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Abstract. The symmetry group of staggered lattice fer- 
talons is discussed as a discrete subgroup of the sym- 
metry group of the Dirac-Kfihler equation. For the 
representation theory of this group, G. Mackey's gen- 
eralization of E.P. Wigner's procedure for the con- 
struction of unitary representations of groups with 
normal subgroups is used. A complete classification 
of these irreducible representations by "momentum 
stars", "flavour orbits" and "reduced spins" is given. 

1. Introduction 

The most symmetric lattice approximation of Dirac 
fields is given by staggered fermions [1] together with 
their geometric interpretation by Dirac-Kfihler forms 
[2, 3]. In this description of Dirac fields their lattice 
degeneracy [4] is controlled by the Susskind flavour 
symmetry group [5]. Furthermore, in the massless 
case a one parameter continuous chiral symmetry 
group survives the lattice approximation, which is 
spontaneously broken in the strong coupling approxi- 
mation [7]. Finally, the symmetry group of staggered 
fermions (called the 'lattice fermion group' (LFG) in 
this paper) is in the Dirac-K~ihler description a geo- 
metric restriction of the corresponding continuum 
symmetry group [6]. 

The LFG is also a symmetry group of staggered 
fermions with gauge interaction, i.e. of Dirac-Kfihler 
fermions with Susskind coupling. It follows that it 
is a symmetry group of Green's functions calculated 
in lattice approximation of Euclidean QCD. There- 
fore it is suited for the classification of particle states, 
a fact which should be used more systematically in 
strong coupling calculations [7] and in numerical cal- 
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culations [8]. For all these reasons it is worthwhile 
to base the kinematics of lattice fermions on a system- 
atic representation theory of the LFG, a procedure 
which is very familiar from the treatment of the space- 
time symmetry of the Poincare group [12, 9]. 

The aim of this paper is the construction of all 
irreducible representations of the LFG [10]. How- 
ever, the LFG shows many of the complexities of 
the crystallographic groups. In a way we may consid- 
er the LFG as an extension of a special crystallo- 
graphic group of four dimensional space [11] by fla- 
your transformations. Since this extension leads to 
a non-symmorphous space group, we have to use a 
generalization of Wigner's well known procedure [12] 
for the construction of the irreducible representations 
of groups which are semidirect products with Abelian 
normal subgroups. Such a procedure is due to Mack- 
ey [13]. It is well suited for our purpose. 

This is the content of our paper. In Sect. 2 we 
give a detailed description of the LFG, its subgroups, 
and its relation to the symmetry group of the continu- 
ous Dirac-Kfihler equation. In the following Sect. 3 
we describe the complete construction of all the irre- 
ducible (unitary) representations of the LFG with the 
help of the methods by Wigner and Mackey. Finally 
in Sect. 4 we give a short outlook on applications. 
There is other work related to ours [14], however 
it is less systematic and less complete than our treat- 
ment. 

2 The Symmetry Group of Lattice Fermions 

2.i Basic Concepts 

It is well known that staggered fermions are the result 
of a systematic lattice approximation of the Dirac- 
Kfihler equation (DKE) [2] : 

(d-5+m) ~=0.  (1) 
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Here d denotes exterior differentiation, 6 the codiffer- 
ential operator, and q~ an inhomogeneous differential 
form 

di 1 

~b = n =~, u ~5. ~b,, ... u~(x) d x  "~ i", ... A d x  u~ 

==- Z c~(x, H)  d x  u. 
1t 

(2) 

q~ (x,/4) are the independent complex components of 
in a multi-index notation H = ( # t  . . . .  #h), #~</Z2 

< "." < #h, h = 1, . . . ,  d i, d i=  dimension of space-time. 
In Euclidean space R ~, ' d i '  even, we may decom- 

pose �9 into 2 d~/2 independent Dirac fields q~b(x), in 
such a way that solutions of the DKE get decomposed 
into solutions of the Dirac equation: 

(yuOu+m) q~b(x) =0, b=  1, . . .  2 di/2. (3) 

The main tool for proving the equivalence between 
(1) and (3) is the introduction of an associative Clifford 
product for differential forms [-15] which is defined 
by the relation d x U v d x ~ = d x U A d x ~ + 6  "~ for the 
'Cartesian'  basis elements dx" .  In the 'Dirac '  basis 
z = ( z ~ ) :  

z = :2 - ~/~ ~ (~ ' ) r  ~ d x u, (4) 
H 

with 

d x U = d x  u~ A ... A d x  u", 

and 

d x a = ( -- 1) a(h- 1)/2 d x ~, 

this Clifford product is represented as a matrix alge- 
bra: 

d x U v Z = T u r z ,  Z v d x U = Z y  "r,  Z ~ v Z ~ = Z ~ 6 ~ .  

(5) 

With the help of the Clifford product, the Dirac- 
Kfihler operator d - 6  can be brought into the simple 
form 

( d - 6 ) q ~ = d x  u v OuCh. (6) 

Beginning with this expression, a direct calculation 
using (4), (5) demonstrates that the Dirac components 
~bb(x)=(qS](x)) of a solution of the DKE, 
= ~ ~b](x)Z], satisfy the Dirac equation (3). 

a , b  

The lattice approximation of the DKE is based 
on an imitation of the well known [16] mapping of 
DeRham complexes on simplicial complexes. Let F 
be an infinite cubic lattice with points x 
= b ( n  ~, . . . ,  nd~), lattice unit vectors eu, h-dimensional 
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Fig. 1. Illustration of the lattice notions 

lattice cubes I-x, HI spanned at x by e u, # e H  embed- 
ded in Euclidean space, (see Fig. 1). Then, correspond- 
ing to the differential forms ~b, we get cochains on 
the lattice ('lattice fields'): 

~b(cg) = S q~, (7) 
~g 

where cg is a sum of lattice cubes. @(cg) is a linear 
functional on linear combinations of cubes. It can 
be expressed in a basis {d x'u} : 

~= y , r  ~,', dX"([x' ,H'])=~,ag,.  (8) 
x,h 

This is the lattice analogue of (2). Because of Stokes' 
theorem, the mapping (7) implies 

d ~  A, with zl~(cg)=q~(ACg), 

-~ r with r162 ~(Wr 

Here A and V are the boundary and the coboundary 
operator applied to lattice cells. Thus the DKE on 
the lattice becomes 

(z l -  [Y + m) �9 = 0. (9) 

The lattice Dirac-K/ihler field q~ (x, H) becomes a stag- 
gered fermion field Z(Y) if we make the identification 

~ ( x , H ) = c b ( y , U ( y ) ) = Z ( y ) ,  y = x  + �89  

eu = • e u. (10) 
. a ~ H  
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By this mapping the r-cochains of the 'coarse'  lattice 
F: ~b(x, H) get identified with lattice fields defined 
at the points of the 'fine' lattice y e P  which are central 
points of the cells [x, HI (see Fig. 1). For  the proof 
of this proposition one shows that a Dirac field 
O.(Y) .n(y) ' i '  =~,i  c~(y, H(y)), arbitrarily fixed, satisfies 
the naive Dirac equation, iff ~b(x, H) satisfies the 
DKE. For a more detailed discussion of the formalism 
and of the results we mentioned here, we refer to 
the literature [2]. 

2.2 The Lattice Symmetry Group 

Now we approach our first problem, the determina- 
tion of the symmetry group of the DKE on the lattice, 
and its geometric description as the lattice restriction 
of the symmetry group of the continuum. 

The free DKE in the continuum is equivalent to 
simultaneous Dirac equations of four degenerate Dir- 
ac fields. Therefore infinitesimal spinorial Euclidean 
transformations, and SU(4)-'flavour' transformations 

(M.~ ~)~ (x) = (x. ~ -  ~ ~.) ~(x)  
+�89 v~).c ~(x),  ~ , v ,  

(~ ~)~ (x) = ~. ~.~ (x), 
i b 1 ib (T 4~).(x)=~2c 4~(x), i=1 .. . .  15. (11) 

generate a symmetry group 5 :g  x SU(4). Here 2 ~ den- 
ote the 15 Gell-Mann matrices for SU(4) [173; we 
use the summation convention. There are additional 
symmetries like space reflection: 

b 4 b 
( l l s  ~)a(X)=]lac  ~ c ( [ I s X ) ,  

( / /~x)=( -x  ~, - x ~, - x3 ,  x %  

charge conjugation, general phase transformations, 
and chiral transformations in the special case of mass 
m = 0. At the moment we restrict our considerations 
to the symmetry group N generated by the spinorial 
Euclidean group 6PE ' including space reflections, and 
by the SU(4) flavour group. The general finite element 
of this group ~ = {(f, a, s)} is composed by a flavour 
transformation ( f ) - ( f  0, 1) a translation (a)=(1, a, 
1), and an extended spin transformation (s)=(1, 0, 
s), s=s '  or s'H~, s ' ~ 5 : ~ - ' s p i n  group'. On ~b](x) the 
transformation ( - 1 ,  0, - 1 )  acts trivially. Thus we 
should consider 5 :~ x SU(4) /Zz  as the proper sym- 
metry group. This implies restrictions on the represen- 
tations which we regard later, (see Sect. 3.3 (2)). 

The lattice restriciton ~ of the translation group 
~- is found trivially 

3-  = :-L= {a]a=b(n  ~, n 2, n ~, n4), n ' e Z )  = {[a]}. 

The lattice constant "b" of the coarse lattice F we 
set most of the time equal to 1. 

In order to understand the lattice restriction of 
5:N(4) x SU(4) from a geometric point of view, we 
have to consider the relation between the transforma- 
tions of the Dirac fields and the transformations of 
the differential forms. It follows from (5) that flavour 
transformations correspond to Clifford right multipli- 
cation: 

d 

b b f o r  c (u) = y~ u (H) d x '~ = ~ ua Z . .  
H a,b 

(12) 

The spinor rotations of the Dirac components can 
be expressed directly as operations on the forms: 

S u ~ = d x u A d x  ~. (13) 

On the other hand, if the Cartesian components trans- 
form as 0(4) tensors, we get the transformation law 

G __ 6 , , ~ - ( x , O , - - x ~ O , ) ~ b + � 8 9  O. (14) 

These 'geometric' rotations differ from spinor rota- 
tions by flavour transformations defined above, (12). 
The lattice restriction of the geometric rotations fol- 
lows by geometric intuition from the correspondence 
(7). The cubic lattice allows only rotations belonging 
to the symmetry group W4 of the 4-dimensional cube. 
W4 is a group with 384 elements which is generated 

rc 
by rotations in the (#, v)-plane by ~ and by a space 

reflection //s- These rotations map r-cubes, 
r = 1, ..., 4, onto r-cubes, and they commute with the 
boundary and coboundary operation. Therefore the 
DKE is invariant under the lattice restriction of the 
' geometric Euclidean group'  ~r ~ ~ ~gL ~- ~ ~ I414. 

For a similar geometric approach to the discus- 
sion of the lattice restriction of the flavour transfor- 
mations, we need, according to (12), a definition of 
a v-product  on the lattice. Such a product was de- 
fined on the basis of the cup product and cap product 
of algebraic topology in [2, 18]. This distributive 
product is defined by the v-multiplication of the ba- 
sis elements d x'n defined in (8): 

d x'u v dY'K= Pn,K 6x+e~'Yd x+ea'n~K, 

A = H c ~ K ,  H A K = H u K - A .  (15) 

The sign Pn,K is the same as in the Clifford product 
of forms: d x n v d x n = Pn, K d xU~K. This product is not 
associative, but satisfies 

(d ' r  v d y'K) v d ' -eH~K'L=d x'n v (d y'Ir v dz'L). 

(16) 
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The DK-operator can be written with help of 
dn =_ ~ d~,U : 

X 

A-- r = d u v a ; ,  (O 2 f ) ( x ) = f ( x ) - f ( x - e u ) .  (17) 

It follows immediately with help of (16) that ~d K, e 
= + 1  

edKq~: ~ ~ ~ v (dK) -1, 

is a symmetry transformation of the DKE. A direct 
calculation leads to (dK) 2 = [ - - e K ]  , i.e. the flavour 
transformations generate translations. The group 
~-JL generated by the ed ~ contains JL as a normal 
subgroup. The factor group ~ = ~ / ~ - ~ : / f 4  is 
isomorphic to the multiplicative group 3r 4 of the Dir- 
ac matrices {_+Tr}, which has order 32 (=2e~+1). 
However ~ is not a semidirect product ~ X4, 
but what is called in a cristallographic language a 
non-symmorphous extension of the lattice translation 
group. 

Adding up these considerations, we can formulate 
a proposition on the lattice restriction of the symme- 
try group f9 of the DKE and its action on staggered 
fermion fields. For  this we compose a general element 
(f, a, s) of f# by a flavour transformation f, a transla- 
tion [a], and a geometric rotation R(s) 

g = (f)o(s, a, s)=(fs,  a, s)= I f  a, R (s)]. (18) 

In these two equivalent forms the group multiplica- 
tion is: 

(f, a, s)o(f', a', s ' )=( f f ' ,  R(s) a' +a, ss'), 

[ f  a, R(s)] o I f ' ,  a', R (s')] 

= [ f s f ' s -  1, R(s) a'+ a, R(s) R (s')]. (19) 

With this notation we have 

Proposition 2.1. The lattice restriction off# is 

f#L = {[ edK, - �89 + a, R] Ia~ Y-L, R ~ W4} 

with the composition law 

led K, - � 8 9  + a, R]o [e'd L, --�89 + a', R'] 

= [ee'p(R, RoL) PK,RoL dKAR~ 

-- �89 K + R eL) + R a' + a, RR'] .  (20) 

It is a symmetry group of the free DKE if it acts on 
staggered fermion fields according to 

([a])0 (Y, H (y)) = )~ (y - a" eu, H (y)), 

n (y - a" e,) = H (y), 

([R] Z)(Y, n (y)) = p (R, H (y)) Z (R- ~ y, H (R- x y)), 

R~ W4, 

(ed~)(y ,  H(y))=e~my), ~ Z(y +�89 H(y+�89 (21) 

where the sign p (R, H) is the same as in the transforma- 
tion of the basis differentials of the continuum: R d x  ~ 
= R -1 v dx~r v R = p(R, H) dx R- ~~ 

2.3 Subgroup Structure 

The structure of the L F G  described by Proposi- 
tion 2.1 is rather involved. In Fig. 2 we illustrate the 
relations of different continuum and lattice sub- 
groups. These are: The continuous symmetry group 
f#, the spinorial Euclidean group ~ E ,  the geometric 
Euclidean group Gg, the translation group J-,  the 
flavour symmetry group ~-~SU(4),  the spin group 
5e~'  (4) including the space reflections, the geometric 
rotation group 0(4), the lattice symmetry group 
LFG~-ffr  as the lattice restriction of if, the group 

JL generated by the lattice flavour transformations, 
the lattice space group GgL as lattice restriction of 
Gg, the symmetry group W4 of the 4-cube. Of course, 
there are many more subgroups, several of which have 
to be used in the representation theory of f# and f9 L. 
The groups in Fig. 2 are only the most important 
ones for the general understanding of our mathemati- 
cal and physical considerations. We draw attention 
to two points in Fig. 2 which are responsible for the 
somewhat unfamiliar features of the lattice symmetry 
of fermions and its relation to continuum symmetry. 
One point is the different 'splitting' of ~ • 5e~'(4) 
into ~ and 5e~'(4) on the one hand, and into 
and 0(4) on the other, in a way as described in (18). 
The other point is the fact that because of the non- 
symmorphous extension of Y to J ~ L ,  the lattice 
flavour group 3U 4--- ~ JL/~L C S U (4), and the lattice 
spinor group SL"~--~J~Y'L ~ 5P~'(4) are not sub- 
groups of f#L" The subgroup structure of ~L is relevant 
for the rather involved representation theory of the 
LFG.  

Fig. 2. Subgroup structure of the symmetry group of Dirac-K~ihler 
fields. The symbols are explained in Sect. 2.3. Symbols in boxes 
denote subgroups. Thick lines connect groups with normal sub- 
groups. Symbols beside thick lines denote factor groups 
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3 The Construction of the Representations 
of the Lattice Fermion Group 

3.1 The Wigner-Mackey construction 

The main topic of this paper is the construction of 
the irreducible, unitary representations ('irreps') of 
the LFG. Its subgroup structure, represented in 
Fig. 2, shows that the L F G  has normal subgroups. 
Therefore the induction procedure may simplify our 
task. However, the normal subgroups are not always 
embedded in the L F G  in the manner of semidirect 
products, nor are these always Abelian subgroups. 
Therefore the induction procedure well known to 
physicists, which is due to Wigner [12], is not general 
enough. We have to use a generalization due to 
Mackey [13]. Because we have to apply repeatedly 
this method, we shall first give a short description 
of this scheme, omitting all unnecessary mathematical 
sophistication. 

Consider a group G with a normal subgroup N 
and the factor group F. The aim is to construct the 
irreps of G with help of the irreps of N and the irreps 
of some subgroups of F. The building blocks of the 
procedure are: 

(1) G-Orbits in IV. Let {L ~} =b~ be a set representing 
all inequivalent irreps of N. Because N is a normal 
subgroup of G, L~(g- x ng) is equivalent to some L ~' (n): 

LP(g-ang)~-L g~, neN,  geG, peN.  (22) 

This means that G acts as a transformation group 
g 

of the dual ]V of N: p , g p. Hence ]V can be de- 
composed in G-orbits: 0~= {g/3jlgeG}, where/3j den- 
otes a reference point for each orbit. The group Sj 
leaving pj invariant" Sj={slsi0j=/Sj, seG} is called 
the little group of first kind. N is a normal subgroup 
of Sj. The little group of second kind is defined as 
the factor group S j =  Sj/N. The orbit O j can be de- 
scribed by the right cosets G/gj: if gi0j=g'/~ then g 
=g's ,  seSj. We fix this description by choosing a 
definite set of 'boost transformations' {g(p)} which 
represent these cosets G/Sj, the points p e Oi: 

g(p) iOj = p, g(~i) = e. (23) 

For the explicit construction of the irreps of G we 
standardize the matrices L~m,(n) by suitable equiva- 
lence transformations in such a way that the equiva- 
lence in (22) becomes an equality for g(p): 

L~ m'  ( n )  = L~,,, (g - ~ (p) n g (p)). (24) 

(2) Extension of  LP~(n) to a projective irrep ~ ( n )  of  
S~. Let {s} be a set of representatives of the cosets 
S;/N, and thus of the elements of Sj. Because of (22) 

and si0i=i0j, there is a linear transformation A(s) of 
the representation space ~ of L vj satisfying 

r e ( s -  ~ ns) = A -  1 (s) I2~(n) A (s). (25) 

Because of Schur's Lemma, A (s) is determined up to 
a factor. We take the unit element e as representative 
of N, and we set A(e)= 1. Now writing an arbitrary 
element of ge Sj in the form n s n', we may define (omit- 
ting the index/S j): 

L(s3 = L(n s n') = L(n) A (s) L(n'). (26) 

Equation (26) determines a consistent mapping g 
--*L(s-), g e ~ .  We have to show, that if nsn'=fis'fi ' ,  
then L(fisfi')= L(nsn'). For this we make the following 
simple consideration. First s = s' because N is a nor- 
mal subgroup of Si" Then from f i ' = s - l ~ - l n s n  ' fol- 
lows 

L(fis fi')=L(fi) A(s) L(~')= L(fi) A(s) L(s-  x ft- x nsn') 

= L(fi) A (s) A (s- 1) L (~ - l  n) A (s)L(n')= L(n s n'). 

Now we shall show that L(s-) is a projective represen- 
tation of ~ .  First we remark that 

L- l (s-) L(n) L(s-) = L(g- 1 ns3 (27) 

follows from a simple calculation. With help of this 
formula we see that 

r,- l (s-) L-  l (-O L(n) L(t) L(s-)= L(g- l ~-- l n~-s -) 
= r,- I(F~ L(n) L(ts-). 

This means that L(t)L(s-)L-l(t-s3 commutes with the 
irreducible representation L(n) of N, and hence it fol- 
lows from Schur's Lemma that 

L(t) L(5 = o(t, s3 L(t s-), (28) 

where a(t, s-) is a numerical factor. It follows from 
(26) and the normalization A(e)= 1 that for the re- 
striction of this projective representation of Sj to N 
we get L(n)= L(n), heN.  The multiplier tr(t, s3 satisfies 
as usual 

and is normalized: a(e, e )= l .  One sees easily that 
a(ti, g) depends only on the N-cosets of fi and g, and 
may therefore be considered as a multiplier of the 
little group of second kind S~. A possible change by 
a factor #(ti) of A(ti) defined by (25) would lead to 
an equivalence transformation of the multiplier: 

(s) a(s') 
a'(s,s')- p(ss,~tr(s,s'), s,s'ssj. (29) 
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Adding up the considerations of this part, we have 
proven the following Lemma (Mackey): The represen- 
tation of N: n ~ L pj related to the reference point/Sj 
of the G-orbit O j in N has an extension to a projective 
representation of the little group of first kind Sj. This 
extension is uniquely determined up to equivalence 
transformations of the multiplier. The multiplier o-(s, t) 
is also a multiplier of the little group of the second 
kind. 

(3) The Projective Representations of the Little Groups 
of Second Kind. For the construction of the irreps 
of G in the Wigner-Mackey scheme one needs the 
projective irreps DZ(s) of S/N ~ GIN with the mulip- 
lier o--~(s, t), where a is the multiplier defined by 
(28). In our case we get these irreps of the little groups 
of second kind by applying the Wigner-Mackey 
scheme once more. The little groups appearing then 
have well known representations. 

(4) The Main Theorem (Mackey). All irreducible, uni- 
tary representations of a group G with normal sub- 
group N are characterized by the G-orbits O j in ]V, 
and the irreducible projective representations of the 
related little groups of second kind Sj~s ~DX(s) with 
multiplier of the equivalence class o-~ 1 (s, s'). 

The basic ideas of the proof of these statements 
follow from the construction of the irreps of G with 
help of O j and Dx(Sj). 

(5) Explicit Construction. Given an irrep g ~ U(g) in 
the representation space 24 ~, we can find an orthonor- 
mal base ~J,x of Yg 

in which the restriction U(g)lN decomposes into irreps 
of N: 

=U(g(p))U(g-I(p)ng(p)) ~i, m, ~) 

U J' = (g(P))/Sj, fit, ~> L~m(g-l(p) ng(p)) 

= J;, m', :)L~,m(n). (32) 

The subspace associated with the irrep LPJ(n) is invar- 
iant under the transformations of the little group of 
the first kind Sj. The irrep of Sj. in that subspace 
can be represented as a direct product of the extension 
L~J(~) of LPffn) and an unfaithful projective irrep of 
Sj: D(g)-DX(s) which is an irrep of the factor group 
Sj ~- S/N with inverse multiplier: 

U(~) , m, Pi, m', r' 

ff~(s-) was discussed under Point (2), DX(s) under Point 
(3). 

We can write an arbitrary g~G as a product of 
boost transformations and an element of Sj. From 

g = g (g p) ~(g, p) g -  1 (p), 

we get with help of (23) 

s(g, P) i02 = P2~  g(g, p) E Sj. 

g(g, p)= g-  l(gp) gg(p) (34) 

(35) 

Therefore the transformation of the basis ~J,x under 
U(g) is determined explicitly by (31) and (33): 

=U(g(gp))U(s(g'p))U(g-I(P)) J'p, m, ~) 

= J, )~) 
gp, m', r' L~mJ'm(S(g' p)) D~'r(s(g' p))" (36) 

U (n = LPm,,n(n). (30) m, m', 

The boost  transformations g(p), (23), transform the 
different irreducible subspaces into each other. Be- 
cause of (24) we can set, in agreement with (30), 

U(g(p)) PJ j ' ,  m, ~ ) =  ~', m, ~)" (31) 

This follows from the simple calculation: 

One may verify by direct calculation that (36) defines 
a representation of G, which is irreducible if p is re- 
stricted to a single G-orbit and if DZ(s) is irreducible. 

(6) Remarks on Equivalence. In the construction 
above, the representation of an G-orbit O j by a refer- 
ence point/Sj and boost  transformations, (23), intro- 
duces some arbitrariness. One convinces oneself easily 
that a different choice of reference points and boost  
transformations leads to equivalent representations 
of G. Similarly, equivalence transformations of DX(s) 
and LPJ(n) lead to equivalent representations of G. 

The Wigner-Mackey procedure allows the explicit 
construction of the irreps of a group G with normal 
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subgroup N with help of the irreps of N, and with 
help of the projective irreps of the little groups of 
second kind. It was emphasized by Mackey [13], that, 
after some obvious modifications, essentially the same 
procedure allows also the construction of the projec- 
tive irreps of G. In this sense, the Wigner-Mackey 
procedure presents a closed scheme for the construc- 
tion for the irreps of groups by the irreps of smaller 
groups. 

3.2 The structure of  the irreps of  the LFG 

The iterated application of the Wigner-Mackey pro- 
cedure leads to a complete classification of the irreps 
of ~L by a 'Momentum Star Stj', a "Flavour Orbit 
6)~,k', and a 'Reduced Spin a'. These are the steps 
leading to this result: 

(1) Momentum Star. In a first application of the 
Wigner-Mackey procedure we consider the transla- 
tion group JL as a normal subgroup of fqL- The 1- 
dimensional irreps of JL: [a] ~ e ip~ are labelled by 
'momenta '  P=(Pl,  ... P4) varying in the Brillouin 

zone: - - ~ < p u < ~  of the coarse lattice. We denote 

by the star S tj the orbit of the rotations R ~ W4 applied 
to the momenta p ~ Rp. Depending on the orienta- 
tion of p there are 17 qualitatively different stars, see 
Table 1. For each Stj  one may choose a reference 
point ~jeSt j ,  boost operators A(p)pj=p,  A(p)eW4, 
and determine the stability group S j =  {R]R/Sj=/~}. 

The little group of the first kind S} ~) in this applica- 
tion of the Wigner-Mackey procedure is generated 
by the translations, flavour transformations, and the 
rotations of Sj. The little group of the second kind 
S~2)~-S~I)/J- L is generated by Sj and the elements of 
J'cf4. An extension of the representation of ~L: [a] 
~ e  zp~" to a representation of S} 1) is given trivially 
by" [ed K, - �89  R]--~e i(p~'a-1/zeK), R~Sj. The 
representations of ~ :  [-ed ~, - � 89  R] 
U(ed K,- �89 a, R), corresponding to (31), (34), (36) 
have then the form 

U(ed K, - �89 + a, R) j' 
IP, 

= i(Rp, a - - � 8 9  "~ J, 
e ~,[Rp, (37) 

with pESt j  and s(g, p)~S) : 

s (g, p) = [1, 0, A - 1 (R p)] o [ed K, - �89 eK + a, R] 

o [1, 0, A(p)] 

= [ep(A - l(Rp), K') d K', 

A -x (R p) (a -- �89 eK) , CO (R, p)] (38) 

with K' = A -1 (R p) o K, p (A - ~ (R p), K') = p (A (R, p), K), 
and o)(R, p ) = A - l ( R p )  RA(p). DZ(s) is an irrep of 
S~ 2) considered as an unfaithful representation of S~ 1). 
We have to construct these representations. 

(2) The Irreps of  ~((4, Flavour Orbits. The group S~ 2) 
contains ~4 as a normal subgroup. We apply for the 
construction of the irreps of S~ 2) the Wigner-Mackey 
procedure for a second time. For this we have to 
consider first the irreps of :(4. These are the well- 
known 4-dimensional representation e d~:-~ ~7 K which 
we give the label L = 0 ,  and the 16 one dimensional 
representations for the factor group with respect to 
the centre: 

~r4: e d ~ e 7  K, L = 0  
ed ~ -~ ei~ . . . . .  )=_ FL(edK), 

e L= ~, eu, e u=(O,...  ~,.. .  0). 
iz~L 

L + 0 is a multi-index like in (2). 

(39) 

For the construction of the representations of S~ 2), 
we have to consider further the transformations of 
the irreps of Y4 under the rotations of Sj: 
FL(R-I(edK)R)~--F R~ In the case L = 0 ,  this is an 
equivalence transformation for all R, therefore 
R o (L = 0) = (L = 0). The set of 1-dimensional represen- 
tations decomposes under the rotations of Sj in 'fla- 
vour orbits' Oj, k, k =  1,... Nj. For a flavour orbit we 
again may fix a reference point Lk, choose boost oper- 
ators f (L )  Lk= L, f (L )~S j ,  and determine the stability 
group S~,k={R]RLk=Lk; RsS j}  c Sj. In Table 1 we 
list the reference points Lk of the flavour orbits Oj, k 
and the corresponding stability groups Sj,k. The total 
flavour orbits can be easily constructed from Lk. This 
is illustrated in the example below. Because of their 
relation to half integer and integer spin representa- 
tions, we refer to the orbit F ~ as an odd orbit, and 
to the others as even orbits. 

(3) The Irreps of  S} 2~, Reduced Spin. The group S~ 2) 
is a semidirect product of Sj with :(4 as normal sub- 
group: S~ 2)~_ ~ S j .  The Wigner-Mackey construc- 
tion of the irreps DX(s) of S~. 2) uses the (flavour-) orbits 
Oj,k of the irreps of W4 under Sj transformations. 
These are described above. With the definition given 
there, we can state that the little group of the first 
kind o~,ke(1) is a semidirect product of S i,k with :(4 as 
normal subgroup. The little group of the second kind 
is then S}~)k/~4 ~-- Sj,k. 

For the Wigner-Mackey construction of the irreps 
of the group S} 2) we need further the extension of 
the representation of :(4: e d K ~  FLk(ed K) to a projec- 
tive representation of e(1)=~ ~'j ,k~ pL~(~). For L = 0 ,  
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Table 1. Classification of the irreps of the Lattice Fermion Group.  The headings have the following meaining: j numbering of the momen tum 
stars; Sj stability group of the momentum star; /0j reference point of the momentum star, (/914=p2 etc.); N(S~) order of Sj;  Sj,k reduced 
spin group, (we distinguish between a Z2-group of reflections and a Sym2 group of permutations,  Sym 2 m Symz x Sym2 etc.); Lk reference 
point of flavour orbits; 0i,.~ fiavour orbit;  N(Oj.k) number  of points on the flavour orbit;  N(tr) number  of different reduced spins; N ( ~ )  
number  of irreps of the group S} 2) - ~ ~ Sj 

j Sj pj N(Sj) Sj, i Lk N(Oi, k) N(a) N(~)  

1 IV, (0, 0, 0, 0) 384 IV, (0, 0, 0, 0), (1, 1, 1, 1) 1 20 40 
(u, u, u, r 0 W3xZ2  (0, 0, 0, 1), (1, 1, 1,0) 4 20 40 

D4 x D ,  (1, 1, 0, 0) 6 25 25 
aW# F ~ 1 5 5 

2 W 3 x Zz (0, O, O, n) 96 W3 x Z2 (L 1, I, 1), (1, 1, 1, O) 1 20 80 
(u, zc, u, O) (0, O, O, 1), (0, 0, 0, 0) 

D4 x Z 2 (1, 1, 0, 0), (0, 0, 1, 0) 3 20 80 
(1, 1, 0, 1), (0, 0, 1, 1) 

a(W 3 x Z2) 12o 1 3 3 

3 D 4 x D,, (0, 0, re, zc) 64 D 4 x D 4 (0, 0, 0, 0), (0, 0, 1, 1) 1 25 100 
(1, 1, 0, 0), (1, 1, 1, 1) 

D,, x Z~ (0, 0, 1, 0), (1, 1, 1, 0) 2 40 80 
(1, o,o,o),(1,o, 1,1) 

Z~ (1, 0, I, 0) 4 16 16 
a(D. x D4) 120 1 4 4 

4 Wa (0, 0, 0, p) 48 
(n, ~, ~, p) 

w3 (o, o, o, o), (o, o, o, 1) 1 lO 40 
(1, 1, 1, 0), (1, 1, 1, 1) 

D4xZ2  (0,0, 1, 0), (1, 1, 0, 0) 3 10 40 
(0, 0, 1, 1), (1, 1, 0, 1) 

d w  3 F 0 1 6 6 

5 Sym4 (p, p, p, p) 24 Sym4 (0, 0, 0, 0), (1, 1, 1, 1) 1, 5 10 
Sym3 (0, 0, 0, 1), (1, 1, 1, 0) 4 3 6 
Sym 2 (0, 0, 1, 1) 6 4 4 
a(Sym4) F ~ 1 3 3 

6 D 4 • Z 2 (0, 0, 7~, p) 
(n, n, 0, p) 

16 D,, x Zz 

z~ 

a(D, x Z2) 

(0, 0, 0, 0), (1, 1, 1, 1) 1 10 80 
(1, 1, 1, 0), (0, 0, 1, 0) 
(1, 1, 0, 1), (0, 0, 0, 1) 
(1 ,1 ,0 ,0 ) , (0 ,0 ,1 ,1 )  
(0 ,1 ,0 ,0 ) , (0 ,1 ,0 ,1 )  2 8 32 
(o, 1, 1, o), (o, 1, 1, 1) 
F ~ 1 4 4 

7 D ,  x Sym z (0, 0, p, p) 
(~, n, p, p) 

16 D 4 • Sym 2 (0, 0, 0, 0), (0, 0, 1, 1) 1 10 40 
(1 ,1 ,0 ,0 ) , (1 ,1 ,1 ,1 )  

Z22 • Sym2 (0, 1, 0, 0), (0, 1, 1, 1) 2 8 16 
34 (0, 0, 0, 1), (1, 1, 0, 1) 2 5 10 
Z 2 (0, 1, 0, 1) 4 4 4 
a(D 4 x Sym2) 12o 1 4 4 

8 Syma x Z2 (p, p, p, 0) 
(p, p, p, ~) 

12 Sym3 x Z 2 (0, 0, 0, 0), (1, 1, 1, 0) 1 6 24 
(0, O, O, 1), (1, 1, 1, 1) 

Z2 x Sym2 (0, O, 1, 0), (0, O, 1, 1) 3 4 16 
(1, 1, 0, 0), (1, 1, 0, 1) 

a(Sym3 • Z2) F ~ 1 2 2 

9 D 4 (0, 0, P3, P4) 
(~, re, P3, P4) 

8 D,, 

z~ 

aD 4 

(0, O, O, 0), (0, O, O, 1) 1 5 40 
(0,0, 1, 0), (0, O, 1, 1) 
(1, 1, O, 0), (1, 1,0, 1) 
(1, 1, 1, 0), (1, 1, 1, 1) 
(0, 1, 0, 0), (0, 1, 0, 1) 2 4 16 
(0, 1, 1, 0), (0, 1, 1, 1) 
F ~ 1 2 2 
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j Sj ~j N(Sj) Sj,k Lk N(Ojd,) N(O N(~) 

10 Z~ x Syma (0, n, p, p) 8 Z~ x Sym2 (0, 0, 0, 0), (0, 1, 0, 0) 1 8 64 
(1, O, O, 0), (1, 1, O, O) 
(0, O, 1, 1), (0, 1, 1, 1) 

Z~ (0, 0, 0, 1), (0, 1, 0, 1) 2 4 16 
(1, O, O, 1), (1, 1,0, 1) 

dZ~ F ~ 1 2 2 

11 Sym 3 (P, P, P, P4) 6 Sym~ (0, 0, 0, 0), (1, 1, 1, 0) 1 3 12 
(o, o, o, 0,(1, 1, I, l) 

Sym 2 (0, 0, 1, 0), (0, 0, 1, 1) 3 2 8 
(1, 1, O, 0), (1, 1,0, 1) 

aSym3 F ~ 1 3 3 

12 Z~ (0, n, P3,1)4) 4 Z~ (0. 0, 0, 0) . . . . .  (1, 1, 1, 1) 1 4 64 
a(Z~) F ~ 1 1 1 

13 Z2 x Sym2 (0, p, p, P,) 4 Z2 x Sym2 (0, 0, 0, 0), (0, 0, 0, 1) 1 4 32 
(n, p, p, P4) (1, 0, 0, 0), (1, 0, 0, 1) 

(0, 1, 1, 0), (0, 1, 1, 1) 
(1, 1, 1, 0), (1, 1, 1, 1) 

Z2 (0,0, 1, 0), (0, 0, 1, 1) 2 2 8 
(1,0, 1, 0), (1, O, 1, 1) 

~(Z2 x Sym2) F ~ 1 1 1 

14 Sym~ (P, P, P4, P4) 4 Sym~ (0, O, O, 0), (0, O, 1, 1) 1 4 16 
(1, 1, O, 0), (1, 1, 1, 1) 

Z2 (0, 1, 0, 0), (0, 1, 1, 1) 2 2 8 
(0, 0, 0, 1),(L 1,0, 1) 

g (0, I, 0, 1) 4 1 1 
n(Symz 2) F ~ 1 1 1 

15 g 2 (0, P2, Pa, P*) 2 
(g, P2, P3, P4) 

Z 2 (0, 0, 0, 0) .. . .  1 2 32 
.... (1, 1, 1, 1) 

d(Z2) F ~ 1 2 2 

16 Sym 2 (P, P, P3, P~) 2 Sym2 (0, 0, 0, 0), (0, 0, 0, 1) 1 2 16 
O, 0, 1, 0), (0, 0, 1, 1) 
(1,1,o,o),(1.1.o,  1) 
(1, 1, 1, o), (1, L 1, 1) 

g (0, 1, O, 0), (0, 1, O, 1) 2 1 4 
(0, 1, 1, 0), (0, 1, 1, 1) 

dZ2 F ~ 1 2 2 

17 r (pl, p2, p3, p4) 1 # (0, o, o, o) .. . .  (1, 1, l, 1) 1 1 16 
aN F o 1 1 1 

/~Oa(0,  is t he  e x t e n s i o n  o f  the  4 - d i m e n s i o n a l  r e p r e s e n -  
t a t i o n  o f  ~ to  a p r o j e c t i v e  r e p r e s e n t a t i o n  o f  ~),o-~ 
I n  th is  ca se  t he  r e p r e s e n t a t i o n  o f  t he  r o t a t i o n s  ReSj ,  k 
is g i v e n  b y  t he  p r o j e c t i v e  r e p r e s e n t a t i o n  o f  W4 g e n e r -  
a t e d  b y  Ru~ ~ �89 + ~u ~0, Hs  ~ 74, r e s t r i c t ed  to  Si, k. 
W e  c o n s i d e r  th i s  p r o j e c t i v e  r e p r e s e n t a t i o n  o f  W 4 
s o m e t i m e s  as  a g r o u p  d W  4 w h i c h  is c e n t r a l  e x t e n s i o n  
o f  W4. I n  t he  e x t e n s i o n  o f  t he  l - d i m e n s i o n a l  r e p r e s e n -  
t a t i o n s :  /~,k (~), Lk+O ' t h e  r o t a t i o n s  a n d  re f l ec t ions  
o f  S~k ) a r e  r e p r e s e n t e d  t r iv ia l ly :  R .~  ~ 1, a n d  Hs  ~ 1. 

W i t h  t he se  c o n c e p t s  we  c a n  c o n s t r u c t  t he  i r r eps  
o f  S} 2) a c c o r d i n g  t o  ( 3 0 ,  (34), (36) w i t h  h e l p  o f  the  
p r o j e c t i v e  i r r eps  N " ( s )  o f  S~,k w i t h  the  a p p r o p r i a t e  

m u l t i p l i e r  

q/D(edX, R) [ kL' ' 

w i t h  

a :) 

LEOjd,, s=[edK, R]~S~ 2), 

S~k ) ~ r (s, L)  - [ 1, f -1  (R o L ) ]  o [ e d  K, R ] o  [1,  f ( R  o L] 

= [ep ( f (RoL) ,  K) d K, X ( R ,  L)] ,  

K ' = f  -~ (RoL)oK,  X ( R , L ) = f - ~ ( R o L ) R f ( L ) .  
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Thus the irreps of S} 2) are characterized by the flavour 
orbits Oj,k, and the irreps @~ of Sj.k with appropriate 
multiplier. The groups Sj, k, the 'reduced spin groups', 
are direct products of the symmetric groups Symn, 
n=2 ,  3, 4, and the cubic groups Wai. Their projective 
irreps are well-known, or can be constructed easily. 
The irreps of Sj.k~--*~,~(O, which determine the 
reduced spin o-, may then be labelled by combinations 
of the primitive characters of these elementary groups. 
For completeness we summarize the representations 
defining the reduced spin in Sect. 3.3. 

(4) Proposition on the Irreps of the LFG. With these 
preliminaries we may apply the main theorem of the 
Wigner-Mackey procedure to the construction of the 
irreps of the LFG. The result we formulate as: 

Proposition 3.1. The irreducible, unitary representa- 
tions of the symmetry group L F G  of staggered fermions 
(Proposition 2.1) are determined by a 'momentum star ', 
a "flavour orbit ', and the "reduced spin '. 

This proposition follows from the application of the 
W-M procedure to the L F G  with the translation 
group ~L as normal subgroup, and combining this 
with the characterization of the irreps of the little 
group  82(- 2) by flavour orbits and reduced spin. 

We could get an explicit construction of the irreps 
of the L F G  by combining (37) and (40). For  this we 
must identify the index m in (37) with the indices 
(L, a, n) in (40), the character Z of the representation 
OZ(s) of S} 2) in (37) with (k, a) in (40), and finally 
DZ(s) in (37) with q/e(s) in (40). However, in this man- 
ner one gets for the general case expressions which 
are rather involved. There are simplifications if one 
considers the special structure of the even and odd 
flavour orbits, and of the representations of the re- 
duced spin groups related to it. Therefore we post- 
pone the discussion of the explicit construction of the 
irreps of the L F G  to Sect. 3.3. 

(5) Example. Before we continue the general discus- 
sion, we illustrate the concepts introduced above with 
an example which has already been considered [14] 
in connection with the calculation of the mass spec- 
trum in lattice QCD. 

We consider the momentum star of 8 points 

S t4: (Pu) = (0, 0, 0, + E), (0, 0, _+ E, 0), 

(o, +E,O,O), (+E,O,O,O). 

The stability group of the reference point/Sj = (0, 0, 
0, E), E > 0, of this star is $4-~ W3. In this case there 
are three types of flavour orbits: 

(a) The odd 1-point orbit F ~ k = 0. 
(b) The even 1-point orbits O<k={(eL)}, 

k = l  . . . . .  4 with S4,k~W3 : 

{(0, O, O, 0)}, {(0, O, O, 1)}, 

{(1, 1, 1, 0)}, {(1, 1, 1, 1)}. 
(c) The even 3-point orbits 04,k, k =  5, ..., 8 with 

S4,k~D4 X Z2: 

{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)}, 
{(0, 1, 1, 0), (1, O, 1,0), (1, 1, O, 0)}, 

{(1, O, O, 1), (0, 1,0, 1), (0, O, 1, 1)}, 

{(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1)} 

with Lk underlined. 
In this example we have S4,k ~-- W3 ~--Sym4 x Z2 for 

k = 0  . . . .  ,4, and S4,k~--D4xZa for k = 5 , . . . , 8 .  For 
k = 0  we have to consider projective representations 
of W3 with the multipliers of the spinor representa- 
tions. There are two 2-dimensional and one 4-dimen- 
sional of such representations for Sym4. This means 
altogether six reduced spin-parity combinations for 
this class of representations characterized by S t4 and 

+ [2,~+ + O4,o. We denote them by (2)Xw3, t IXw3, (4)Xw3. (Com- 
pare Table 3). 

The proper cubic group has two 1-dimensional, 
one 2-dimensional, and two 3-dimensional represen- 
tations. Together with the parities H S = _+ 1, this gives 
10 spin parity combinations related to the reduced 
spin group of the orbits 04,k, k =  1 . . . .  4. We denote 
them by (l+-)w3, (l'+)w~, (2-+)w3, (3+)w3, (3'+)w3. (In 
the notation (rfi)Z (s of Table 2 we have the following 
correspondence: 
(1-+)w~, (l'+)w~, (2+)w ~_(rh)(1), (rh)(l'), (rfi)(2) with 
(rfi)=(0, 0, 0) for +parity,  (n~)=(1, 1, 1) for -pa r i ty ,  
and (3+-)~(r~)(l~V), (3'+)-(r~)(1 +) with (r~)=(1, 1, 0) 
for + parity and (rh)= (0, 0, 1) for -par i ty) .  

The dihedral group D4 has four 1-dimensional 
representations and one 2-dimensional representa- 
tion. This gives again 10 spin parity combinations, 
however of a different type which belong to the fla- 
vour orbits Oj, k, k = 5  . . . .  8. These are denoted by 
(1-+)o4, (l'-+)m, (l"-+)D4, (l '"+)D4 , (2+)D4 . (In the nota- 
tion of (ml, m2)@(m3) Z(~)  of Table 2 these irreps 
of D 4 x Z 2 correspond to (0, 0)@(m3)(l+), (1, 1)| 
(m3)(1-), (0,0)@(m3)(l-), (1,1)@(m3)(l+), (0, 1)@ 
(m3)(1), m3=0  for +symmetry,  m 3 = l  for - s y m -  
metry with respect to reflection of the 3-axis. 

This is a complete classification of the 86 irreps 
of ~ with momentum star S t4. 

3.3 Complete Classification of the Irreps of the L F G  

According to the Proposition 3.1, the irreps of the 
L FG are determined by a momentum star, a flavour 
orbit, and the reduced spin. Therefore, with help of 
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Table 2. Classification of the irreps of the cubic groups. The headings have the following meaning: We~ 
d i dimensional cubic group; rh reference point of the reflection orbit; N (r~) number of points on the reflection 
orbit; s stability group of the reflection orbit: X(s representations of ~ ,  the notation (dimff is defined 
in Table 2'; N(Nx~) number of irreps of W~ for given Y 

We, rh N(rh) ..~ Z(~) N(~.~) 

Z2 (0), (1) 1 g (1) 2 

/)4 (0, 0), (1, 1) 1 Symz (1 +), (1 -) 4 
(0, 1) 2 d ~ (1) 1 

W3 (0, O, 0), (1, 1, 1) 1 Sym 3 (1), (1'), (2) 6 
(0, 0, i), (1, 1, 0) 3 Sym2 (1+), (1-) 4 

W4 (0, 0, 0, 0), (1, 1, 1, 1) 1 Sym4 (1), (1'), (2), (3), (3') 10 
(0, O, O, 1), (1, 1, 1, O) 4 Sym3 (1), (1'), (2) 6 
(0,0, 1, 1) 6 Sym 2 (1++), (1+-), (1-+), (1 - - )  4 

Table 2'. Explicit definition of the irreps of the Sym, by the representations of the generating cycles 

Sym2: 
Sym3: 

Sym4: 

(i+): (12)"+ +1 
(1): (12)---' 1 (123) -* 1 
(1'): (12) --, -- 1 (123) -+ 1 

0 [exp 2r~i/3 --2~i/3) 

(1): (12) ~ 1 (1234) ~ 1 
(1'): (12) -+ -- 1 (1234) --+ - 1 

(2): (12) --+ �89 -~1) (1234)~ ( - :  01) 

(3): (12) --+ - 1 (1234) --+ 0 
0 -1 

(3')~-(3)@(1') 

Table 1, we may denote these irreps in a most infor- 
mative manner by a symbol 

where pj denotes a reference point of the momentum 
star, L k a reference point of the flavour orbit, a(Sjk ) 
an irreducible representation of the reduced spin 
group. Table 1 describes the range of pj and Lk. For  
a complete classification of the irreps of the L F G  we 
need still a survey of the irreps of the reduced spin 
groups. We shall describe these representations in the 
next two subsections for the reduced spin groups of 
even and odd flavour orbits separately, and collect 
the important information in Table 2 and 3. As a 
last point, we explain how one should use Table 1, 
Table 2, and Table 3 for a survey of the explicit con- 
struction of all irreps of the LFG. 

(1) Reduced Spins for  even Flavour Orbits. The reduced 
spin groups Sj, k are subgroups of the hyper-cubical 
group W4. It can be seen from Table 1, that they are 
direct products with factors W3 (the symmetry group 
of a 3 cube), D 4 (the symmetry group of a square), 

Z2 (the cyclic group of order 2), Sym4, Sym 3 and 
Sym 2--- Z 2 (the permutation groups of 4, 3 and 2 ob- 
jects, respectively). In the product description of the 
reduced spin groups in Table 1 the factors are under- 
stood in the following way. They are groups which 
transform di-dimensional sub-spaces of R 4, and leave 
the orthogonal sup-spaces untransformed. In this 
spirit we destinguish the isomorphic Z2-groups of the 
permutation of two axes from the reflections of one 
axis. Of course the irreps of these groups are well 
known [-t9, 22-]. In spite of this, we consider shortly 
the irreps of these groups under the unifying view- 
point that the Wal are semidirect products with Abe- 
lian normal subgroups: 

di 

Wai~- Z 2 x Z2 x ... x Z'2 | 174 

=/ /@Symdi.  

The point of view is particularly appropriate for 
showing how the reduced spin groups are embedded 
in W 4. Further, it allows the use of the Wigner-Mack- 
ey procedure for the construction of the irreps of the 
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Table 3. Classification of the proper irreps of the reduced spin groups of odd flavour orbits. For  
details see Sect. 3.3 (2) 

j aSi, o f ~  aHai F a 

1 dW, J{',, Sym, (4) (4') (8) (12) (12') 
2 a(W a x Z2) 2(4 Syma (4) (4') (8) 
3 a(D 4 X D4) - ~ Sym 2 x Sym~ (4 • • 
4 aW3 Of'3 Sym3 (2) • (2') +- (4) :L 
5 eSym4 (2) (2') (4) 
6 a(D,, x Z2) Jg3 Symz (2+-) +- 
7 a(D 4 x Sym2) ~f'z Sym2 x Sym2 (2 -+ -+) 
8 a(Syma x ZE) .Y{'3 (2) ~ 
9 aD, X'z Sym2 (2+-) 

10 a(Sym2 x Z 2) .X'.~ Sym2 (2 -+ ) 
11 aSym3 -~Sym3 (1) (1') (2) 
12 d(Z~) ~Xr2 ~ 2  # (2) 
13 a(Z 2 x Symz) Jd'z (2) 
14 a(Sym2 x Sym=) ord2 (2) 
15 d z  2 Z 2 >( Z 2 (1 -+)- 
16 agym2 Z 2 x Z 2 (1 +-)- 
17 a~ Z2 (1)- 

reduced spin groups. We describe shortly this struc- 
ture of the 'cubic'  groups. 

It is geometrically evident that the cubic groups 
W 2 ~ D 4 ,  W3, I474, ... are generated by rotations Ru~ 
in the (#, v)-plane by n/2, #, v = I, . . . ,  d i, and a reflec- 
tion, e.g. the reflection of the 1-axis //1. (Ru,) 2 de- 
scribes a reflection of the two axes of the (#, v)-plane. 
The reflections //1 and (Ru~) 2 generate an Abelian 
normal subgroup//~-(Z2) ai of Wa~, of which the reflec- 
tions of an axis //~, g = 1, ..., di, form a basis. The 
factor group WajZaz ~ is the permutation group of the 
different axes. Since the permutations of the axes form 
a subgroup of Wai, it follows that Wdi---{(zl . . . .  , znl; 
h)}, is a semidirect product with the multiplication 
rule 

(zl ,  zai; h)'(z'l ,  ' " h') . . . ,  . . . Z d i ,  

=(zl + hoz'l , . . . ,  zai + h~ ; hh'). 

Here z~ = 0, 1 mod (2) denote the elements of Z2,  gen- 
erated by the reflection //~, written additively. 
Syma~= {h} is the group of permutations of the axes 
acting on the zi: h oz i=zj .  In these terms, the 
isomorphism Wai~-Zazi| is given by the map- 
ping of the generating elements; R ~ v ~ ( z ,  h ,d ,  h,~ 
transposition of/~ and v, zi= 1 for i=v ,  z i=Ofor  i+v.  

According to the main theorem of the Wigner 
Mackey procedure, the irreps of Wa~ are characterized 
by the orbits of the permutation groups Syme~ in the 
set of irreps of Z~ i, (' reflection orbits'): 

(z, 1) ~ e i~(m'z), m = (ml,  . . . ,  mai), mi = 0, 1 (41) 

and the irreps of the related little groups of second 
kind: 2~ ~ (In the case of a semidirect product with 

Abelian normal subgroup, we have for the multiplier 
a(u, v ) - 1 . )  These little groups of second kind are 
either Sym,,  or Sym3, or Sym2~-Z2, or the trivial 
group g. The result of this consideration is summa- 
rized in Table 2 for d i =  1, 2, 3, 4. In this Table n~ 
denotes a reference point of a reflection orbit of size 
N(rfi). We assume that the irreps Z(s o) of the little 
groups Z2: (1+), (1-); Sym3: (1), (1'), (2), and Sym3: 
(1), (1'), (2), (3), (3') are indeed very familiar [19]. We 
make this assumption in spite of the fact, that we 
could have applied the Wigner-Mackey procedure for 
the construction of these representations once more! 
In order to fix the notation, we define these represen- 
tations explicitely in Table 2'. N(N~) denotes the 
number of irreps of Wdi we get by combining the re- 
flection orbits with the irreps of the little groups 5~. 
The dimension of these representations is given by 
dim (~so) = N (n~). dim 0~ (s 

For  physics, the representation of the space reflec- 
tion / / s = / / 1 / / 2 / / 3  plays as parity n an important 
role. According to (41), we have: Hs-+exp i(m I + m  z 
+ m3) n. Thus the parity of the representations of Wa 
is +1 for nS=(0, 0, 0), (1, 1, 0), and ' - 1 '  for n~=(0, 
0, 1), (1, 1, 1). Similar we get the parity for a composite 
reduced spin group like D,  x Z :  c $3: rc = + 1 for rh 
=(0, 0)@(0), (1, 1)@(0), (0, 1)@(1), and r e = - 1  for 
,~=(o, o)@(1), (1, 1)@(1), (o, 1)@(o). 

(2) Reduced Spins for odd Flavour Orbits. The projec- 
tive representations of the reduced spin groups related 
to the odd flavour orbits have a non-trivial multiplier. 
As we have seen in Sect. 3.2 (3), the projective exten- 
sion of the 4-dimensional representation of o~4 to a 
representation of S}~)o leads to a representation of the 
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reduced spin group Si, 0: oj.etX)o ~ Sj, o~S ~/~~ (s) by lin- 
ear combinations of y-matrices. This defines a central 
extension dSj, o of Sj, o which might be considered as 
a subgroup of aW 4. However, the reduced spin groups 
are subgroups of the geometric rotation group, the 
('single valued') 0(4). Thus on physical grounds, i.e. 
because the continuous symmetry group is 
~qr x SU(4) /Z 2 rather than 5Pg x SU(4), the multi- 
plier of the irreps defining the reduced spin in the 
case of the odd flavour orbit must compensate the 
multiplier ('double valuedness') of/~~ This means 
that we have to study the ('proper') representations 
of aSj, o in which the phase factor, i.e. the central ele- 
ment e = - 1, is represented faithfully. The results are 
summarized in Table 3. 

As a guideline for the construction of these repre- 
sentations we use again the description of the cubic 
groups as semidirect products with an Abelian nor- 
mal subgroup generated by reflections. In the matrix 
group dw4, the reflection of the #-axis is represented 
as H~ ~ iysyu. The transpositions hu~ are represented 

as hu, ~ ___ iy s (y,-y~)/]//2. With the phase convention 
for H u the space reflection is represented by 11~ 
=111112113 ---riy 4 which has imaginary eigenvalues 
+ i. For  this we denote the space parity by the eigen- 
value of -i11~. The reflections generate the group.  
~ai, d i =  1, 2, 3, 4, which is the central extension of 
the Abelian normal subgroup 11a~ of Wai. ~di is nor- 
mal subgroup of aWa i with the factor group eWdi/:Kdi 
"~ Symnl. There is a similar situation with respect to 
the extensions of the composite reduced spin groups. 
In Table 3 we give the extended reflection groups 
~di, d i > 2  contained as normal subgroups in the dif- 
ferent aSs, o, together with the corresponding factor 
groups aS~,o/~rai ~- F.  

We apply again the Wigner-Mackey procedure, 
Sect. 3.1, for the construction of the irreps of dSj, o, 
starting from the ~ as normal subgroups. Since we 
are interested in the irreps with faithful representation 
of the central element e = -  1- -*-  1, we can restrict 
ourselves to the faithful representations of ~d~. These 
are for ~4  the 4-dimensional representation by the 
y-matrices; for ~4r3 the two inequivalent 2-dimensional 
representations by the Pauli matrices 11i~o-i and 
Hi ~ - o- i, i = 1, 2, 3; for gr the 2-dimensional repre- 
sentation by Pauli matrices. We checked that the two 
inequivalent representations of X3 are not trans- 
formed into each other by transformations of dSj, o, 
j = 4 ,  6 (see Table 3). Thus the irreps of ds~, o with 
faithful representation of the centre contain 1-point 
orbits in :r The corresponding little groups of the 
first kind are the aS~, o itself. The extension of an irrep 
of ~di to an irrep of aS according to Sect. 3.1 (2), j ,0,  
can be easily derived from the defining y-matrices in 
aW4 = aS j, 0 . According to the Wigner-Mackey proce- 

dure the irreps of aSj, o are given by the irreps of the 
little groups of second kind, i.e. of the factor groups 
dSj, o/J~cgai, (Sect. 3.1 (4)). However, these are the well 
known representations of the Symdi which already 
appear in the colomn 'Z(SF)' of Table 2. These consid- 
erations explain the 'reduced spin' a(dSj, o) for j =  1, 
2, 3, 4, 6, 7, 9, 10, 12, the case where aSj, o contains 
a normal subgroup ~ i  generated by reflections. In 
the symbols for cr (aSj, o): ~ni~ + d t J~,o, (~ + as in Table 3), 
n denotes the dimension of the representation: 

n = dim (-,~ai) dim (~o) 

with d i m( ~ i ) :  dimension of the :,~-representation, 
d im(~) :  dimension of the aS~,o/:Kai-representation. 

The index i is the same as for )~(~) in Table 2. 
The remaining sign in ()-+ destinguishes the two in- 
equivalent irreps of ~4f a. F o r j  = 3 a n d j  = 6 it coincides 
with the space parity. 

There remain a few other cases. Direct calcula- 
tions with the expressions for 11u=i757, and hu~ 
=-t-i75(yu-yv) show that dSj, o'"(ff~I=J~"~3, ~2, Z2 
xZ2,  Z2 for the momentum stars j = 8 ,  12, 13, 14, 
15, 16, 17. f ~  is listed in Table 3. The representations 
of these groups are well known and appeared already 
several times in our discussion. The interpretation of 
aZ 2 and dSym2 as Z2 x Z2 is somewhat ambiguous. 
It depends on our phase conventions for H u and h,, v 
introduced above. The fact that the central group 
should be represented faithfully restricts the represen- 
tations of Z 2 and Z 2 • Z 2. This is the meaning of 
the index ' - '  in (1~) -. The extension of aSym3 be- 
comes Sym3 by an equivalence transformation of the 
multiplier, (29). Thus its irreps are those of Sym 3 with 
the appropriate phase. Finally we have to discuss 
dSym4, (j=5). The extension a ~  4 of the group ~4 
={(1), (12)(34), (13) (24), ( 1 4 ) ( 2 3 ) } = S y m  4 is 
isomorphic to o~((2 . The factor group is aSymJ~,~f2 
-~ Sym3. The Wigner-Mackey construction leads with 
help of the irreps of Sym 3 to the irreps of aSym4: 
(2), (2'), (4). 

This completes the explanation of Table 3. 

(3) Survey of  the Irreps of the LFG. Table 1 together 
with Table 2 and Table 3 allows a complete survey 
of the irreps of the LFG. For this one has to combine 
the variety of momentum stars S tj characterized by 
/Sj with the variety of the flavour orbits Oj, k labelled 
by Lk, and with the variety of reduced spins tr de- 
scribed in Table 2 and Table 3. We don't want to 
explain explicitly all the details of this procedure. It 
can be performed easily for each special case. Also 
our experience shows, that for a definite physical 
problem one needs to consider only a few cases. How- 
ever, for orientation we give some further hints. The 
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number of different reduced spins, i.e. the number of 
inequivalent irreps of the reduced spin group Sj, k can 
be found in Table 1 in the column headed by N(a). 
The number of different flavour orbits i.e. different 
L k in the sixth column, multiplied by N(a) gives the 
number N(N) of irreps of the L F G  for a given mo- 
mentum star and reduced spin groups�9 The LFG of 
an infinite lattice is an infinite group, the total number 
of its irreps, being infinite, does not have a clear mean- 
ing. Instead, the numbers N(~)  associated with the 
irreps of a continuous class of momentum stars give 
an appropriate description of the multiplicity of the 
irreps of the LFG. 

The dimension of an irrep of the L F G  is given 
by the following factors: 

(a) N (S t j) = 384/N (S~), the number of points of the 
momentum star, 384 is the order of W4, N(Sj) the 
order of the stability group S t of S tj. 

(b) N'(Oj,k) the number of points of the flavour 
orbit, multiplied by 4 in the case of Fo: 

N'(Oj,k)=N(Oi,k) for k :t= O, 

N' (Oj,k) = 4 N (Oj, k) for k = O. 

(c) dim(D~(Sj, k), the dimension of the representa- 
tion D'(S~,k), of the reduced spin group, which is given 
by the symbols (n)sj,~, n=dim(D'(Sj, k)) in Tables 1, 
2,3. 

Thus we may calculate the dimension of an irrep 
N(/3j, Lk, o-(S~,k)) by information given in the Tables: 

384 
- , �9 O ~ dim (N (p j, Lk, a (Si, k))) = ~ N (Oj, k) dam ( (Sj, k)). 

(42) 

The explanation of the symbol N(/Sj, Lk, a(Sj, k)) 
for the irreps of the L F G  by the Tables 1-3 is rather 
involved. The reason for this is partly that we treat 
even and odd flavour orbits more or less together�9 
It could be simplified by treating the two cases sepa- 
rately�9 The representations with even flavour orbits 
('mesonic' representations) are essentially determined 
by the eigenvalues of commuting operators, mainly 
reflection operators: T(a), (dO, 1I~ restricted by some 
symmetry�9 For certain purposes a notation based on 
this fact could be advantageous. We don't want to 
elaborate this possibility which is implicitly contained 
in our tables�9 The representations with odd flavour 
orbits ( 'baryonic' representations) are completely de- 
termined by the group dSj of the star S tj and its irreps. 

(4) Remark on the Construction of the Irreps. The 
Wigner-Mackey procedure allows an explicit con- 
struction of the L F G  irreps. For the general case, 
the explicit formulas become rather involved. We can 

get some simplifications by treating the cases of even 
and odd flavour orbits separately�9 

In the case of even flavour the representation 
S}~k ) ~ ~ --' F,L,~a (4) in (40) is 1-dimensional. We may omit 
the index a. Then a simple calculation, using (39) and 
the definition of ~ (s, L), results in a simplified version 
of (40): 

,e , ,~]  k,o t =ei'~e~~ ,, R L, n a ~. (X(s ,L)) ,  (43) 

with X (R, L)=f -1  (R o L)Rf(L)~Sj,k. Now we insert 
this in (37), and get an expression for the transforma- 
tion of our standard basis 

�9 k, nO'l = ei(Rp, a_�89 eir~(eL~,eK) U(edK'-�89 ', L, 

j, k, ~r) 
"~ Rp, co(R,p)oL, n' D~,,(X(R,L,p)), (44) 

with 

E=RA(p)oL, co(R,p)=A-~(Rp)RA(p)ESj, 
X (R, L, p )= f -  a (co(R, p)oL) co(R, p) f (L). 

In the case of odd flavour the simplification comes 
from the fact that the flavour orbit consists of a single 
point only. Therefore we may omit in (40) the index 
L, and we can put f(L) = 1. Then a similar calculation 
as above leads to the result 

U(ed~' - �89  J'lP, O,a, :)  

=e i~Rp'~-~eK) S" j' O, a\ 
a~,[Rp, a', n' / 

�9 Fa~ K', (D(R, p)) D~,,(co(R, p)), (45) 

with 

e'=ep(A(Rp),K), K'=A-~(Rp)oK, 
co (R, p) = A -1 (R p) RA (17). 

Finally we want to emphasize that in the treat- 
ment of simple problems the general transformation 
formulas must be rarely used. It is one of the essential 
points of symmetry considerations that we can use 
an appropriate coordinate system. Thus if we choose 
for p =/~ and L = Lk the formulas above simplify con- 
siderable as a consequence of the Wigner-Mackey 
construction. 
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4 Outlook 

It was successful program to base the kinematics of 
quantum mechanical systems on the representation 
theory of its space and internal symmetry group. In 
this spirit we presented in this paper a rather complete 
discussion of the irreducible, unitary representations 
of the symmetry group of the lattice approximation 
to Dirac-Kfihler fermions. According to the pattern 
given by the treatment of other systems with other 
symmetry groups, a discussion of the reduction of 
product representations with help of generalized 
Clebsch Gordan coefficients could follow. However, 
there is a particular important group theoretical 
problem connected to the lattice approximation of 
a continuum theory. In our consideration of staggered 
fermion fields as a systematic geometric approxima- 
tion of the Dirac-Kfihler fields in the continuum, the 
symmetry group of lattice fermions LFG appears in 
a straightforward manner as a subgroup of the sym- 
metry group f# of the continuum theory. Therefore 
one may pose the problem of how an irreducible rep- 
resentation of f# restricted to the LFG decomposes 
into irreducible representations of the LFG. In the 
framework of the Wigner-Mackey theory, the 'Sub- 
group Theorem' by Mackey [13] helps to solve this 
problem. In the context of some application, we did 
some preliminary calculations along this lines. The 
irreducible representations of fg~-SagxSU(4) are 
characterized by the (imaginary) mass, spin, parity, 
and the SU(4)-multiplet character. We find that the 
fq-irreps with spin parity 0 +., 1-+, (2 -+) in the case of 
an SU(4) singlet and an SU(4) 15-plet contain the 
following LFG irreps with momentum star S t4 of Ta- 
ble 1 : 

The importance of such 'branching rules' in the 
framework of lattice approximation is twofold. On 
the one hand, a lattice state of a particle characterized 
by the quantum numbers of a LFG-irrep can be asso- 
ciated with a continuum particle state characterized 
by the quantum numbers of a ~-irrep, if the LFG- 
irrep is contained in the N-irrep. Such a procedure 
is well known from the discussion of the glueball spec- 
trum in lattice QCD [20]. On the other hand, it is 
a signal of the lattice approximation being close to 
the continuum, if the different lattice states contained 
in a (r are dynamically degenerate. It is the im- 
portance of these criteria which makes it worthwhile 
to study the representation theory of the LFG in full 
generality. 

One of the obvious applications of the group theo- 
retical methods described here, is the calculation of 
the hadron spectrum in lattice QCD with Dirac- 
K/ihler fermions. The aim of such an investigation 
should be to reproduce the equivalent of a nonrelativ- 
istic quark model with Susskind flavour. This may 
shed some light on the physical meaning of these new 
degrees of freedom associated with Dirac-K/ihler 
quarks. We have gained some first experience with 
such calculations performed in strong coupling ap- 
proximation combined with a resummed hopping pa- 
rameter expansion [21]. There the methods described 
here were of great help 
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(E 2, 0-+, 1)ILFG = ~'~ (fi~-, (0, 0, 0, 0), (1-+)W3)(~ (others) 
(E 2, 1 +% 1)[LFG = ~ (P4, (0, 0, 0, 0), (3 +)w~)@(others) 
(E 2, 2 +% 1)]LF6 = ~(P4, (0, 0, 0, 0), (3' +)W3)03~ (fi4, (0, 0, 0, 0), (2 + )w3)O)(others) 

(E 2, 0 -+ , 15)ILFG = ~(i04, (0, 0, 0, 1), (1 ~-)W3)+9~(p4, (1, 1, 1, 0), (1 +)W~)e~(fi4, (1, 1, 1, 1), (1 ~ )W3) 
O ~  (/5., (1, 0, 0, 0), (1' + )O . )~ (P~ ,  (1, 0, 0, 1), (1' ~)O,)O~ (/~4, (0, 1, 1, 0), (1' +)"4) 
O~(i04, (0, 1, 1, 1), (1' ~)o,)G(others) 

(E z, 1 +, 15)ILF~ = ~(/54, (0, 0, 0, 1), (3 - )W3)~C04,  (1, 1, 1, 0), (3 + ) W ~ ) |  (1, 1, 1, 1), (3 -)W~) 
@~'(P4, (1, O, O, 0), (1 +)D,)0.~'(.0,~, (1, O, O, 1), (1 ' )m)(~ ' (O,~,  (0, 1, 1, 0), (1 +)m) 
O~(P4,  (0, 1, 1, 1), (1' - ) o . ) @ ~ 4 ,  (1, 0, 0, 0), (2-)o.)~)~(p4, (1, 0, 0, 1), (2+)i).) 
@~(/54, (0, 1, 1, 0), (2-)m)@~(p4,  (0, 1, 1, 1), (2+)..)@(others) 

(E z, 1 -,  15)[LF~ = ~ (,54, (0, O, O, 1), (3 +)W)(~(f fa ,  (1, 1, 1, 0), (3 -)W~)O~(fi4, (1, 1, 1, 1), (3 +)W,) 
G,~ (f,*, (1, O, O, 0), (1'-)O.) |  (P,~, (1, O, O, 1), (1 +)m)@~'(p4, (0, 1, 1, 0), (1'-)1)4) 
@ ~  (/3a, (0, 1, 1, 1), (1 +)~.)(~ ~'(P4, (1, 0, 0, 0), (2 +)o~)@~(fi4, (1, 0, 0, 1), (2-)o,) 
@~(p . ,  (0, 1, 1, 0), (2 +)~.)@~(/~, (0, 1, 1, 1), (2-)v,)@(others). 

These results agree with other calculations [14]. The 
symbol ' • (others)' indicates that the 'continuous 
spectrum decomposition' of (M z, s+., (dim)sv(4))[LV G 
contains many more irreps of the LFG. The notations 
of W3-and D4-representations are those explained in 
Sect. 3.2 (5). More complete calculations are in pro- 
gress. 
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