
Letters in Mathematical Physics 14 (1987) 25-31. 
�9 1987 by D. Reidel Publishing Company. 

25 

On the Riemann Theta Function of a Trigonal 
Curve and Solutions of the Boussinesq 
and KP Equations 

V. B. M ATVEEV ~r and A. O. S M I R N O V  ~r'k 
H. lnstitut J~r Theoretische Physik, Universitiit Hamburg, Luruper Chaussee 149. 
2 Hamburg 50, West Germany 

(Received. 9 January 1987) 

Abstract. Recently, considerable progress has been made in understanding the nature of the algebro- 
geometrical superposition principles for the solutions of nonlinear completely integrable evolution 
equations, and mainly for the equations related to hyperelliptic Riemann surfaces. Here we find such a 
superposition formula for particular real solutions of the KP and Boussinesq equations related to the 
nonhyperelliptic curve e94 = (2 - El) (2 - E2) (2 - E3) (2 - E4). It is shown that the associated Riemann 
theta function may be decomposed into a sum containing two terms, each term being the product of three 
one-dimensional theta functions. The space and time variables of the KP and Boussinesq equations enter 
into the arguments of these one-dimensional theta functions in a linear way. 

1. Introduction 

Until recent times, simple examples of nonhyperelliptical solutions of the Boussinesq 
equation 

3Uy:, + (u . . . .  + 6UUx) x = 0,  (1) 

reducible to one-dimensional theta functions, were unknown. The curve F: 

(.04 = (2 -- El ) ( / ] ,  - E 2 ) ( 2  - E 3 ) ( 2  - E4)  , I m E  k = O,  

was discussed in [ 1 ] as an example of Krichever's reduction of the KP equation to a 
Boussinesq equation via Weierstrass points. But at that time only the Weierstrass points 
coinciding with branch points were explored, but the possibility of reducing associated 
three-dimensional theta functions to one-dimensional theta functions was not discussed. 
Such a possibility arises from the existence of the conformal automorphism 
z: (c0, 2) --* (ico, 2) interchanging the sheets of the associated Riemann surface, realized 
as a four-sheeted covering of the complex 2-plane. The way to explore this auto- 
morphism for reducing three-dimensional Riemann theta functions goes back to the 
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methods given in [2, 3] - see also [4] - although application of the matrix version of 
Appel's theorem used below simplifies the calculations. As a main result we obtain a 
family of the genus three solutions of the KP and Boussinesq equations expressed by 
means of elliptic theta functions. 

2. The Algebrogeometrical Solutions of the KP and Boussinesq Equations 

The formula 

~2 
u(x, y, t) = 2 In O(xU + yV + tW - I I B) + C (2) 

Ox 2 

describes the solutions of the Kadomtsev-Petviashvili (KP) equation 

3Uyy + (u,o:x + 6uux - 4ut)~ = 0,  (3) 

generated by an arbitrary compact Riemann surface F [5]. In Equation (2)B means the 
matrix of b periods of the surface F in some canonical basis of H~(F). 0 is a 
g-dimensional theta function defined by the formula 

0(plB) = 0100] (p lB) ,  (4) 

0[~]  (p]B)= ~ exp{ni (B(m + ~ + ~) + 2rti (m + ~'p + [3)} (5) 

where g is the genus of the Riemann surface F. U, V, W are the vectors of b-periods 
of some normalized Abelian integrals of the second kind with the poles at the marked 
point Po ~ F. In the case of the hyperelliptic curve, Po may coincide with one of the 
branch points. In this case, vector V turns out to be equal to zero and formula (2) 
reduces to the solution of the KdV equation, given by the Its-Matveev formula [ 1, 6-8]. 
If F is some trigonal curve, i.e., there exists a meromorphic function with a unique pole 
at the point Po of the order 3, it turns out that W = 0. In this case, the KP solution (2) 
is independent on t and satisfies the nonlinear Boussinesq equation (1). Trigonal curve 3 
of the genus g = 3 cannot be hyperelliptic. The curve F considered in this Letter is 
nonhyperelliptic of the genus 3. It is of the nondividing type. Its branch points are 
Pj = (0, Ej.). 

Let Po coincide with one of the branch points. It is possible to construct a local 
parameter K(P), P c  F in such a way that under the action of the anfiholomorphic 
involution z: (o9, 2 ) ~  (~, 2), it transforms to k or -k .  Let 7o.(m) be the path with the 
starting point at (0, Et) and ending at (0, Ej), arg o9(2) = 0rm)/4 along the path. The 
canonical basis of the curve F may now be defined by 

al = V34(1) + 743(- 1), a2 = 734(- 3) + V43(3), 
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a3 = 723(2) + 732(- 2) ,  

bl = }'34(3) + 743(1) + }'23(4) + 732( - 2) ,  (6) 

b2 = ~)34( -- 1) + ~/43( -- 3) + 723(0) + 723( - 2) ,  

b3 = ~'~1(1) + ~ '2,(3) .  

Let 1 satisfy the condition Re/a = } ReBjj. 

Under  the assumptions of this point, we have the following main theorem. 

T H E O R E M  1. The solution of the Boussinesq equation defined by the curve F is real-valued 
and may be reduced to the following form: 

[13 Ill I'] t - ,  

+ 0 _ ( P l  IB1) 0 _ (P2[B2) 0 ~ ( p 3 1 B 2 )  + C -  21ti B33 U32 (7 )  

B~ = 4B12 + B 3 3  - B33 ~ + 2 ,  B 2 = - B 3 3 ' ,  

p,  = x(U,  + u2) + y(V,  + v2) + l, + 12, 

1 
P2 = x(UI - U 2  - U3) "+" Y ( V t  - V 2  - 1"3) + 1, - l 2 - l 3 - 7 ,  

P3 = B33'(xU3 + yV3 + 13). (8) 

3.  P r o o f  o f  the  M a i n  T h e o r e m  

The reality of the solution (7) of  the Boussinesq equation follows directly from the recent 
results of  Dubrovin [ 9]. The crucial step of  the proof  of  the formula (7) is to demonstrate 
the associated decomposit ion formula for the Riemann theta function of the curve F. 
To  produce such a decomposit ion formula, we start by specifying the structure of  the 
matrix B taking into account the symmetry properties of  the curve F 

L E M M A  1. Let zl, be a holomorphic automorphism of some compact Riemann surface F 
of the genus 3 which acts on the basis of Hl(F ) in the following way: 

via = M a ,  v~b = ( M T ) - l b  + L a .  (9) 

Then the B matrix satisfies the relation 

B = M T B M  - m r L .  (10) 

Proof of  Lemma 1 follows directly from the general laws - see [4] - of transformation 
of the B matrix under the change of  the canonical basis of  H 1 (F). 
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Under the conditions of  Lemma 1, we can find a matrix T, T,. k �9 Z, in such a way that 
the conditions 

B'  = G B ' G ,  G = T - 1 M T ,  (11) 

B'  = T r ( B  - A ) T ,  (12) 

where A is a symmetric matrix with rational matrix elements satisfying the same relation 

(10) as the B matrix, and leads to a block diagonal structure of the matrix B ' .  
Let condition (11) be satisfied and the elements of  the matrix A'  - D defined by 

A'  = T r A T ,  D = diag[A,.'i], are entries. 

Now it is easy to prove the following theorem. 

T H E O R E M  2. Under the condition o f  this point, a g-dimensional theta function generated 

by the B matrix may be represented in the form : 

O [ ~ ] ( p l B ) =  ~ z *(r) exp{-lri((A'-D)~(s)'a(s))}O[a(s)](Trp'B'+D)'(13)l_fl(s)_J 

Summing over Z g ( T )  means that s �9 Z g runs over all the vectors constrained by the 

inequality 0 <~ ( T - l s ) j  < 1. 

a(s) = T - ' ( s  + ~),  fl : (A'  - D)~(s) + T r f l .  

Taking into account that B '  is a block structure and D is a diagonal matrix, it is evident 

that 

L#(s)J 

may be represented in the form of  a product o f  lower-dimension theta functions. 

Proof of Theorem 2 consists simply of going from summing over m �9 Z g to summing 

over n and s related to m by the equality m = Tn + s. The  number of terms in the sum 
taken o v e r  Z g ( T )  is equal to [det TI because det T is the Jacobian determinant of the 
transformation from the m-lattice to the n-lattice. 

Theorem 2 is related to Theorem 1 in the following way. Let us introduce a new 
canonical basis in Hi(F) :  

~t3 = - b 3 ,  b3 = a3, ak = a~, b~ = bk,  k = 1, 2 .  

Now the holomorphic automorphism appearing in Lemma 1 may be realized so that 
rl: E k ~ E 5 - k ,  CO--* i09. Then we find that the matrices A and T may be chosen in the 

form [11 ] [001 l 
T =  1 - 1  , A =  0 0 0 . (14) 

1 0 - 1 0 1 
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Now a direct application of Theorem 2 leads to the representation (7) for the solutions 
of the Boussinesq nonlinear equation. 

REMARK.  I f  the point Po does not coincide with one of the Weierstrass points, from 
decomposition (13) we get the solutions of the KP equation represented in terms of 
one-dimensional theta functions. 

4. Weierstrass Points of the Curve U, Which are not Branch Points 

Weierstrass points of the curve F were studied in [ 10] where a complete description of 
the Weierstrass points of the genus 3 curves was presented. However, the variety of 

Weierstrass points of  the curve F pointed out in [ 10] seems to be wrong because it is 
not invariant with respect to the action of some conformal automorphisms. That is why 

we recalculate the W-points of the curve F. This calculation may be performed in the 

standard way by looking at the behaviour of the Wronskian of normalized Abelian 
differentials. Here we give only the final answer, formulated for the curve 

),4 = X4 _ (m 2 + 1)x222 + m 2 2 4 .  (15)  

This curve, given by the polynomial equation (15), where x, y, z are homogenous 
coordinates, is birationally equivalent to the curve F. So it is sufficient to describe all 

Weierstrass points in this realization of F. These are two possibilities: rn 2 = -1 ,  
m:  4= - 1 which are essentially different in the study of W-points. First, let rn a = 1. In 
this case, the number of Weierstrass points is 12. Their positions are 

(0, i k, exp(irt/4)), (i k, 0, 1), (i k, 1, 0),  k = 1, 2, 3, 4 .  

The meromorphic functions with a unique singularity pole of the third order at these 
points are 

x "  { y e  C~0/4 - i k z } - 1 ,  y ( x  -- i k z )  - I  , Z (X  -- i k y )  - I  , (16) 

respectively. 

In the case m 2 ~ - 1, we have 20 Weierstrass points. These W-points may be divided 

in two groups. The first group contains all the branch points and meromorphic functions 
with a third-order pole as a unique singularity that may be constructed as above. The 
second group contains 16 points with the positions (xk, Y,k, 1) defined from the system 

ye 4 = x  4 - ( m  2 +  X)x 2 + m  2, 

2(m 2 + 1)x 4 + (m 4 - 10m 2 + 1)x 2 + 2mZ(m 2 + 1) = 0 .  (17) 

The related meromorphic functions are of the form (x - 2k) (y - Y,k - y ; k ( x  - x k )  - 1 ) ,  

stays for the differentiation on x and 

= -- Y i k ( Y i k )  ) [(Y;k) 4 11 1 2~ xk + 4(x~ , 3 - -  
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5. The Reduction of the Basis Abelian Integrals of the First Kind to the 
Elliptic Integrals 

f d2 f 2 d2 
~3 and ~o S 

may be reduced to the linear combination of the integrals I1,2: 

Ii=f #d# f d# [(#2 _ 1) (#2 - m 2 ) ]  3/4 ' 12 = [(#2 _ 1) (#2 - m 2 ) ]  3/4 

by a fraction-linear transformation. 
12 may be reduced to I 1 by a change of variables # = m v-1. 
11 may be reduced by the transformation 

y - 2 .,,/(#2 _ 1) (#2 _ m 2) 
(1 - m 2) 

to the elliptic integral 

f dy 
II=x/~li~m 2 ) x/y(1 + y 2 ) 

where the choice ofk depends on the path of integration. The third basis integral ~ d2/~o 2 
is just elliptic and needs no further reduction. 

6. Concluding Remarks 

This Letter is part of a program [2-4] of studies on theta functions of Riemann 
surfaces with nontrivial automorphisms and their applications to soliton equations. 
Such surfaces and their theta functions are also of interest for the recent developments 
of quantum string theories. Such surfaces appear particularly in the description of the 
interactions on orbifolds involving the emission of twisted states [11]. For example, the 
famous Klein curve with a simple group of birational automorphisms of the extremal 
order 168 (see [2] for a study of its B matrix and particular properties of its theta 
function) is also encountered in the clas sification of orbifolds with S U(3) holonomy [ 12]. 
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