we obtain 

~ ( 0 )  = 2 ( g -  1 ) C - I n  Z'(1 ) .  (25) 

At this point it is appropriate to introduce the functional determinant of A on M 

DA(z ) -de t ' ( -A+z) ,  z e C ,  (26) 

where the prime indicates that the zero mode has been omitted. In differential geometry [ 9 ] and quantum field 
theory [23] the following definition (zeta function regularization) has proven useful: 

D6(0) --exp[ - ¢; , (0)] .  (27) 

We thus obtain with (25) 

D6(0) = Z '  (1) exp[ - 2 ( g -  1 ) C ] .  (28) 

For z # 0 we define the determinant (16) by the following infinite product over the zeros at z = - 2 , :  

Da(z) =D~(0)  exp(yAz) f i  [(1 +z/2 , )  exp( - z / 2 , ) ]  . (29) 
n = l  

(The product converges as a consequence of Weyl's law). With (29) we get for the determinant our final result 

D6(z) =Z ' (1  ) e x p [ y a z - 2 ( g - I ) C ]  f i  [(1 + z/2,) e x p ( - z / 2 , ) ]  , (30) 
n = l  

which shows again the fundamental role played by the two quantities Z '  (1) and y6. For small z the determinant 
can be completely expressed in terms of the MP zeta function 

2 (--1) NdNzN [ z [ < 2 1  , DA(Z) =exp --.=0 

d 0 = ~ , ( 0 ) ,  d~=FPffa(1),  dN=~a(N)/N, N=2,3  ..... (31) 

From the above relations we can derive several bounds. It is easy to see that ~;,(0) must be negative, which 
yields Dzx(0) > 1 and the important lower bound 

Z ' (1)  > e x p [ 2 ( g -  1 )C] ~ [0.509] g-~ , (32) 

~5 ~,( _ 1 ) has  been ca lcula ted  f rom the a sympto t i c  series [ 22 ] - + (1 - v~  + ~ ) = - ~'~ ~ - 0.1655. Our  value  for C agrees wi th  a numer-  

ical eva lua t ion  of  the integral  (24a )  repor ted  in  ref. [ 10 ], where  K--- 2 C. 

452 



Volume 188, number 4 PHYSICS LETTERS B 23 April 1987 

while D~(0) > 0 yields the bounds 

~,6>0, B > - 2 ( g - 1 ) 7 ,  Z"(1)>-2[2(g-1); , -1]Z'(1) .  (33) 

Finally, we would like to establish a closed formula for the Selberg zeta function itself. I f  we multiply our sum 
rule ( 7 ) by ( 2 s -  1 ) and then integrate over s from tr > 1 to s > tr, we obtain 

Z(tr)l-----~s(s- 1) V(s) (34) Z(s) - G ( ~ -  v(~) ' 

where the function V(s) satisfies V(1 ) = 1. In the derivation of (34) all integrations are straightforward except 
the integral over the digamma function. The latter can be evaluated by means of Alexeiewsky's theorem [ 24,25 ] 

id t lnF  (t+ l )=lzln 2rc-½z(z+ l ) + z lnF(z+ l ) - ln  G(z+ l ) , (35) 
o 

where G denotes the Barnes G-function defined by 

G(z+ 1 ) = (2n) z/2 exp[ - ~ z - ~  ~ (1 +~,)z21 f i  [(1 +z/n) ~ exp( -z+zZ/2n)l 
n = l  

, , + . 2 . ~ ( F ( n )  ~z: ) = ( 2 n )  :/2 e x p [ - ~ z - ~ ( l  7)z l l l ~ F - ( ~ - n ) e x p [ z ~ ( n ) + -  g ' (n) ]  . (36) 

The function G(z+ 1 ) is an entire function with zeros at the points z = - n ,  neN, the zero at z =  - n  being of 
order n. It is a natural extension of the gamma function, and possesses many properties analogous to those of  
the latter [ 25 ]. We only give the following ones: 

G(z+l)=F(z)G(z), G ( 1 ) = I ,  

z 

G ( 1 - z )  f G'(z+l---)-lG(z+l) l n 2 n + ½ + z [ ~ / ( z ) - l ] ,  In G(1 +z--------- ~ -  dtntcotnt -z ln2r t .  (37) 
0 

In eq. (34) the regulator tr can now be removed by taking the llimit a - ,  1 + (see (24b)), and we arrive at our 
fundamental relation for the Selberg zeta function 

Z(s) = Z ' ( 1 )  s(s-  1) V(s) , (38a) 

V(s) = exp [7~s (s -  1 )] [ (2n) ' -Sexp [s(s - 1 )]G(s)G(s+ 1 )]A/Z. f i  {[ 1 +S(S-- 1 )/2.] exp[ --S(S-- 1 )/2n] }- 
n = l  

(38b) 

Relation (38a) gives a factorization of the entire function Z(s) in terms of canonical products formed with its 
zeros. Indeed, the last product in (38b) reproduces all the "non-trivial" zeros of  Z(s) ,  while the G-functions 
(together with the factor s(s-1 )) generate all the "trivial" zeros (see the discussion after (7)).  Eqs. (38a), 
(38b) constitute a duality relation between the length spectrum of the closed periodic geodesics on M and the 
spectrum of the laplacian on M. The relation depends only on the three fundamental "constants" A, ya and 
Z ' (1 ) .  

Comparison of (38b) with our expression for the determinant allow us to rewrite (38a), (38b) as 

Z(s) =s(s- 1)D~x(s(s- 1)){(2zr) ~-s exp[C+s(s- l)]G(s)G(s+ 1)} 2(g-~) . (39) 
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Substituting for the constant C our explicit result (24a), we arrive at an expression recently given by Voros 
[26]. The specific dependence of the determinant (30) on Z'(1 ) and 7z~ has, however, not been determined in 

ref. [26]. 
To summarize, we have presented several novel relations for the Selberg zeta function for compact Riemann 

surfaces. The results are useful not only for further mathematical investigations along the lines of refs. [ 14-19], 
but they are also given in a form to be used directly in applications of current physical interest [ 8,11 ]. 
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