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We show how chiral anomalies arise in the Fokker-Planck formulation of stochastic quantization. Starting from a noise corre- 
lation function which is non-local in real space-time, a gauge invariantly regularized Fokker-Planck hamiltonian is derived and 
used to compute the anomaly. 

1. Introduction. Recently various authors [ 1,2 ] treated the problem of  anomalous symmetry breaking in the 
framework of  stochastic quantization [ 2-5 ]. All these derivations of  the chiral anomaly, for instance, have been 
done using the Langevin formulation. In this letter we look at the same problem from the Fokker-Planck point 
of  view. At first glance, it might seem that this can be done trivially because the relationship between the Fok- 
ker-Planck and the Langevin formulation is well established. However, actually this is not the case. The reason 
is that, to regulate the quantum field theory, one uses the Bre i t -Gupta-Zaks  [3 ] regularized noise which bas- 
ically makes the process non-Markov. Thus, it is not evident if there is a Fokker-Planck formulation at all 
because the equivalence between the two formulations is defined by a single-"time" equation [4]. To circum- 
vent this problem we propose to use the following different regularization scheme: instead o f  smearing out the 
noise correlation in the r-direction, we replace the space-t ime a-function by a smooth, Lorentz-invariant reg- 
ulator function. This leads to a Fokker-Planck hamiltonian which is a non-local, second-order functional op- 
erator. Calculating the anomaly in this scheme turns out to be basically equivalent to the well-known point- 
splitting method [6,7]. 

2. The gauge-inuariant, regularized Fokker-Planck hamiltonian. In this section we will derive the gauge-in- 
variant, regularized Fokker-Planck hamiltonian using the canonical procedure. 

For illustrative purposes consider the euclideanized action of  massless QED4 

S = -  f d4x~(iI~ltff  , (1) 

where I~ = ~ + i~ and we follow the convention g , , =  -a ,~ ,  y~+ = - 7 , .  The Langevin equations are then 

O~ulOr = - D z ~ , + i D r / ,  a~/or = _~}~2 +q ,  (2a, b) 

where I~=~- - i~ .  The Langevin equations (2a),  (2b) are gauge invariant provided the noise terms q and q 
transform like ~u and ~, respectively. 

At this point, we specify how the noise is regularized. It is a common  practice to regularize the noise in the 
r direction. As pointed out already in the introduction, this makes the stochastic process non-Markov. As an 
alternative, we propose to regulate the noise in the x,  direction. Because of  the gauge transformation properties 
of  q and q, we propose the following correlation: 
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<tl~(x, r)fl¢(x', z') > =2fi~fi(r-z')flA(x-x')O(x, x') , (3) 

where flA (X--X') is a Lorentz-invariant smearing function which approaches the Dirac delta as A (which has 
the dimensionality of a mass) approaches oo. We also assume that fflA(X--x')d4x'= 1. The phase factor 

x '  

x 

is necessary because of the gauge transformation properties of the noises. The correlation (3) implies that the 
noises have the distribution 

exp( - -2  f dr d4x d4x' f l (x,r) f lA(x-x')~(x,x ')q(x ' ,z)) .  

To derive the Fokker-Planck hamiltonian, we consider the Wiener integral corresponding to the Langevin pro- 
cess given by (2a), (2b). 

(f, r =r f l i ,  z=O> = ~ [dO(x, z)] [dq(x, r)] 
~'~l(x,0 ) = g, i (x)  
q/,/( ~7, ~c) = q/f(x)  

× e x p ( - l  f dr d4xd4x ' fl(X, r)flA(X--X')~(X,X')q(X', r))  . (5) 

Using the Langevin equations, we transform this into integrals over 4 and 4. 

<f, r =rf l i ,  r=O> = [d~(x, r)] [d~(x, r)]J 
end  poin ls  

><exp - ~  dr daxd4x'~[~/Or+I]IZ]flA(X-X')O(x, x')[(1/iI]))(O/Oz+I~) )gt].,., , (6) 

and the jacobian of the transformation is 

~(x-x')[O/Or + ~ 2 ( x ' ) l ~ ( r - r  ') 

In (7), g(x-x ' )  is the Green function of iI]). Factoring out 

J=det[o(X-X')(O/Or)f(r-r')  0 ] 
(O/Or)~(x-x ' )6(r-r ' )  ' 

and using the midpoint rule O(0) = ½, we find 

J ~  exP(½~4(O) ~ d2" d4x[I~2 -t- I~2 ] ) . (8) 

From (8) and the exponential term in (6) we read off the Fokker-Planck lagrangian [ 5 ] 

l - - ~ - 2  tFp =~ f d4x d4x'[O~/Or J- ~,I~ ]xflA(X--X')(~(X, X')[(l/iI~))(OIk'/Or+I~)2q/)]x ' -- 1 ~ 4 ( 0 )  f d4x[I~2 ~-2 +Ip,]. 

We now use the canonical procedure. The conjugate momenta are 

(9) 
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8LFp 1 f - "  2 7G' - 8 ( 0 ~ U ) - - 2  d4Xl d4x2[O~/OT+~tI~ ] rl]~A(Xl --X2)•(XI, x 2 ) g ( x  2 --X) , (10a) 

{~LFp 1 f 7r~u--8(0r~)-- 2 d4xl daX2f lA(X--XI)¢(X,  x I ) g ( x  I --X2)(O~c/O'r-~-I~2~l)A-2 . (10b) 

To solve for the velocities, we use 

f d4x,flA(X--X, )0(X, X, )flSl(X, --X2)O(X,, X:) ~'(~4(X--X2) • 

The "hamiltonian" is given by the Legendre transformation 

HFp = f d 4X(/'Cq/a 0~fa/0r "~ 7~q/o, 0~a/Or) -- LFp , (1 1 ) 

and after operator ordering gives 

/1Fp= d4xd4x'  irp,[fls'(x-x')O(x,x')] 8[~(X') -- 8 ~ ( X )  [ ¢ - I ( x ' X ' ) f l A I ( X - - X ' ) ] I ~ x s ~ - - - ~  

+fd4x(~-g~ D~v/(x)+ fi--~--[~(x)~, ~u(x)  . ( 12 )  

Eq. (12) is the gauge-invariant, regularized Fokker-Planck hamiltonian. Its Lorentz invariance is manifest since 
flA is required to be an invariant function: flA(aX)=flA(X) for any Lorentz transformation a~,.  By doing a 
similarity transformation 

/ ~ p  = e.,i/~rvp e - , i  , (13a) 

~ 6 (13b) z~= d 4 x d 4 x  ' g(x--x')flA '(X--X')O(X,X') C~(X') ' 

we find 

Note that H}p does not depend on the regulator and thus its spectrum is independent ofA. Sakita had shown 
that /tFp is a positive-definite operator and thus it is also true that the point-splitted, gauge-invariant Fok- 
ker-Planck hamiltonian (12) is also positive definite. Another prerequisite is the existence of a mass gap be- 
tween the zero mode and the non-zero modes. Making the usual assumption that H~p has a mass gap then/1Fp 
also has a mass gap. 

3. Derivation of the anomaly. We determine the anomaly as the jacobian J [ a ]  associated with an infini- 
tesimal chiral transformation 

~u'(x) =exp[io!(x)ys]  ~u(x) , ~ ' ( x )  = ~ ( x )  exp[io~(x)ys] . 

For this jacobian we make the ansatz 

J[c~]=exp(-ifdaxo~(x)~d(x)). 

Now one considers the normalization condition 

(15) 

(16) 
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; [d~'] [d~] P[~,  q/; z] = 1 , (17) 

and changes the integration variables from ~, and ~ to ~u' and ~'  according to (15) for infinitesimal c~(x). 
This implies 

ij d4x-(x)mx)=j [dq/] [d~] 8P[~u, qT; z ] ,  (18) 

where tiP[ ~,, ~}; z] =P[  ~ ' ,  ~ ' ;  z] - P [  ~u, ~; z]. To make this equation more transparent, we introduce a com- 
plete set {F,,[~, q/] } of eigenfunctionals of the Fokker-Planck hamiltonian: IClFpFn=E~F,,. In terms of the F,, 
the distribution function may be expanded as 

P[ ~u, ~; z] = ~ c,, e x p ( - E , z ) F , [  ~u, ~] . (19) 
pl 

The coefficients {cn} are to be determined from the initial conditions. Thus we have 

j d4x ~ ( x ) d ( x )  = X cn e x p ( - E , , r )  J [dqz] [d¢]SF,[qz, ~ ] .  (20) i 
n 

This equation nicely exhibits the z-evolution of the anomaly. Since in general the eigenfunctionals Fn for E,, > 0 
are not known explicitly, we can evaluate the RHS of (10) only in the limit z~c~.  In this case only the zero- 
mode F0 ~ Z - J exp ( - S¢) with the partition function Z = f [ d~,] [ d~7 ] exp ( - &) contributes. Hence one obtains 

j d4x c~(x)d(x)  = - Z - '  J [dqz] [d~}] 8S{ exp( -S{)  = - <8S¢ >. (21) i 

Contrary to Fujikawa's [8] approach, where ~¢ is evaluated directly from the definition of the jacobian 8 (q/', 
~7' )/8 (q/, ~) ,  we here determine ~¢ by calculating (8S~). From the hamiltonian (12) it is easy to see that S~ 
is given by 

S~ = - - ~  d4x d4{ JffA({)[~(X+e)~(X+e, x)iI~,-~(X) + ~(x)iI~.,O(X, X+ {)q/(X+ {)] . (22) 

Recalling that for A--. o0, the Lorentz invariant function/~A approaches a &function, we may replace lim~ . ~ f d 4 {  

×/1A(e)(...) by lim¢~o(...) where an average over the directions of {~' according to ('e"/e2--,g~'~/4, etc. is under- 
stood. Expanding the bracket of (22) to first order in {, which is equivalent to the first order in 1/A, one obtains 

S~=-lim f dgx~(x+e/2)[iO-~+e~Au~+i~{"A~,+½(~e'A~,)]~/(x-e/2 ) . (23) 
{ - ~ 0  

The change of (23) under an infinitesimal chiral rotation reads 

8S~ = - J  d4x ~ ( x +  e /Z ) [ -  (~)+{~'(O~,o~)(~+i~) + ½~({~0~,o~) +ie~'A~,(~o~)]ys~u(x-e/Z). (24) 

Next, one has to compute the vacuum expectation value of (24) in the limit {-,0. Using the well-known matrix 
element [ 7] 

(~(x+~/2)y~,ps~u(x-~/2) ) = ( I/47~2)( {v /{2)E,,~,.#F ~ - O ( {  °)  , (25) 

and the Heisenberg equations for ~u it is straightforward to arrive at 

( 8 S , )  = - i l i m  f daxF~,v{~'(q}(x+e/2)y'ys~/(x-{/2))=-i f d 4 x o ~ ( x ) , ~ C ( x ) ,  (26) 
{ ~ 0  

with 

d ( x )  = - 2x--. ~ttv ( l / S n ) r , ~ ,  (27) 
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Together with (16) this yields the standard result [ 8 ] for the jacobian of the chiral transformations (15): 

J [ o ~ ] = e x p ( - ~ _ f d 4 x F * , F U " ) .  (28) 

To obtain the divergence of the axial vector current one notes that using the equations of motion for gt the 
expectation value of (24) can be written as 

<~iS~ > = - [  d4y OL(X) lim Or, ( ~ ( x + d 2 ) 7 " 7 5 0 ( x + d 2 ,  x - d 2 ) ~ , ( x - d 2 )  > . (29) 
d e ~ 0  

Inserting this together with (27) into (21), one ends up with the desired relation [7] 

lim 0r, ( ~( x + e/2 )7~'75~(x + e/2, x -  e/2 )~u(x-e/2 ) > = ( i/8zr2)F*,( x )F '" (x )  . (30) 
~ 0  

This completes the proof that the Fokker-Planck dynamics described by our HFp leads to the correct anomaly 
for r--, oo. 

4. Conclusions. In this letter we proposed a new way of regulating the noise in stochastic quantization. We 
find that this scheme gives rise to a (gauge-invariant) Fokker-Planck hamiltonian whereas in the 
Brei t -Gupta-Zaks scheme it is not evident if there is a simple Fokker-Planck formulation. As a first appli- 
cation, we derived the chiral anomaly of QED4. The generalization to more complicated theories is in principle 
straightforward. 

Let us now briefly discuss other possible applications of  the regulator considered here. Looking at the re- 
gularized action (23) it is clear that a perturbation theory based upon the propagator associated wit S, would 
be quite complicated and not very advantageous. On the other hand, if one does not evaluate single graphs 
but, as in the case of  effective actions, say, infinite sums of Feynman diagrams, the situation is different. Within 
the present formalism the one-loop effective action of QED is obtained as follows. Following the discussion 
of Gozzi [ 5 ], for instance, it is obvious that stochastic averages of ~u,1(x, T) and ~,~(x, T) can be computed as 
derivatives of a generating functional which can be represented by a path integral whose basic ingredient is 
the Fokker-Planck lagrangian LFe. In general the corresponding effective action is obtained by the usual Le- 
gendre transformation. I f  we restrict ourselves to an external vector field, we obtain from the lagrangian (9) 
for this (r-dependent) effective action 

F ,  [A] = T r  ln[I~ - ' (  - d2/dz 2 + I~4)] reg (3 la) 

4 = - ½ Tr In I~2eg + Tr ln( - d 2 / d r  2 +l~r~g), (3 lb) 

where "reg" means that the respective matrix elements are convoluted with flA (X--X')O(X, X'). TO evaluate 
the trace with respect to the z-dependence in the second term of (31 b) we follow Haba [ 9 ] and impose periodic 
boundary conditions for r on the interval [ - T, T] and finally perform the limit T--,oo; a simple calculation 
yields [ 9 ] 

Tr In( - d 2 / d z  2 "3ff I ~ r 4 g  ) = 1 Tr In l~4eg + Tr In[ 1 - e x p (  - 4TI~ffeg)] . (32) 

Therefore the field theory (Heisenberg-Euler) effective action is given by 

/"HE[A] = lim F r [ A ]  = ~ Tr In I ~ 2 e g  , (33) 
) " ~  Gc 

Using an integral representation for the logarithm, this explicitly reads (for A~oo) :  
oo 

r.E[A]---~ d4xd4x'~(x-x')O(x,x')tr <xlexp( - t I~2)[x '> .  (34) 
0 
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Obvious ly ,  at this  level  the  effect  o f  the  regula tor  i n t r o d u c e d  in to  the  noise  cor re la t ion  func t ion  is to replace  

the t race  o f  the  hea t -kerne l  { x [ e x p ( -  tI~2) Ix ' ) by  a quan t i t y  where  the  co inc idence  l imi t  has not  yet been  

pe r fo rmed .  The  express ion  (34 )  cou ld  be fu r the r  e v a l u a t e d  using s t andard  m e t h o d s  [ 10 ]. F ina l ly  we m e n t i o n  

that  the  po in t - sp l i t t ing  regu la r iza t ion  o f  e f fec t ive  ac t ions  is par t icu la r ly  useful  in cu rved  s p a c e - t i m e s  [ 11 ]. 
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