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Abstract. It is shown that quantum field theories of free massless particles satisfy a recently proposed 
'nuclearity condition' restricting the admissible number of local degrees of freedom of a theory. This result 
is based on an improved bound for the 'nuelearity index' of certain specific sets of vectors in Fock space. 

1. Introduction 

A new criterion restricting the admissible number of local degrees of freedom of a 
quantum field theory was recently proposed in [ 1 ]. This 'nuclearity condition' already 
has proved to be useful in the investigation of several structural problems in the general 
setting of quantum field theory [ 1-5]. It seems to be a natural basis for the discussion 
of questions involving considerations of phase space. We recall here in brief the relevant 
concepts. 

DEFINITION. A subset Y of a Hilbert space ~ is called a nuclear set if there exists 
a sequence of unit vectors ~n ~ ~ ,  n e ~q and of linear functionals l,, e ~ * ,  n E ~q such 
that 

(i) ~ sup (llA~')l : ~' ~ x }  < ~ ,  
n = l  

(ii) ~ 1~(~,,).r = v f o r a t t V e X .  
n = l  

The nuclearity index v(Jff) of Jff is defined by 

v ( x )  = inf ~ sup { l lA~')l �9 ~' e x } ,  

where the infimum is to be taken with respect to all vectors and functionals complying 
with the above conditions. 

With the aid of these concepts, the nuclearity condition has been formulated in the 
algebraic setting of local quantum field theory as follows. (For an equivalent formulation, 
suggested by Longo, cf. [2].) 

CONDITION OF NUCLEARITY [1] 

Let 9~((9) be the local yon Neumann algebra of observables (resp. fields) associated with 
any bounded region (9 in Minkowski space, let t) be the vector representing the vacuum, 
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and let H be the Hamiltonian. Then the subsets of vectors 

x((9 , /~)  = { e - ~ " u n  : u ~  ~((9), u * u  = 1} 

in the physical Hilbert space o~ must be nuclear for any fl > 0. Moreover, there must 
exist positive constants c, n and r o, flo such that for all fl ~< flo and r/> ro, where r is the 
diameter of (9, 

v(X(~ ~)) ~< e cr'~-" 

The heuristic motivation for this criterion given in [ 1 ] is based on the assumption that, 
as far as the size of the sets JV'((9, fl) is concerned, one may ignore the fuzzy localization 
properties of  the respective vectors and identify these sets with the canonical ensemble 
occupying a finite volume ('box') at temperature fl- 1. The bound on the nuclearity index 
given above then derives from the expected behavior of the partition function in theories 
with a physically reasonable number of degrees of freedom. This qualitative picture was 
confirmed in [ 1 ] by explicit calculations in models on noninteracting massive particles. 

It is the purpose of the present Letter to demonstrate that the nuclearity condition 
also holds in theories of noninteracting massless particles, such as free quantum 
electrodynamics. Moreover, it will be shown that one can put n -- 3 in the bound for 
the corresponding nuclearity index. So this quantity behaves for small fl exactly like the 
partition function of  an ensemble of massless particles. These results provide evidence 
to the effect that the qualitative ideas in [ 1 ] underlying the nuclearity condition are also 
applicable in theories with long-range forces. 

2. Nuclear Sets in Fock Space 

In this section we analyze the nuclearity properties of certain specific sets in Fock space. 
These general results will be applied to concrete models in the two subsequent sections. 

Let Of" be a separable Hilbert space (which will be identified with the space of  
single-particle wavefunctions). The elements of 9g'are denoted by f, g and the scalar 
product in Jr by ( .  I . )-  We also distinguish some anti-unitary involution J on ~r 
(which will be the operator of complex conjugation of the wavefunctions in configuration 
space). Given this structure one obtains by a standard construction the (symmetric) 
Fock space a~t ~ over of" with the scalar product ( . , . )  and a distinguished vector f~ 
representing the no-particle state (vacuum). 

On 9~ there act creation and annihilation operators a*(f) and a(f) ,  which are linear 
and anti-linear, respectively, in f ~  ~ ,  and which satisfy the usual canonical commuta- 
tion relations. For the corresponding unitary Weyl operators given by 

W ( f )  = exp(i(a*(f) + a ( f ) ) - )  

one then has the well-known law of composition 

(2.1) 

W( f ) W(g) = W( f + g). exp ( ( (g  [ f ) - ( f l g )  )/2). (2.2) 
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We also consider the auxiliary field operators 

q~(f)  = (a* ( f )  + a ( J f ) ) / v / 2 ,  ~(g) = i(a*(g) - a(Jg)) /x /~  (2.3) 

(which are linked to the Cauchy data of the local fields in the respective models). This 
familiar framework is supplemented by the following additional structure. 

Firstly, we assume that we are given two closed subspaces 50, and 50~ of ~ which 
are invariant under the action of J. We then consider the real finear subspace 50 of 

defined by 

5 ~ = (1 + J)~:o + (1 - J)50,~ (2.4) 

and the corresponding von Neumann algebra ~I(50) which is generated by the Weyl 
operators W ( f )  with f e ~, i.e., 

9(50) = { W ( f )  : f e 50}" . (2.5) 

This algebra coincides with the von Neumann algebra generated by the field operators 

~ o ( f ) , f e  50~o and n ( g ) , g e  50~. (In our discussion of models we will choose the 
subspaces 50,, 50~ in such a way that the corresponding algebra 9a(50) is the local algebra 
associated with a particular spacetime region.) 

Secondly, we assume that we are given some unitary group R 9 t ~ e itr on ~ whose 
generator 7 commutes with J. By a standard tensor-product construction we then obtain 
a unitary group R 9 t ~ e i~G on g w h i c h  leaves f~ invariant and satisfies 

e ' tG W ( f )  e-i 'G = W(ei tT f ) .  (2.6) 

(The generator G will be the Hamiltonian in the models discussed below.) 
We are interested in the question under which conditions on the spaces 50~o, 50~ and 

the generator 7 it holds true that 

J[(7;  50) = { e-~Af~ :A e 9](50), [I AII < 1} (2.7) 

is a nuclear set of vectors in ~ .  Denoting by E~o and E~ the orthogonal projections in 
X onto the subspaces LP~o and 50~, respectively, for our purposes, a completely sufficient 
answer is given by the following 

THEOREM 2.1. Let  E~o, E~, and 7 be the projections and the generator, respectively, 

defined above and assume that Eq,. e - ~ and E,~" e - ~ are bounded operators o f  norm less than 

1, which are in the trace class. Then -//(7; 50) is a nuclear set o f  vectors in ~ a n d *  

v(Jt'(7; 50)) ~< det(1 - [E~- e -  ~ [)-2- det(1 - [E , .  e-~ I ) -z-  

REMARK: We emphasize that this theorem applies also to unbounded operators e-~. 
This is of interest in the analysis of modular operators in free field theory [6]. 

* Some notation: the norm, trace-norm, and Hilbert-Schmidt norm of an operator A will be denoted 
by hi A II, II A II ~, and II A I[ ~, respectively, and its determinant by detA. The modulus I A [ of A is the 
operator defined by I-~l = ,fA~- 
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The proof of this theorem is similar to the arguments given in the Appendix of [ 1]; but 
we have to deal here with the possibility that the operator e-~ is unbounded. For that 
reason we consider first the subalgebra ~to(~ ) of ~t(La), consisting of all finite Fmear 
combinations of the Weyl operators W(f) ,  f e  ~, which is weakly dense in 9~(Za). 

Since E~o'e-~ and E~ . e - r  are bounded operators it follows by a simple calculation 
that the vectors W(f) f l ,  f e  Zr are in the domain of e -~  and consequently also their 
linear span ~to(-~)fL We want to show that the closure of the set of vectors 

~8'o(~; ~ )  = {e-~  f~ : Ao e ~to(Za), Ilao II ~< 1) (2.8) 

is nuclear. To this end we introduce a generating functional ~ given by (cf. [ 1 ]) 

c~(f; e-GAolS) = (exp(a*(f))" fl, e-GAolS),  (2.9) 

where f �9 ~ ,  Ao �9 9ao(~) and the exponential of the creation operator is defined in terms 
of its power-series expansion. Restricting f to the domain of e -  r we have the trivial 
identity 

f~(f, e-GAofl)  = ~ ( e - r f ;  Ao f~), (2.10) 

and to the fight-hand side we can apply the arguments in [1], p. 339, giving the bound 

I i f ( f ;  e - G a o  l ) ) l  ~< exp (�89 II e - r f  - g II 2). II ao  II �9 (2 .11)  

Here g is any element in the symplectic complement ~ '  of 

L~"= {ge :,~f-: ( g J f )  = ( f i g >  for all f e . ~ a } .  (2.12) 

Setting in the above inequality 

g = 1(1 - E~o) (1 - J )  e - r f  + 1(1 - E,~) (1 + J )  e - r f  (2.13) 

(which is easily seen to be an element ofL~" if one takes into account that the projections 
E~o, E~ commute with J )  we arrive at 

I ~ ( f ;  e - ~  ~ exp[k If T.(1  - J)ft[ 2 + ~ II T~(1 + J) f l l 2 ] . l l ao  II, (2.14)  

where we have put 

T , =  IE,p.e-~l and T,~= I g ~ . e - ~ l .  (2.15) 

This estimate extends by continuity to a l l f  �9 X since the functional f ~ f#(f; e -  GA o t2) 
is continuous on ~r  (equipped with the strong topology), and the operators T,, T,~ are 
bounded. 

The latter bound on the functional ff can be simplified with the help of an operator 
T which, in some sense, is the least upper bound of the operators T,  and T,~: it is the 
smallest operator for which 

T">~ T~ and Tn>/ T,~, ne~q. (2.16) 
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We wih need the facts that 

II T II G ma.dll K,, II , II T, II 1 (2.17) 

and 

IIT”ll,~lIT;Il,+ IITn”lIl, nubs. (2.18) 

Since we did not tind a reference for these statements, we briefly indicate how T can 
be constructed: setting 

S, = (;[ T;” + T,2m])2-m, m E 0~ (2.19) 

one obtains a sequence of positive operators which satisfy /I S, I/ < 
max(l] T, I), II T, I]). It is easily seen that (S,, 1)2m+’ > (&Jzm+’ and making 
use of the fact that the function x --f xc, x > 0 is operator monotonous for any 0 < c < 1 
it follows that S, + , > S,,, . Hence, the sequence S,, m E [N is increasing and bounded 
and therefore converges strongly to some operator T. 

It is obvious from this construction that T has the properties (2.16) and (2.17). 
Moreover, since for any 0 < c < 1 and any pair of positive operators A, B such that A” 
and B” are in the trace class one has 

II 64 + W II 1 G II A” II 1 + II B” II 1 
(cf., for example, [7]), it is also straightforward to establish (2.18). (That T is the 
smallest operator with these properties is an immediate consequence of the fact that any 
operator T’ for which (2.16) holds satisfies T’ > S, form E lN.) 

Turning back to our estimate of the functional 3, we can proceed now from the 
previous bound on $!J to 

S(fi e -G&fi) < el II rfl12. 11 A, 11 3 (2.20) 

where we made use of relation (2.16) for n = 2 and the fact that T commutes with J 
(since T, and T, do). From (2.17), (2.18) and the assumed properties of E,, E,, and 
‘y, it is also clear that 1) T 11 < 1 and 11 T 11 i < co. Hence, applying the arguments given 
in the proof of Lemma 3 in the Appendix of [ 11, we tind that there exists an orthonormal 
basis Cp, E z n E IN such that 

This relation obviously stays true if we replace the set &(y; U) by its weak closure 
.&-,(y; 9). Since the vectors Cp, form an orthonormal basis, we also have 
X,” 1 (@,, Y) * mn = Y for any Y E X Hence we conclude that &,(r; 9) is a nuclear 
set and that its nuclear&y index is bounded from above by det (1 - T)-2. 

With this information it is easy to show that the set A(r; 9) is nuclear too: since 
‘u,,(T) is weakly dense in aI(Yp) there exists, by Kaplansky’s density theorem for each 
operator A E B(Y) with j/ A // < 1, a sequence of operators A, E a@(Y) with j/ A, // < 1 
such that w-limA,Q = Ai2. Moreover, the sequence e -GA,C2, being contained in the 
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nuclear set ~r &a), is bounded and therefore contains weakly convergent sub- 
sequences. But this implies that the vector A f~ is in the domain of e -o  since this operator 
is closed. By the same argument we see that Jr'(7; LP) c Jr L,('), hence Jr s is 
a nuclear set and 

v(Jr Z~a)) ~ det(1 - T) -2 . (2.22) 

It remains to proceed from this estimate to the bound given in the theorem. This is easily 
accomplished if one uses the equality 

d e t ( 1 - T ) - 2 = e x p ( 2 . ~ = ~ n ~  1_ lIT ~ l l l )  (2.23) 

which holds for any positive trace-class operator T with ][ T II < 1. Applying to the 
right-hand side of this relation the estimate (2.18) for our particular operator T, we 
obtain 

det(1 - T)-2~< det(1 - Tq,) -2. det(1 - T,,) -2 (2.24) 

which completes our proof of the theorem. 
We conclude this section with an auxiliary lemma which simplifies the evaluation of 

the determinants appearing in the theorem. 

LEMMA 2.2. Let E be any projection. Then 

d e t ( 1 -  I E e - r l ) - z  ~< exp ( 2 " , ~  n-1 I IEe-~ l l  l )  

provided the right-hand side of this inequality exists. (This condition also implies that 
IIEe-~ll < 1.) 

Proof. We will show below that if the operators E .  e-"~, n e N are in the trace class, 
one has 

II I g ' e - ~ [ " l l i ~  IIEe-"~ll l -  

Anticipating this result it is clear that I[E e-nr r[ !/> II E e - r  Pl n, therefore the premises 
of the lemma imply that II E e -  r I[ < 1. Thus we can represent the determinant by the 
expression given in (2.23), and the statement of the lemma then follows by applying the 
above inequality a second time. So it only remains to establish this inequality. 

Let ei, i ~ N be the family of orthonormal eigenvectors corresponding to the nonzero 
eigenvalues e i of the operator ] E .  e-  r l. Since the operators e-hr.  ] E e - ~12 are bounded, 
it is clear that the vectors e,. are in the domain ofe  -he for any n ~ ~q. Furthermore, it can 
be shown that for any positive m ~ 

e~' =(e i l  I E e - e l ' e i )  <~ (eil e-my'ei) �9 

For 0 < rn ~< 2, this is a consequence of 

] E e - r l  e = e - r E e - r ~ <  e-Zr 
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and the fact (already mentioned) that the function x + xc, x > 0 is operator monotonous 
if 0 < c 6 1. Taking into account that ei is a normalized eigenvector of / E e-7 1, the 
statement then follows for all m > 0 since if M is a sufficiently large power of 2 (such 
that m/M < 2) one has 

q? = (&cY’M)M < (e, 1 e-(m’M)Y. fq)M 

< et1 e-“Y*ei) , 

where the last step follows by repeated application of Cauchy-Schwarz inequality. 
Hence, if n E [N, II > 2 one obtains 

11 IEevY(” )I 1 = ir, 6: < 2 8: (eiI e-(n-2)y.ei) 
i= 1 

= iz, (eiI e-YEe-(“-‘)Y.e,) = Tre-YEe--(n-‘)Y 

=TrEe-“YE< l(Ee-“YIIl. 

This completes the proof of the lemma for II > 2. For n = 1 the statement is trivial. 

We are now in a position to establish the nuclearity condition in models of non- 
interacting massless particles. 

3. Free Massless Scalar Fields 

As a first example we consider the free field theory of a massless scalar particle. In this 
model the Hilbert space X is identified with the space L2(R3) of the single particle wave 
functions f(x), x E R3 in configuration space. The anti-unitary involution J is given by 

Vf) (4 = f(x) 9 (3.1) 

and the generator o of the time translations F? 3 t -+ eito on X is defmed by 

GG-) (P) = I P I . f(P) 9 (3.2) 

where the tilde denotes Fourier transformation. Since the function p + I p I is real and 
symmetric, o commutes with J. The generator of the corresponding time translation in 
&’ (the Hamiltonian) will be denoted by H. 

The underlying local scalar field + is related to the auxiliary fields cp, 7r introduced in 
the previous section through its Cauchy data at time t = 0. Namely if f, g are test 
functions on lR3 one has 

$42 = 0, .I-) = rp(w-“2f) 3 f$(t = 0, g) = 7c(o”‘g) ) (3.3) 

where on the right-hand side of these equations we have identified the functions f, g with 
the corresponding elements of K 

Now let I > 0 and let 0, = {x E R3 : [ x j < r>. We distinguish two subspaces of g 

L&(r) = 0 -“’ 9(0,) and L&(r) = w”~ g(O,) , (3.4) 
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where ~(O,) denotes the set of all complex valued test functions with support in Or, 
and the bar indicates closure in X. Both spaces are clearly invariant under J. As was 
discussed in the previous section, there is an associated real linear space ~e(r) c ~ (cf. 
definition (2.4)) and a corresponding von Neumann algebra ~t(.~a(r)) acting on ~ .  It is 
obvious from the relation between the auxiliary fields r n and the local field r that this 
algebra is precisely the local algebra which is attached to the double cone (9, with base 
O, at time t = 0. Hence, the sets Jff((9,, fl) appearing in the formulation of the nuclearity 
condition are of the type considered in the previous section. With the help of those 
results we will establish 

THEOREM 3.1. In the free field theory of a single spinless particle of mass 0 the sets 

x( (9 , ,  fl) = ( e - # " u n  : u ~  ~ (~(r ) ) ,  u * u  = 1} 

are nuclear for any r > 0 and fl > O. Moreover, there exist constants c, c' such that 

~e c('/#)3 for r >i ~ , 
v(X((9, ,  fl)) <~ (e  c'(r/p) f o r r  < ft. 

For the proof of this statement we must analyze the properties of the operators 
E~(r) e-#co and E,~(r) e-#co on ~ ,  where E~,(r) and E,~(r) are the projections onto the 
subspaces LP~(r) and Z,e,~(r), respectively. To this end we introduce on ~ an operator 
Xr given by 

(Zr f )  (X) = ZI (x/r). f ( x ) ,  (3.5) 

where X~ is any test function satisfying ZI(Y) --- 1 for [y[ ~ 1. Next we make use of the 
trivial identity (cf. [1 ]) 

Ecp(r). (.D 1/2 ~r  09-- 1/2 = E~(r) (3.6) 

and decompose the operator E~(r) e-#co into the product 

E~,(r). ((D1/EZr0) -1/2" (1 + 2 2 0 ) 2 ) - 2 }  �9 {(1 + ~20)2)20)1/2~r0)-1/2 e -ric~ (3.7) 

where 2 = min (r, fl). By inspection of the kernels (in momentum space) of the operators 
in the curly brackets, it is easily seen that they are in the Hilbert-Schmidt class. 
Moreover, by a straightforward estimate of their respective Hilbert-Schmidt norms, one 
obtains the bounds 

[[ 0)1/2Zr0)-1/2(1 + ~20)2)-2 fl 2 ~ c. (1 + (rift)a) 1/2 , 
(3.8) 

II (1 + 220)2)20)112z,0)-112 e -#co II ~ ~ c .  ((rl~) ~ + (rift)3) 112 . 

(Here and in the following, the letter c stands for certain numerical constants.) Thus the 
operator Er e-#co is in the trace class, and its trace norm, being smaller than the 
product of the preceding two HiJbert-Schmidt norms, can be estimated by 

I[ Eq,(r) e i#co l[1 ~< c((rlfl) + (rift)3). (3.9) 
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By an analogous argument one finds that E,,(r) e-#~ is in the trace class too, and 

II E=(r)e  -Ij~~ l[, <~ c((r/fl) 2 + (rift)3) �9 (3.10) 

Since in these estimates one can replace flby n. fl, n ~ N, it is obvious that the conditions 
of Lemma 2.2 are satisfied so that we have 

II E~o(r) e-/3~ II < 1 and I[ E,~(r) e-#~' II < 1. (3.11) 

(This bound can also be derived from the fact that the operators in question are compact 
and that the spectrum of co is positive and continuous.) Moreover, we obtain from 
Lemma 2.2 the bounds 

det(l  - I E , ( r )  e-at~ -2 ~< e c(~r/#)+('/#/3) 
(3.12) 

det (1 - I E=(r) e -a~' I) -z ~< eC~Cr/a)2 + <,/#p). 

Applying Theorem 2.1, we thus conclude that the sets 

~a(Bco; s = { e - a " A n  :A e ~l(.s NAII ~< 1} (3.13) 

are nuclear for any r > 0, fl > 0 and that 

v(J/(flco; A~ e ~(~/a) + <,//~)3). (3.14) 

Since the sets Yff((~r, fl) we are interested in are subsets of ~/(flco; .s the statement 
of Theorem 3.1 now follows. 

This argument can easily be extended to theories describing finite multiplets of scalar 
massless particles. There the single particle space is Af = L2(~ 3) | C f where f is the 
number of species of particles in the model. The corresponding anti-unitary involution, 
the Hamiltonian, and the projections onto the 'local' subspaces are obtained by taking 
tensor products of the operators J, co and E~o(r), E,,(r), respectively, with the unit 
operator on C i. Theorem 3.1 applies to all these models if one replaces the numerical 
constants c, c' appearing in its formulation by f .  c and f .  c', respectively. 

4. Free Electromagnetic Field 

As an example of more physical interest, we now treat the theory of the free electro- 
magnetic field. It will be convenient to consider besides the physical ('transversal') 
photons also unphysical ('longitudinal') photons. The single particle space in this 
extended model is Ar = L2(~ 3) | C 3. In order to emphasize the 3-vector character of 
the elements of A(, we denote them in the following by bold-face letters f, g. The 
involution J is given by 

(Jr) (x) = f(x),  (4.1) 

and the generator co of the time translations by 

(o~f) (p) = I PI" f(P). (4.2) 
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The resulting Fock space and the Hamiltonian are denoted by ~ and H, respectively. 
The physical photons are described by vectors in the subspace ~ c 

= {f~ o~f': p-J(p) = 0 a.e.}. (4.3) 

We denote the corresponding Fock space (regarded as a subspace of ~ )  by ~T. It is 
obvious that o,~ r is invariant under the action of the Hamiltonian H. 

The electromagnetic fields E, H are related to the auxiliary fields ~p, rt as follows: if 
f, g are (vector-valued) test functions on ~3, one puts 

E(t = 0, f) = ~(091/2Prf ) (4.4) 

H(t = 0, g) = tp(-0) -1/2 curlg) 

where Pr is the projection in ~ onto J r -  With this identification E, H satisfy the 
Maxwell equations and have the correct commutation relations. We also see from it how 
to define the 'local' subspaces of j[r corresponding to the double cone (~r with base Or 
at time t = 0: 

L,a(r) = 0)- 1/2. curl (~(Or) | C3), (4.5) 

~ ( r )  = 0),/2. pT( ~(Or) | C3). 

These spaces are invariant under the action of J and are contained in ~r -  
In the following we will show that the corresponding sets Jt'(f109; LP(r)) of vectors 

satisfy the nuclearity condition with regard to ~ .  Since these sets are contained in the 
physical subspace ~ r  it is then clear that they also satisfy the nuclearity condition with 
regard to or: r .  Hence, we have 

THEOREM 4.1. In the theory of the free electromagnetic field, the sets ,4:((9 r, fl) are 
nuclear for any r > 0 and fl > O. Moreover, 

'e ~('/~)~ , for r >i fl, 
v(X(60,, fl))~< (e ~'(r/p), f o r r < f l  

where c, c' are constants. 
For the proof of this statement we must study the spectral properties of the operators 

E~,(r) e - ~ '  and E,(r)  e-~o, determined by ~ ( r ) ,  .~,~(r), and 09. In fact, it suffices to 
analyze either one of these operators since they are unitarily equivalent. This may be 
seen as follows: let V be the partial isometry on :Of given by 

( I f )  (p) = i(p x f(p))/[ p[ .  (4.6) 

One easily checks that the restriction of V to ~ r  is selfadjoint and unitary, and 
VE~(r)V = E,~(r). Since V commutes with 09, this implies that 

VEto(r) e - ~  V = E~(r) e-#~', (4.7) 

hence, the norms and trace norms of the two operators are equal. (Note that the 
equivalence of these operators is linked to the symmetry (E, H)-~ (H, - E )  of the 
theory.) 
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It remains to control the trace-norm of E.(r) e-P% Denoting by F,p(r) the projection 
onto the subspace (o9-1/2(~(Or)| of ~" it is clear that E.(r)<~F.(r), and 
consequently I E.(r) e-a~ <~ 1F~,(r) e-a~'i. The latter operator is exactly of the type 
considered in the previous section. Applying the arguments given there one finds that 

II F~(r) e -/~' II1 ~ c'((r/p) + (rif t)  3) (4.8) 

and consequently 

II E.(r) e-/3~' II1 --- II E,~(r) e-P~ II1 <~ c((r/fl) + (r / f l )3)  . (4.9) 

The statement of the theorem now follows from the results in Section 2. 
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