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Abstract. A general framework for treating path 
integrals on curved manifolds is presented. We also 
show how to perform general coordinate and space- 
time transformations in path integrals. The main result 
is that one has to subtract a quantum correction 
A V ~  h z from the classical Lagrangian 50, i.e. the 
correct effective Lagrangian to be used in the path 
integral is 50elf = 5~ - A V. A general prescription for 
calculating the quantum correction A V is given. It is 
based on a canonical approach using Weyl-ordering 
and the Hamiltonian path integral defined by the 
midpoint prescription. The general framework is 
illustrated by several examples: The d-dimensional 
rotator, i.e. the motion on the sphere S ~- 1, the path 
integral in d-dimensional polar coordinates, the exact 
treatment of the hydrogen atom in R 2 and R 3 by 
performing a Kustaanheimo-Stiefel transformation, 
the Langer transformation and the path integral for 
the Morse potential. 

I Introduction 

A lot of problems in theoretical physics make it 
desirable to have a precise formulation of path 
integrals on curved manifolds. Approaches towards a 
general theory exist due to DeWitt [4], McLaughlin 
and Schulman [28], Dowker and Mayes [8], Mizrahi 
[29], Gervais and Jevicki [11], Omote [30], Marinov 
and Terentyev [27], Marinov [26] and Lee [24]. The 
main result of these discussions is that one has to 
subtract from the original Lagrangian 50 some 
quantum correction A V ~ h 2 :  

50eff ~--- ~'(f -- A V (1) 

where 50eft is the correct expression to be used in path 
integrals on curved manifolds. Unfortunately, the 
expressions for A V derived by the above authors 
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apparently do not agree. This confusion arises mainly 
because different lattice definitions for the path integral 
are used; e.g. DeWitt prefers a prepoint formulation, 
whereas Mizrahi and Lee use midpoints. 

For special coordinate-transformations it is possible 
to calculate A V by expanding ( A x ) 2 ~ f ( A q )  up to 
forth order in A q (e.g. x-cartesian coordinates, q-new 
(curved) coordinates), where A x, A q denote coordi- 
nate differences in a discrete version of the path 
integral. Examples have been discussed by Gerry and 
Inomata [10], Inomata [18] and Steiner [39]. 

Quantum corrections are also known for the rotator 
in three dimensions (motion on the S2-sphere). They 
were observed first by Gutzwiller [15] and then by 
Patrascioiu [34]; the latter discusses this problem in 
the connection with lattice gauge theories. 

In this paper we apply the general theory to the 
rotator in d dimensions (motion on the S a- 1-sphere), 
polar coordinates in d dimensions, the Kustaanheimo- 
Stiefel transformation in R 2 [19] and R 4 [7] and some 
further examples of one dimensional path integral 
problems which have become important in recent 
years, i.e. the Langer-transformation in a radial path 
integral for a semiclassical treatment of the hydrogen 
atom [10], the Morse-potential [6], the Coulomb 
problem in polar coordinates [17,40] and general 
space-time transformations in radial path integrals 
[39]. Whereas the path integral in d-dimensional polar 
coordinates can be directly derived by a coordinate 
transformation from cartesian coordinates to polar 
coordinates, this is not so easy in the case of the rotator. 
Usually one constructs its path integral from the 
d-dimensional radial path integral and takes the 
constraint x 2 = R 2 (R-radius of the S d- a-sphere) into 
account by delta-functions (see e.g. [2, 37]). But this 
approach does not respect the Riemannian structure 
of the Sa-l-sphere. The sd-~-sphere has constant 
positive curvature R(d)=(d - 1) (d -2 ) /R  2, whereas 
Euclidian space remains flat in whatever coordinates 
expressed (e.g. polar coordinates). It is quite astonish- 
ing that no correct path integral formulation for the 
rotator has been given up to now. The rotator is one 
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of the simplest examples of a curved manifold, and, 
furthermore, its solution is exactly known. 

Our general prescription for obtaining the correct 
path integral is the following. Let us consider the 
generic case, where the classical Lagrangian has the 
following form 

5Y(q, O) = 2 Oab(q)Oaq b --  V(q). (2) 

Here gab is the metric tensor corresponding to the line 
element ds 2=g"bdq"dq b. Then the quantum 
Hamiltonian reads: 

1 
H - ALB + V(q) (3) 

2m 

where the Laplacian (Laplace-Beltrami operator) is 
given by (h = 1, g:= de t (gJ) :  

ALB = + O a N / / g g a b O  b.  (4) 
, /0  

In order to write down the Hamiltonian path integral, 
we first have to construct momentum operators [26] 

p . = - i ( ~ a + F a / 2 ) ,  F.  = ~.ln x//g (5) 

which are hermitian with respect to the scalar product 

(fl,  f 2 )=  I f * f 2 v / g d q  �9 (6) 

In terms of the momentum operators (5) we define a 
hermitian Hamiltonian by using the Weyl-ordering 
prescription [24, 29]: 

1 ab 
H = ~ m ( g  P,Pb + 2pagabPb + PaPbg "b) 

+ A V(q) + V(q). (7) 

In (7) appears a well-defined quantum correction 
which is given by 

V =  8~(g"b Fdcr;d -- R) A 

1 ab ab ab 
- -  + g ,ab] (8) 8m [g r " r b  + 2(g r.),b 

(R-scalar curvature; F~c-Christoffel symbols, see 
Appendix A). Using the Trotter formula 

e -  i tH ~_. e -  it(A + B) : S - -  lim (e- i tA/N e -  i tB/N)N (9) 
N-* oo 

(see, e.g. [38]) and the short time approximation to 
the matrix element (q"le-i"H Iq') one obtains the 
Hamiltonian path integral (z:= t" - t') 

K(q", q'; z) 

= C S ~ q ( t ) ~ p ( t ) e x p { i ' i ;  [_pgl-2/ f (p ,q)]dt}  (10) 

where the normalisation C is given by (see e.g. [30]) 

C = [g(q')g(q")] - 1/, (11) 

Here the path integral is defined on a lattice using the 
midpoint prescription: c~~ �89 + q(J- 1)), q(j) = q(tj), 
tj = t' + je, e = (t" - t')/N, N ~ oo. With this prescription 
the "classical" Hamiltonian to be used in the path 
integral (10) is on the lattice 

~ (,,~) ~(m - 1 ~ab[.~(j)~(j)~(j) 

+ V(~ o)  + A V(q(J)). (12) 

Clearly, other lattice definitions of (10), like prepoint, 
postpoint or something in between, can be formulated. 
General considerations connecting these lattices with 
the appropriate quantum corrections can be found e.g. 
in [8, 16, 23]. A rigorous approach, but with the focal 
point on the stochastic nature of diffusion processes 
can be found in [5]. Finally, the role of operator 
ordering in quantum field theory is duscussed in [42]. 
The Weyl-ordering and midpoint prescription, how- 
ever, express most clearly all the symmetries of the 
classical Lagrangian. This can be seen by an analysis 
of equation (7), which has been done e.g. by Leschke 
and Schmutz [25] and Omote and Sato [31]. 

Our paper is organised as follows: 
In Sect. II we present the calculation for the rotator 

in d dimensions. We calculate A V, but use instead 
of midpoints a "product form" on the lattice, i.e. we 
set sin 2 0-~ sin 0 (J) sin 0 (j- 1) etc. instead of sin 2 0-~ 
sin 2 00). These two lattice formulations turn out to be 
equivalent with the same A V. Our lattice definition 
makes the Lagrangian path integral simpler, but the 
choice of the lattice remains nevertheless a matter of 
taste. We then use an identity under the path integral 
to obtain an equivalent, but even simpler Lagrangian 
path integral for the rotator. 

In Sect. III we shall discuss the path integral in 
d-dimensional polar coordinates, and in Sect. IV we 
shall treat the other transformations which we already 
noted. In Sect. V we shall discuss our results. 

In Appendix A we list the various quantum 
corrections derived by previous authors. Appendices 
B-D contain the detailed proofs for deriving the 
SchrOdinger equation from the short time kernels 
corresponding to different path integral represen- 
tations. 

II The path integral for the d-dimensional rotator 

We are considering the time-dependent Schr6dinger 
equation: 

1 
i F ~h~ = - 2 m R ~  L~d)~ ~ (1) 

(L~a) is the Legendre operator in d dimensions) in 
d-dimensional polar coordinates (see Erdelyi et al. [9J): 

xl = R cos 01 

x2 = R sin 01 cos 02 



x3 = R sin 0, sin 0 2 COS 0 3 (2) 
, . .  

xd- 1 = R sin 01 sin 02"" sin 0d_ 2 COS q~ 

Xd = R sin 01 sin 02." sin 0d- 2 sin q5 

where 0 < 0 ~ < r c ( v = l  . . . . .  d - 2 ) ,  0 < q S < 2 n ,  R =  
d 

( Y~ x2) 1/2 fixed. (We shall often also use 0d- 1 = q~.) 
V=I 

Then with H = -(1/2mR2)L~d): 

H -  2mR2 ~ + ( d - 2 )  cotO 1 

1 82 8 
+ ~ I~-22 + ( d - 3 ) c o t  02 ~-2  ] + "'" 

0 8 +sin201.. .sin20d_ 3 ~ + c o t  a_200~_  2 

1 8 2 ) 

+ sin 2 0~ ...sin 2 0d-2 8C~ 2 ~j" (3) 

The time-independent Schr6dinger equation reads 

1 
2mR2 L~)$~ = Et$ ~. (4) 

For the eigenvalues E~ one obtains: 

1 
E , = ~ l ( l + d - 2 ) ,  (1=0,1 ,2  .. . .  ), (5) 

whereas the eigenfunctions are given by 

0~' = Sl '(n)  (6) 

where SI*(~2) are the real hyperspherical harmonics 
of degree l with unit vector a"2 and leNo, # = 1, 
2 , . . . ,M,  M = (21+ d -  2)(l + d - 3)l/II(d- 2)l. 

For later purposes let us consider for a moment the 
case where R is not fixed, R = r, in which case the 
Hamiltonian is proportional to the d-dimensional 
Laplacian A(a, 

6 2 d - 1  8 1 
A(a' = ~-r2 + r 8 r + r  s (7) 

Rewriting the Hamiltonian (3) yields:* 

1 I 2 1 2 H({po, O}) = ~ , P o ~  q - ~ P o ~  + "'" 

1 (8) 
+ sin 2 01... sin 20d_ 2 

with 

AV({0})=  8nTR 2 ( d - 2 )  2 + ~ + . . .  

-t- sin20~...sin 20e_2 (9) 

* In H no ordering ambiguity arises, because of the special nature of 
g.b for the ro ta tor  
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and the hermitian momenta 

d - 1  1(~ +57 ) P' 

1 ( ~  d - l - V c o t O v )  (10) 
Po~ = i  -I 2 

16  
P4)- i 6 0  

With the correct Hamiltonian (8) we can consider the 
Hamiltonian path integral for the Feynman kernel K: 

K({0"}, {0'}; t"-- t') 

) 

(11) 
with 

N - 1  

E 
j = l  

N 

~{Po}--+ I~ (2n) 1 -a(dPo]')"" dpo,j) ) 
j = l  d-I 

in the lattice formulation (N~ oo). Notice that the 
p0-integrations are N-fold, whereas the 0-integrations 
are only ( N -  1)-fold, and, furthermore that the path 
integration measure ~{O}~{po} is in general not 
invariant under canonical transformations. In the 
following we shall use Feynman's lattice definition, 
i.e. O~(O~)-O~-l))/e etc, supplemented by the 
prescription sin 20v ~ sin 0~) sin (" 1) 0~ J- . Below we shall 
justify this prescription by showing that it leads to the 
correct Schr6dinger equation. This lattice definition is 
equivalent to the midpoint prescription. This can be 
seen by the identity (following DeWitt [4], we use the 
symbol "-to denote "equivalence as far as use in the 
path integral is concerned"): 

N-I.jU1 " ~ ' e x p  " ~ 1 ( { 0  ~ 0u-l)}) 

N 

"-(9'9") -1/4 I-I ~ ' e x p  {ie~i '({gJ)})} (12) 
j = l  

where 

mR 2 
~,({0(j)},  {0 ~- 1)}) _ _ _  r~0(j) _ 0]j- ,)2 -- 2e2 kt 1 

.~.- M n  A(J) e~,n A(J- 1) [ A(J) A(J- 1)~2 o~xv 1 oxx~u I kv2 - - ,12 ] n t- " "  

+ (sin 0(12'... sin O(J-~')(O u' - 4 u- 1))2] (13) 

denotes a "classical Lagrangian" on the lattice. 
~cN~{{gJ'}) is again defined by (13), except that one 
has to take all trigonometrics at midpoints. C is given 
by (1.11): 

[1011 7 - 1 / 2  C = C({0'}, {0"})= sinU 0'v sinU 0~1 . (14) 

The integrals over Po~ are of Gaussian form and we get 
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the following Lagrangian path integral: 

K({0"},  {0'}; c' - c)  

= , ~D(t) exp { iti: [ LP o( { O, O} ) - A V( { O} ) ] dt } 

([5) 
where the classical Lagrangian and the integration 
measure are given by: 

m 2 "2 s in  2 0102 s  [01 + + ... 

+ (sin = 01"'" sin 2 0d-2)q~2], (16) 

@D(t)_+(mR2~N.ta-1)/2 N-1 
\27t ie /  j=lI-[ ado),  

( '  - -  t '  
- (17) 

N 

Here dD ~ denotes the (d-1)-dimensional  surface 
dement on the unit sphere S d- 1 

d - 1  
dD~ = [ I  (sin O~J)) d-1 -k dO,J). (18) 

k = l  

It is worthwhile to notice that the normalisation C 
has been exactly cancelled, and that the path integral 
(15) has the standard measure (18), which can be 
directly derived by a transformation from Cartesian 
to polar coordinates. 

As a final check we have to show that (15) leads 
to the correct Schr6dinger equation. With our lattice 
definition we obtain from (15-17) and (9) the following 
short-time kernel: 

K({0 q, {0(J- 1)}; 8) 

( mR 2 ~(d- 1)/2 exp { ie SeeN1({ 0 (j), 0 (j- 1)}) 

ie I[- d--  2) 2 +  1 + 
~ L  ( sin 01~ ) sin 0~- 1) 

+ . . .  

-~ 1 

sin O~J) sin O~lJ-1)..-sin O~J)_ 2 sin O~i-21) l }"  
(19) 

Using the time-evolution equation 

(j+'}, t + 
=Id.QO)K({O(J+l)},{O(J)};e)l[l({O(J)},t) (20) 

it is straightforward but tedious to derive the correct 
Schr6dinger equation (1). The details are given in 
Appendix B. Note that the constant 

(d - 2) 2 (21) 
8mR = 

in L.eCff = 5eCl - A V is crucial in order to obtain the 
correct Schr6dinger equation. 

The path integral (15) with the Lagrangian given 
by (16) is too complicated for explicit calculations. We 

therefore try to replace (16) under the path integral 
(15) by the following expression: 

~Cl({0, 0})----~ ~. Cl({0, 0}):= m--R2h2 - Vc({O}) (22) 
2 

where Vc has to be determined and D denotes the 
d-dimensional unit vector on the Sa-l-sphere. The 
hope, of course, is that Vc + A V is simple enough so 
that the path integral (15) can be explicitly computed. 
We have 

(~r'2(1) - -  ~ ( 2 ) ) 2  = 2(1 - cos ~(1,2)) (23) 

with the well-known addition theorem: 

COS ~(1,2) = COS 0 (1) COS 012) 

d - 2  f i  
"~ E tR1) (2) sin 0~nl) sin 0~2) COS Urn + I COS Ore+ 1 

m = l  n = l  

d - 1  
+ H sin 0~, 1) sin 0~, 2). (24) 

r l = l  

We shall use (24) to justify the replacement (22) 
and thereby derive an expression for V~. We start with 
the kinetic term (x(J)-x(J-1)) 2 expressed in the 
polar coordinates (2), R = r (not fixed), and expand 
it in terms of A r and d 0~. In this procedure we 
follow the reasoning of Pak and S6kmen 1-32]*. If 
one has an expression like Af(J)=f(u]J)...u])) - 
f(u~j-1).., u~j - 1)), one gets for the expansion about the 
midpoint rio):= (1/2) (u ~j) + u ~  1)): 

rn=, - \  ug, ) # 
1 a / a3 f(/J) "~ 

n~ d '  '(j) A"O) a , , ( J ) /  _ _  + ... t* m t4 n x-at4 k ~.~,,(j)..~,,(j),q,,(j) 
+ ~ m, , = 1 \ ~ m  V"n  V~k a(J) 

(25) 

Here f ~ ) = x l  j), (1=1 . . . .  ,d), Um={Ua=r, Urn= 
Om(m = 1 . . . . .  d -- 1)}. In a similar manner like in [32] 
we can state after tedious calculations the following 
identity 

exp [ i&.~NCl ( { O(J) } , {0 (j- 1)})] 

- exp{~R2(1--cos~b'J.~-l))- ieVc({O~ (26) 

with 

V~({0~ = 1 + sin O(tJ) sin O(~_ l) + ... 

' l 
1 

+ sin 0(1 j) sin 0~-1)... sin 0(j )_ 2 sin 0~J_-~ ) " (27) 

(V~ is the same whether or not ,4 r (j) = 0; so we have 
set r (j) = R in V~). In the final equations the midpoints 

* This method goes back to DeWitt [4], McLaughlin and Schulman 
[28] and Gervais and Jevicki [11]; we prefer the formulation [32] 
because it seems more explicit to us in the rotator case 
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don't appear; they are used as a tool in the expansions 
in order to derive (26) and (27). From (9) and (27) we 
obtain: 

1 
Vr + A V -  8mR2 ( d -  1 ) ( d -  3) (28) 

and thus obtain our final form of the path integral for 
the d-dimensional rotator: 

K({0"}, {0'}; C'-t') 
t" m 

= ~ 1 2 ( t ) e x p { i ! [ ~ R  2~22 + (d - 1)(d - 3 ) q .  ) 
-8~  jat ;. 

(29) 

Equation (29) is our main result in this section. Let 
us make some comments: 

1) In Appendix C we show that one obtains the 
correct Schr6dinger equation from the short-time 
kernel of (29). 

2) The usual way to construct the path integral for 
the rotator has been to start with the free particle 
Euclidean path integral in d dimensions, to introduce 
the polar coordinates (2) (but r not fixed) and to 
implement in the path integral in polar coordinates 
the rotator-constraint by 5(r ti) - R )  (all j ) - - see  [37]. 
But that works only for d = 3, otherwise it is wrong 
and the quantum correction VR = (d - 1)(d - 3) /8mR 2 
is missing. The right result in 1-37] for d = 3 is just an 
accident. The naive implementation of the rotator 
constraint by &distributions does not take into 
account the huge difference between d-dimensional 
Cartesian space which remains a flat manifold in 
whatever coordinate system expressed and the d- 
dimensional rotator which corresponds to a curved 
manifold. The term VR is due to that curvilinear nature 
of the rotator. 

3) The missing of VR in the naive calculation was 
first observed by Marinov and Terentyev. Instead of 
V R they have VR = [(d - 2 )  2 -}- 2/3]/8mR 2 for the path 
integral (29). They got F" R by starting with the known 
solution of the rotator (see below equation (40)) and 
deriving the short-time kernel from it. This was done 
by an asymptotic expansion of the modified Bessel- 
function Iv for large v. But V'R is not the correct 
quantum correction. 

4) Junker and Inomata [21] have deduced V R 
by expanding cos O (see equations (23) and (24)), 
cos ~ - 1 - tO2/2, and by stating that this expansion is 
effectively correct up to O(e2). With A 2 x  (j)'.~ 
2(1 - cos ~ti, J-~) + [~(j,j- 1)]4-/4!) they derived V R. 
Well, the validity of the expansion is a consequence 
once VR is known, but this is not a proof, respectively 
a rigorous path integral treatment. 

Starting from (29) we can calculate the path integral 
for the rotator. For that purpose we need the following 
formula [12, p. 980]: 

e . . . .  ~'= F(v) ~_ ( l+ v)I,+~(z)Cr(cosO) (30) 
/ = 0  

for v = ( d - 2 ) / 2 .  The Cfs are Gegenbauer poly- 
nomials and I ,  modified Bessel functions. Equation 
(30) is a generalisation of the well-known expansion 
in three dimensions where v = 1/2, C~/2 = Pl: 

e . . . .  o =  7 2  ~ t~o (2l + 1)I,+ l l2(z)Pt(cos$) (31) 

[12, p. 980]. 
Note. It is possible to include the case d = 2, i.e. 

v = 0  if one uses llim~_.oF(v). C~(cosO)=e lcos lO  
( e t = l  for I=0 ,  ez=2 for l = 1 , 2  . . . .  [12, p. 1030]), 
yielding [12, p. 973]: 

e . . . .  o =  ~ Ik(Z)e iko. (32) 
k = -oo  

The addition theorem for the surface (or hyper- 
spherical) harmonics Sp on the S a- 1-sphere (see [9]) 
reads 

M 

Y 
~ = 1  

1 2 / + d - 2  
=12(d) d -  2 CId-2)/Z(cos~(1,2)), (33) 

(O(d) = 2rdlE/F(d/2)). The orthonormality relation is 

S dl2 Sp(12)S~,' (Q ) = 6,,,5.... (34) 

Combining (30) and (33) we get the expansion formula 

eZ(~ (1).0(2)) __= eZCOSr (1'2) 

= 2u Sf(O(1))Sf(O(2))Ii+(a_2)12(z). 
1=0  #~=1 

(35) 

Using (35) in each j-integration, the angular integra- 
tions can be easily carried out (z:= t " -  t'): 

K(6 (''"); z) 

t"  m 

{, + 3'1 , 
/ m R  e \N.(d- 1)12 

= e ~(a- 1)(d-3)/SmRZ lim [ - - |  
N-~  \ 2 1 t i e /  

. S d O m  ... i d O ( U -  1) 

[imR2 ] 
"exp (1 - cos  I/s (s's- 1)) 

= l ei~(d- 1)(d- 3)/S,,R2 ~, 2l + d -- 2 Cl a_ z)lz (COS $ ('' ')) 
s l=o d - 2  

#Ia)[R] (36) 

with 

x ~  \ ~  / d  
(37) 
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Notice that the expression (37) is just the functional 
weight needed in the radial path integral (evaluated 
for paths satisfying the constraint r(t) = R =fixed for 
all t) which we have already introduced in our earlier 
work [41]*. Using the asymptotic expansion I~(z)~- 
(2rrz)- X/2e~-(~- ~/4)/2z for the modified Bessel 
functions**, the above limit is easily performed result- 
ing in 

#}a'[R] = exp ~ - i z  l(l + d - 2) + (1/4)(d - 1)(d - 3) ] 

L 2mR 2 _] 
(38) 

We thus obtain our final result 

= 
1 = 0 # = 1  

{- } �9 exp 2~-R2 1(I + d - 2) (39) 

1 ~o 2 / + d - 2  Cla_2)/2(cosO(,,)) 
- I2(d)-, =~o d - 2  

{" } �9 exp 2m-R2 l(l + d - 2) . (40) 

This is the correct result, from which one easily reads 
off the wave functions and energyvalues, see (5) and (6). 

Concluding the discussion of the rotator we 
summarise our procedure: 

1) We started with the Hamiltonian H =  
-(1/2mR2)L~a), 

2) obtained from the Hamiltonian 

1 d - 1  
vv 0 2 H({Po, O } ) = ~ ~ = l g  ({ })Po+AV({O}) (41) 

the quantum correction 

d-2 ( 2#__/./2"~ s~Zn20vv ,] 1 vv 2 

- 8mR2-- (d -2 )  2 + ~ + . . .  

-~ (sin 2 01"" sin 2 0a_ 2) " (42) 

3) This quantum correction was used to define the 
correct Lagrangian path integral with an effective 
Lagrangian t ~ e f  f ~--- ~Q/gCl - -  A V 

K({0"}, {0'}; t"-- t ' )  

=~K2(t)exp{iii[s }. (43) 

* See also Sect. III 
** This asymptotic expansion is valid for ] z [ ~ o% [ arg z[ < 7r/2. In 
order to apply it in (37) we perform a Wick rotation, i.e., analytically 
continue to purely (negative) imaginary time, e ~ -  i6(6 > 0). For 
more details see [-41] 

4) Finally we used the identity (26) to cast the path 
integral (15) into the simple form 

K({0"), {0'}; c ' - c )  
r' m q- 

: , ~ ( t ) e x p { i ! [ ~ R 2 ~ 2 2  (d---81)m(~dR2-a)Jdt }. 

(44) 
III The path integral in d-dimensional 
polar coordinates 

We consider the Schr6dinger equation in d dimensions 
with a potential V(lx[)= V(r): 

.O 1 A  + 

with A(n ) as defined in (II.7). The Hamiltonian is just 
H = - (1/2rn)A(d) + V(r). H rewritten with (I.10) yields: 

1 2 1 [ 1 
H = 2mm Pr + 7 .  p21 + sin2 0~ p~ + "'" 

1 2 3 + 
sin 2 01 "--sin / Od-2 P4~J + V(r) 

+ A V(r, {0}) (2) 
with: 

AV(r,{O})= 8mr2 1 + ~ + . . .  
1 ] 

+ sin 2 01... sin 2 0a_ 2 " (3) 

We now repeat the reasoning of Sect. II. We start with 
a Hamiltonian path integral similar to (II.11) and get 
after the integration over all momenta: 

K('(r", r', {0% {0'}; t" - C) 
t" 

= l~r(t)~O(t)exp i! [~o(r , r  {0,0}) 

- A V(r, {0})]  dr},  (4) 

with classical Lagrangian and measure, respectively: 

{0, 0}) 
m .2 = ~ [ r  +r 202+r 2sin 20102 z + . . .  

+ r2(sin 2 02".  sin 20a-2)~) 2] - V(r) (5) 

~r(t)~O(t)-- ( m )N'(e/2)N-' 
\ / j= ,E ,fj; ' 

t" -- ( 
e =  m (6) 

( N ~  oo). Next we try to replace ,~c1 by a simpler 
expression and hope that the resulting path integral 
is simple enough so that the angular integrations can 
be exactly carried out. We therefore repeat the steps 
from (II.23) to (II.25) with the only difference that ro) 



is not restricted to ro)= R. The result is that the 
potential Vc (see (II.25)) generated by these steps 
cancells exactly A V(r, {0})! Therefore we get: 

K(a)(r ", r', {0"}, {0'}; t" - t') 

: , N r ( t ) N Y 2 ( t ) e x p { i ' i [ 2 2 2 - V ( r ) ] d t } ,  (7) 

where 22 has to be expressed in polar coordinates. In 
the lattice formulation 22 reads 

s + r~_ l ) -  2r(j)r~j_l)cosO~j,j_l)]/ez. (8) 

To carry out the angular integrations we use (II.35) in 
each j-integration: 

K(d)(r ", r', {0% {0'); t "  - C) 

/ m \Na/2 
f rd-1 = l i m / - - /  Jo (1) dr(1)~d~.)"" N-.~ \ 27zie ] 

c~3 

�9 f r d - ~  (N-1)drr l)~ dl2(N-1) 
0 

N rim 2 
�9 I ]  exp 1~2e It0) + r~_ 1) -- 2r(j)r(j_ 1) 
j = l  

�9 cos ~bO,j_ 1)] -- ie V(rtj)) t 

-- (r' r") -(a- 2~/2 ~ ~ S~(O')S~(O") 
I = 0 # = 1  

�9 m N o o  

�9 llm ( - - ~  Ir(1)dr(1)... 
N-*~ \ i e /  o 

.~r(N_a)dr(N_,) f i  r im 2 2 exp ~ (r(~) + r(j_ 1)) 
0 j= 1 

Thus we can separate the radial part of the path 
integral (partial wave expansion): 

K(a)(r ", r', {0"}, (0'}; z) 

= ~ -  X(d) l=o ~ 21 d - 2  + d - 2 cld - 2 ) ] 2 ( C O S  r ' r,'" z) 

(lO) 
with the radial kernel given by (z(j):= (m/ie)ro.)r(j_ ~)) 

Kla)(r ", r'; z) 
/ m \u/2 ~ ~o 

=(r'r") -(a-1)/2 lim [ - - I  Idrt,...Idr(N_, 
~-.~o \ 2zrie J o o 

N m 
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This is the correct path integral in d-dimensional polar 
coordinates as presented in a previous paper [41]�9 
Thus we obtain our final form for the radial path 
integral in d dimensions 

K}a)(r ", r' ; z) 
. t "  m . 

(12) 

with the functional measure 
N 

#I d)[r] --> H [~e-Z(~'It+(d-2)/2(Z(J)) ] (13) 
j = l  

and the one-dimensional measure defined by 

( m ~  N/2N-1 
~r(t) ~ \ ~ i e  ] j=lI] drtj). (14) 

Notice that the radial path integral (12) contains only 
the S-wave (l--0) part of the classical Lagrangian 

m 2 l(l+ 1) 
s i) = ~i" - V(r) 2mr2 , (15) 

i.e. it does not explicitly contain the centrifugal 
potential. Instead the /-dependence of (12) is deter- 
mined by the functional measure (13) (for more details, 
see [41]). 

IV Other examples of path integrals on curved 
manifolds 

The program stated in the introduction and illustrated 
in Sect. II and III in the cases of the d-dimensional 
rotator and d-dimensional polar coordinates, chal- 
lenges to be applied to other examples which have 
become important in recent path integral calculations. 
These calculations include not only a coordinate- but 
also a time-transformation d t = f d s  with a new 
"time" ds. 

The method goes as follows (see also [39]): One 
starts with the path integral 

x(t")=~"_ , LfC'Vm2 1 } K(x",x';z) = x(c!:x' Nx(t)exp J i ! /  2 2 -  V(x) dt 

(1) 
where it is assumed that the potential V(x) is so 
complicated, that a direct evaluation of (1) is not 
possible�9 One then defines a new "time" s together 
with a coordinate transformation x(t)--, q(s) 

de 
s(t) = ! , ~  and x = F(q) (2) 

with some well-defined positive functions f and F (we 
shall restrict to the case* f (F(q))= [F'(q)] z, F '> 0). 

* For a d-dimensional path integral, F' has to be interpreted as the 
Jacobian 
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Let us assume that the constraint (s(t") = s") 
5" 

dsf[F(q(s))] = z (3) 
o 

has for all admissible paths a unique solution s"> O. 
Of course, since r is fixed, the "time" s" will be 
path-dependent. In order to incorporate the constraint 
(3) we use the identity 

1 =f(x") ~ ds"5 I dsf[F(q(s))] - z 
o k O  

oo dE co 
- izE tt =f(x") I - - e  5 ds 

-o~ 2n o 

�9 exp{i i 'ds f[F(q(s))]E } (4) 

under the path integral (1). Defining the energy- 
dependent Feynman kernel G(x", x'; E) via the Fourier 
transformation 

1 
K(x", x'; z) = ~ni -!~o e-i*EG(x"' x'; E)dE (5) 

one obtains finally the transformation formula 

G(x",x,E) i x" x' 1/4 R . . . .  s" ds" " = [ f (  ) f (  )] ~ ( q , q , )  (6) 
o 

which gives the energy-dependent kernel G as a time 
integral over the transformed Feynman path integral 
K: 

K(q", q'; s") 

= ~ Nq(s) exp i -f(F(q))V(F(q)) 
q(o) =q' 

+ E f ( F ( q ) ) - A V ( q ) l d s  } (7) 

ffl=dq(s)/ds, q '=F-l (x ' ) ,  q"=F-l(x")) .  Here the 
measure ~q(s) is defined in the same way as ~x(t) in 
the path integral (1). The crucial point is now the 
calculation of the correct quantum correction A V(q)*. 

Our program to calculate A V will be as follows; 
i) Consider the "Legendre transformed" 

Hamiltonian 

H~(O~, x) = - ~I--ALB + V(x) -- E 
A m  

* The transformation formulae (6) and (7) were originally derived in 
[39] for radial path integrals using the lattice definition of the various 
path integrals. Although the resulting transformation formula could 
easily be shown to be exact by inserting it directly into the 
corresponding Schr6dinger equations for the kernels, the lattice 
derivation is far from being trivial and not without problems from a 
rigorous mathematical point of view. (An attempt to justify the lattice 
derivation can be found in [20] and [22]). We therefore rather prefer 
to define the transformation formulae by (6) and (7), which reduces 
the problem to the determination of the correct quantum correction 
A V  

ii) transform it to the Hamiltonian lqe(dq, q) via the 
transformation x = F(q), 

iii) make a time-transformation dt=f(F(q))ds  
which yields the new Hamiltonian 

ffI(Oq, q) = f (F(q) )fflE(Oq, q), 

iv) construct hermitian momentum operators 

l ( d  ~ ) i . . ( q ) = d l n J  
Pq =7  dq + ' dq (8) 

with a measure Jdq with respect to the scalar product 

(f, g) = Sf*oJdq.  (9) 

In the generic case, the new Hamil tonian/4  will be 
proportional to the d-dimensional Laplace-Beltrami 
operator (see 0.4)). 

v) Finally we get the quantum correction from the 
formula: 

1 
ffI(Oq, q) = - ~ m  ALB + f(F(q))[V(F(q)) - E] 

1 
= 8m (gabp~Pb + 2p~g~bPb + P~Pbgab) (10) 

+f(F(q)) IV(q) - E] + A V(q) 

= H efe(Pq, q) 

(g "b = 5 "b in the one-dimensional case) and A V as in 
(I.8). 

We shall illustrate our program with 
A) the Kustaanheimo-Stiefel transformation in R 2 and 
R 3, and 
B) coordinate transformations in a general one dimen- 
sional Hamiltonian. 

A1) The Kustaanheimo-Stiefel Transformation in R 2. 
In [19] Inomata calculated the path integral for the 
two dimensional "Coulomb"-problem. The calculation 
was carried out without any quantum correction. Here 
we start with: 

1 e 2 
. . . .  E .  (11 )  HE = ~mA(2) 

r 

The transformation is: x = r _ t/2, y = 20/.  The trans- 
formed Laplacian is: 

0 2 0 2 1 ( 0 2 0 2 
0X 2 + ffy2 = ~v2 \ ~ -  + ~g~2 ] (12) 

with v 2 = {2 + t/2. The appropriate new Hamiltonian 

reads/1 = 4v2/te (i.e. f (x ,  y) = 4r with gab = aab, J = 1, 
_F a = 0, pc = --  i0~, p, = - i0.) 

1 2 
Heff(P~, Pn, ~, 11) = ~ m  (p{ + p2)  _ 4e z _ 4E({2 + t/z). 

(13) 

Thus the quantum correction vanishes, A V= 0, as it 
should be. 



A2) The Kustaanheimo-Stiefel transformation in R 3. 
We consider the Hamiltonian for the Coulomb pro- 
blem in Ra: 

1 e 2 
- - -  - E .  (14) HE = - -  2~m A(3) r 

The path integral for the Coulomb problem has been 
first calculated by Duru and Kleinert [7], followed by 
several discussions concerning the details about 
simultaneous coordinate and time-transformations 
[17, 39-41]. Let us write He in the coordinates [3]: 

ql = q cos ~ cos fl 
0 

q2=qcosas in f l  (q=lql=v/r,,~=~,fl+?=~) 
(15) 

q3 = qs in~cos?  (0_< 0_< ~,0__< ~b < 2~). 
q4 = q sin ~ sin 

Then we get for H~ in the coordinates q~R4: 

= 4 q 2 / ~  = - - 2 ~ A 4  - 4e 2 _ 4Eq 2 

and with J = V/g = 1, F. = 0 and Pqk = -- i3/Oqk: 

Heff(pq, q)=2~ ~ peqk--4eZ--eEq2. (16) 
k = l  

No quantum correction appears! This is the reason 
why the calculation in [7] was correct. Note that in 
both cases, A1) and A2), the Coulomb problem has 
been transformed into a simple harmonic oscillator 
problem. 

B) 
consider the space-time transformations: 

x = F(y), dt =f (x )ds  (17) 

and the Hamiltonian: 

H e -  2m ~x 2 + h(x) + V ( x ) -  E, (18) 

which is hermitian with respect to the inner product 

( f l , f2)  = Sf*(x)f2(x)J(x)  dx, J(x) = e Ih(x)ex. (19) 

Let G(y)= h(F(y)), then: 

2m F '2 d~y 2 + G(y)F'(Y)-F~(~,IdyJ 
+ V(F(y)) -- E. (20) 

With f (F(y ) )= F'Z(y) we get f o r / t  = f/~E: 

Ft= - mL y [ d2 d-]F ( JdyJ 
+ f(F(y))[V(F(y)) - E] 

The general one-dimensional Hamiltonian. Let us 
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1 l- d 2 d q (2!) 

+ f(F(y))EV(F(y))-  E] 
with 

F(y) = G(y)F'(y) - F"(y)/F'(y). (22) 

It is easy to see that the Hamiltonian (21) is of the 
generic type (see (I.7) and (10) with 

x/# = ](Y)= eg~ (23) 

py = ~ ( d y  + F2(-Y~) ) , (24) 

and we thus obtain the space-time transformed 
Hamiltonian 

Heff(Py, Y) 

1 2 
= ~-mpr +f(F(y))[V(F(y)) - E] + d V(y) (25) 

with the quantum correction 

a V(Y) =Ymm L \F~(~J F'(y) 

+ (G(y)F'(y)) z + 2G'(y)F'(y)J (26) 

(Pak and S6kmen [33] have got the same result for 
h(x) = 0.) 

We shall now apply this general space-time trans- 
formation to four examples. 

B1) The coulomb problem in polar coordinates. Let 
us rewrite/~ of example A2) in coordinates q, a, fl, ?. 
One gets: 

1 [ 02 3 0 4K2~ 
ffl= - ~ m  ~ q 2  +q O q ~ , ] - 4 e E - 4 E q  2 (27) 

where K 2 is defined in [3] and has eigenvalue l(l + 1). 
The Hamiltonian (27) has the form (21) if we make 
the following identifications: 

y = q ,  F = 3 ,  f (q )=4q ,  F(q)=q2, 
q 

l(l+ 1) e 2 
V(q) -  2mq2 q.  

We thus obtain: 

= y(q) = q3, 

which yields the effective Lagrangian 

~q~af(q, q) = 2 42 

(28) 

3 
8mq 2 

(29) 

41(l + 1) + �88 t- 4e 2 + 4Eq 2 
2mq z (30) 
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to be used in the transformed path integral (7) (see 
[18], [41]). Equation (30) describes the radial motion 
of a three dimensional harmonic oscillator with 
frequency o~=, fZ -gE/m and effective angular 
momentum Lef f = 21 + 1/2. 

B2) The Langer transformation. Gerry and Inomata 
[10] used the Langer transformation r = e x to perform 
a semiclassical calculation for the hydrogen atom. We 
start with: 

1 ( d  2 + 2 d ~ _ r  l ( l + l )  e 2 
E. (31) 

HE= --~m ~ r dr ] 2mr 2 r 

With r = e ~ = F(x) we obtain 

A 1 _2x [" d 2 d ) e_2xl(l+ 1) 
HE=--2-mme ~-~x2 + dxx / + 2m 

- e-Xe2 - E. (32) 

Now the natural choice for f(x)  is f(x)  = x 2 yielding 

1 I 'd  2 d )_ t  l ( l+l)  e2eX_Ee2~" 
ffI = - 2 mm ~-d-~x2 + Tx _ 2 m 

(33) 

A comparison with (21) gives 

y = x ,  r = l ,  V/o=J(x)=e ~, 
p~ = - i(d/dx + 1/2), 

1 
A V = 8--~" (34) 

Thus we end up with the Hamiltonian 

1 2 ( l+ 1/2) 2 eXe 2-e2~E, (35) 
Heff(p,,x) = ~m p~ + 2m 

which is hermitian with respect to the inner product 

( f , g )=  ; f*ge~dx. In this case the quantum 
- o o  

correction is well-known as the Langer modification 
and the result coincides with the one given by Gerry 
and Inomata. 

B3) The Morse potential. Duru [6] has calculated 
the path integral for the Morse potential. He has used 
the transformation x = - ( 2 / a ) l n y  and got by a 
heuristic argument concerning initial- and final points 
in the path integral the quantum correction 
A V =  - 1/8my 2. 

Consider the Hamiltonian 

1 d 2 
H ~ -  2m dx 2 -t- V ( x ) -  E (36) 

with V(x)= Vo(e -2ax-  2e-"~). With the transforma- 
tion x = - ( 2 / a ) l n y  = F(y), i.e. y = e -("/z)~, we get: 

a 2 2 / /d  2 1 dXx 
aE= - ~ m y  ~ 7 + y ~ y )  + V(F(y ) ) -E  (37) 

which can be brought to the generic form (21) if we 

choose f(x) = (4/a2)e "~. We then obtain 

1 
F =- ,  x/9 = J(Y) = Y, Pr = - i(d/dy + 1/2y), 

Y 

1 
A V . . . .  (38) 

8my 2 

which finally leads to the effective Hamiltonian 

1 2 1 (8mE+_4 
Heff(pr, Y)= f~m Pr 2 m y 2 \ ~ T -  

4Vo 2 + - ~ - ( y  - 2), (39) 

which is hermitian with respect to the scalar product 
go 

(f,g) = I yf*gdy.  
o 

B4) General space-time transformations in radial path 
integrals. Steiner [39, 41] performed in a general 
radial path integral the simultaneous space-time trans- 
formations defined by 

r=R~=F(R) ,  d t=f ( r )ds  (40) 

with f(r) = #2r~, # = 2/(2 - v), where v is an arbitrary 
real parameter with v < 2. He got a quantum correction 

v(4 - v) 
A V(R) - 8mR2(2 _ v ) 2 ,  (41) 

which leads to a modification of the centrifugal barrier. 
The lattice definition reads: R 2---~ R(i)R(j_ 1). We start 
with the Hamiltonian: 

1 [ d 2 2 d I ' l(l + 1) 
HE= --~m ~-~r2 + r  ~r / -f 2----~Tr2 + V(r)-- E. (42) 

Performing the transformation (40) we arrive at a 
Hamiltonian/~ which has the generic form (21) with 

F = I + # R  ' w/-9=~ 

1/d  1 + ~  
p R = ~ - - R  + ~ - ) ,  (43) 

A V(R) as in (41). For the space-time transformed 
effective Hamiltonian we obtain 

Heff(pR , R ) =  1 2 Lv(L~ + 1) 
2m pR + ~ m ~  

4 + ~ R  2*/(2-~)[V(R 2/(2-~)) -- E] 

(44) 

with an effective angular momentum 

41+v 
L~ - 2(2 - v)" (45) 

(Notice that L~ will not be in general an integer or 
half integer). From (44) we obtain the effective 



Lagrangian 

~ a f  (R, R) = mR2 4 R2~/(2 _ ,)[V(R2/(2_ ~))_ E] 
2 (2 - -  10 2 

L~(L, + 1) 
2mR2 (46) 

which has the generic form (III.15). From Section III 
we know, that the corresponding radial path integral 
will only involve the S-wave part of (46), i.e. the 
part with L, = 0, while the dependence on L~ will 
be determined by the functional measure (III.13) 
evaluated at l =  Lv. We thus obtain from (6) and (7) 
the transformation formula for radial path integrals 
(d=3,  v<2)  

Gl(r",r';E)= (r'r"y/4 KL,(R ,R; s  )ds (47) 
0 

with the transformed radial path integral 
R(s") = R'" 

tt t . tt KL,(R , R , s  )=  S ~R(s)#~L~)[ R] 
R ( O )  = R"  

(2 4v)2R2V/(z-v) { V(R2/(2-v)) - E} ]dsl 
(48) 

( R ' = r  '(2-v)/2, R " = r " ( 2 - v ) / 2 ) .  For applications see 
[40, 41]. 

V Discussion 

In this paper we have presented several examples of 
path integrals on curved spaces. The examples have 
been the d-dimensional rotator, d-dimensional polar 
coordinates, the exact treatment of the H-atom in R 2 
and R 3 by performing a Kustaanheimo-Stiefel trans- 
formation and some one-dimensional path integral 
problems, i.e. the Langer-transformation, the Morse- 
potential, the Coulomb problem in polar coordinates 
and general space-time transformations in radial path 
integrals. Except the rotator, all the examples have 
been treated recently by other means, but never under 
the aspect of an application of a path integral on a 
curved manifold. The d-dimensional rotator has been 
discussed by Marinov and Terentyev, Inomata and 
Junker and B6hm and Junker. But these authors never 
calculated the path integral within the framework of 
a general theory which is necessary to handle a path 
integral correctly on a curved manifold.* 

It is interesting that another approach, i.e. defining 
the quantum Hamiltonian by 

H=  ----mPaOabpb + [o~ + 2(g"bFal ,b]  (1) 

* The only exception known to us is Arthurs [1], who discussed two 
dimensional polar coordinates by rewriting the Hamiltonian in a 
similar manner like (111.2) 
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which is mentioned by Marinov [26], gives in all our 
examples the correct result. A detailed analysis shows, 
however, that this corresponds to the symmetrisation 
rule 

~/g(p, ,, , 1 ,, q ,  q ) = ~[Weff(P, q ) + Jt~af (P, q')] (2) 

and a quantum correction 

A V =  [(gabFar b + 2(gabFa),b + 2g ,ab]" (3) 

This has been discussed e.g. by Dowker and Mayes [8]. 
In a forthcoming paper we shall show that the Weyl 

prescription yields the correct path integral formula- 
tion for the pseudosphere A d-1 [14] and for three 
further Riemannian manifolds which are analytically 
equivalent to A 2, i.e. the Poincar6 upper half plane U 
[13], the Poincar6 disc D and the hyperbolic strip 
S [14]. The pseudosphere A a-1 has also been dis- 
cussed recently by B6hm and Junker, but in their 
treatment the question of quantum corrections due to 
the Riemannian structure is not discussed with the 
consequence that the energy spectrum comes out to 
be wrong. 

In summary: we have presented a complete and 
consistent treatment of path integrals on curved 
manifolds based on Weyl correspondence and the 
midpoint lattice definition. Within our framework 
there exists a closed expression for the quantum 
correction A V which has to be subtracted from the 
original Lagrangian. We hope that our paper will 
contribute to a clarification of the apparent confusion 
in the existing path integral literature. 

Acknowledgement. We want to thank N.K. Falck for discussions 
on the operator ordering problem. 

Appendix A 

The quantum corrections to the classical Lagrangian 
proposed by the authors cited in the introduction 

read:* 

R(d) 
A Vt, 1 = 12m 

1 ab c d c c 
- 12m g (Fa'b - Fab'c + F~cFbd -- F~bFc)' (A1) 

1 
A Vt2sl - 48m (gab,cd -- 2gmnl~abml-'cdn) 

.(g~b g~a + g~ gbd + g~a gb~) + _ _  R (d) 

12 ' (a2) 

* We do not claim to present a complete list. Be careful with the 
signs in the definition of R (d), the scalar curvature. We use R (d) 

i j  k k 1 k k 1 = g (Fij.k -- Fkj.i + Fifkt -- FoFik) 
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! 
A V [ 2 6 ]  ~--- A V [ 3 o ]  = ~ m ( ~ a b l ~ d a c l ~ C b d  - -  R ta)) (A3) 

1 ab c d c 
- 8m 9 (Fa,b -- Fab: + 2F.~Fbd -- F~bF~) 

1 
ab ab  _[_ _ a b  "~ 

8m (g r a r b  + 2(9 r~),b V ,.b), 

= 8 ~  2-"b . (A4) a V[81 [(oabrarb + 2(o~br~),b + V ,abJ, 

1 ( ~ t~q~'](O_~_ ~qS~ (A5)  
A Vt2~q = 8m ~-qJ c3xJ \Oq '  ~xV,]" 
Let us make some comments: 

1) DeWitt [4] uses a prepoint lattice definition. 
2) McLaughlin and Schulman [28] derive their quan- 

tum correction by evaluating O,b in the Lagrangian 

at midpoints, but the measure term x / 9  at pre- 
points, which is at first sight rather puzzling. We do 
not express their result in Christoffels F~"~, because 
A Vt2s~ is rather complicated. 

3) The quantum corrections corresponding to the 
Weyl-ordering rule lead to a lattice-prescription 
where all metric expressions - except the normalis- 
ation C -  have to be evaluated at midpoints. The 
appropriate Hamiltonian to start with reads then 

1 14- 12  ~b 1 4  1 A 
H=~-mm9- / P,9 / O Pbg- / - -  2m LR (A6) 

and p, = - i(O a .-[- F J 2 )  (see e.g. [24, 29, 30] for de- 
tails). We have stated different formulations for 
A Vt26,3ol to simplify a comparison with the other 
quantum corrections. 

4) Dowker and Mayes [8] derive their result by the 
symmetrisation rule: 

og:(p, q", q') = �89 q') + Jfaf(P,  q')] (A7) 

(o~ denotes the Hamilton function to be used in the 
lattice version of the Hamilton path integral and 
oe:off denotes the effective Hamilton function). 

5) Lee's [24] very compact form is also based on Weyl- 
ordering (x, q denote cartesian and curvilinear co- 
ordinates, respectively). It is for dimensions d > 1 
equivalent to our A V. But for one dimensional cases 
difficulties arise, which can be seen e.g. in the case 
of the Morse-potential, where the sign in A Vt2, u is 
wrong. 

A p p e n d i x  B 

We want to prove that with the short-time kernel 

/ ( ({0  { 0 ( q ;  5) 

= ( m R 2 ) ( a - 1 ) / z  { 
\ 2 - ~ ]  e x p  i~ .~Nl({O(J+l) ) ,  {0(J)}) 

ie V 2 2 l ) 
sin 0(1J + 1) sin 0(1J~ + " 

' l) -F sin 0 f + 1)sin 0(1 j)... sin 0 ~  ) sin O~ j~_ 2 (B 1) 

and the time-evolution equation 

O({o s+ 11}, t + 5) 

(B2) 

the Schrrdinger equation 

.O  . 1 2 
- - - - L  u (B3)  z~r 2 m R  2 (a)r 

can be derived.* For this purpose, a Taylor expansion 
has to be performed in (B2) yielding (identify Oa- 1 = 49, 
0':= 0 (j) and 0":= 0~s+~)): 

q,({0"};  t) + t) 
Ot 

7 = 

d-1 e~k({0"}; t ) tB -- O;Bo) 
+ ~ Off' ~ 0~ v = l  

_ n,, n 
1 a~,l 2 0 tt t 

# > v  

- O"Bo. + O~O~Bo) t (B4)  

.x 

where we have used the abbreviations 

\mg J 
B 6 = ~ d12' 49'e'~e~, ~ 49"B0 

B ~2 = ~ dl2' O'Z e ~:~' ~- 49"ZB 0 

1 is 
q sin20,~...sin20~_2 mR 2 Bo 

�9 N 
no~ = j a ~  vve 

,,~ ,, 1 d - v - 1  ,, i e B 
- O,Bo -~ 2 sin20] �9 2 ,, �9 . . s i n  0 v _ l c ~  c 

�9 N 
[" j ,,,~l l t  t l l  IE,,~Cl ~ It It B~o" = jaz z  q~ v~e - 49 O~Bo 

1 d - v - 1  . i~ B 
+ 2 sin 2 0'~ ... sin 2 0~_ 1 49" cot 0 v ~ o 

(BS) 

* A similar calculation for d = 3 was done by Patrascloiu and 
Richard [35] 



�9 N 
I~ l ,."~/ .,~t ~ !  le.oC~'Cl ~ t! it  Bo~o, = jazz %%e _ O~ O,,B o 

�9 ,! " 2 t, cot0~ 
+ sin20~ .. .sin 0~_~ 

d # 1 , , ] i e  
+sin20,~ �9 2 ,, e ~  �9 ..sin 0~_ 

. N 
g ~ , , ' ~  . q r 2  ~,E,,L'f'Cl tt  Bo~=ja~z % e "~O~B 0 

l + ( d - v - 1 )  cot0~ ie 
+ sin20,~...sin20~_l mR 2 Bo" 

Here the equations are valid up to terms of 0(8 (a§ 1)/2), 
and 

~S('~ t J 'O" /  clt~ ~, {0'}) 

mR e 
- -  282 E ( 0 ; - 0 ~ )  2 + . . .  

+ (sin 0] sin 0'~ ... sin 05_ 2 sin 0~_ z)(q~' - 4/') z ] 
(B6) 

denotes a "classical Lagrangian" on the lattice. In 
order to make the calculation manageable, we have 
taken the A V-term at the argument {0"} and have 
factored out this term in (B4). This is legitimate, 
because changing sin 0'~(0'~ is an integration variable) 
to sin 0~ in A Vgives a correction of 0(8), hence of order 
~2 in the short time-kernel and, therefore, can be 
omitted. 

We shall only illustrate how to calculate the integral 
B o in (B5). All other integrals containing powers of 
0'~ are of similar type because they are of Gaussian 
form�9 For  simplification we use the abbreviations 
(v = 1 . . . . .  d -  1): 

f i m R  2 , _ 0';) 2 
E(O~) = e x P ~ 2 ~ - e  [(0~ + . - .  

�9 ! ' tt  t !t  2 t + (sin 0'1 sin 0~.-. sin 0~_ 1 sm 0~_ i)(0, - 0~) ) 
) 

(BY) 

and c~ = mR2/2i8. 
We consider now the integral 

rc ~ 2r~  

Bo = ~ dO'~ sin d- 2 0 ~ " "  ~ dO'~ - 2  sin 0'~_ 2 ~ dO' E( O a -1) 
0 0 0 

~- ~ dO'~ sin a- 20'1... ~ dO'a_ 2 sin 0~_ 2 E(Oa_ 2) 
0 0 

�9 ~ dxe e~(sinO'l""sinO~-2)x2 (B8) 
- oo 

where we have set x:= qS' - qS" which varies from - oo 
to + oo, and " -~"  denotes that this is correct in the 
limit 8 ~ 0. The x-integration is of Gaussian form, and 
we get 

{2r~i~'~l/~dO , sina-ZO'l 
Bo ~ \ ~ R  ~ ] ! ~ x/sin 0'~ sin 0'; 

711 

~. , /sin0~ 2 
"JdOa 2 / ~ E ( O d - 2 )  
0 - ~/sin Od- 2 

{2~i8"~i/2~d0 ' sind-20'l 

- - \ ~ J  ! i x / s i  n 0'1 sin0~ 

.SdO,e_ 3 sin 20a-3 E(0a-3) 
o x/sin 0~ _ 3 sin 0~_ 3 

s  /i + cot0  
. t . n 2 

�9 e - ~(sm01 ...... 0d- 3)x ( B 9 )  

where we have performed a Taylor expansion around 
0~_ 2 in the last step. The integral is again Gaussian, 
the term linear in x vanishes* and we get 

/2~zi8\ ~- , sina-20~ 
Bo 

z:  " 2 

. S d 0 ~ _  3 s i n  O d _ 3 3 E ( O d _ 3  ) 

o s i n  

[ ;( i8 1 1 -~ 
�9 1-  8m-R2 sin0'l . . .sin0~_ sin20~_2 

~ { 2 , r i s ~ d O  , sind-20'l 
- \ ~ , ]  ! i sin 0'1 sin 0'~ "'" 

~i, ,3  D r 
�9 l d  O, o - " d - 4  E l  0 , 
Jo d - 4 s i n ~ ~ - 4  ~ d-4) 

" f d x ( l  +cotOj-a 'x -X~f  ) 

. , �9 , 2 
�9 e - - ~ ( s m O 1 . . . s m O d  4 ) x  

i8 {2~i8"~d0 , sine-E01 
 (sin01 sin07) 

"i d0~- 4 (sin odSin30a- 4 '  - 4 sin" Odt' - 4) 2 E(Od-4) 

�9 1 1 1 

sin2 0~_3 ( + sin20~_ 2)  

�9 ~ dxe -~(~i~~162 
- clo 

~ (2rcie ~3/2 dO' sin a-20~ 
- \ ~ , ]  i l(sin0'lsin0~)3/2"'" 

sin3 0~_ 4 
�9 ! ' E(Oe_4) 

d0e_4 (sin 0e-4 sin Oa-4) t - ,t 3 / 2  

i8 1 

�9 1 8mR 2 sin0'l . . .sin0~_4 

�9 4 + ~ , ,  + 
sm 0d-3 sin 20~_3sin20~_z ' 

�9 It will become important in the calculation of the other integrals, 
e.g. in Bo~ , where it generates the term proportional to cot 0~ 

(]3.1o) 
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and so on up to the kth step: 

/2~zig'~ k/2~ - , sind- 20] ...idO,d_ 1 
) o 

sin * 0~_ i - 
(sin 0~_ i -k sin 0j_ i -k) k/2 E(Od- i -k) 

1 I �9 1 8mR z s i n 0 ] . . . s i n 0 ~ _ i _ k  ( k - l ) 2  

1 1 ]}  (Bll) 
-~ sin ~ 0~_~ + " ~ " " 2 " ' sm 0 a_k.., sin 0 d_ 2 

and finally after d-1  steps: 

,.~(2=is)(d-i)/=+f 1 ie g 22  
B ~  . - 8 - ~ R ~ [  ( d - )  

1 1 - ]~ (B12) 
+ ~ + " "  + sin 20~ �9 2 ,q, �9 .. sin v d_ 2 _1) 

which gives in the required app rox ima t ion  the result 
quoted  in (BS). Substi tut ing the expressions (B5) in the 
Tay lo r  expansion (B4), one obtains  in the limit ~--. 0 
the correct  SchrSdinger equat ion  (B3). 

Appendix C 
In  deriving the Schr6dinger  equa t ion  (II.1) f rom (II.8) 
with the help of  the shor t - t ime kernel  of  (II.27) one 
has to per form a Tay lo r  expansion in (II.18) yielding 
(z = mR2/e-identify 0d- 1 = r 

r t) + aO({o"}, t) 
8t 

Z ~ ( d - 1 ) 1 2 e i z + ( i / 8 z ) ( d  - 1 ) ( d - 3 )  

�9 O({ff'};t)Bo+ 2 Off' (B~176 
V = I  

] 

,u>v 
% 

�9 (Bo,o,- O~Bo,- O"Bo, + O'~O;Bo) t .  (C1) 

We have used the abbrevia t ions  (cos ~ as in (II.22)):* 

Bo=~dD, e-i . . . .  O..=27~(~j_)(d-2)/2i(a_2)/2(z/i) 

= Id '#e = C B o  

B O: = ~ dD' r e -~ . . . .  0 ~_ r 

1 (2rci) a/2 
+sin20,~ - .  2 ,, - -  �9 . .sin Oa_2\ z ] I(n-i)/2(z/i) 

�9 The abbreviations (C2) should not be mixed up with the abbrevi- 
ations used in (B5) 

Bo ~ = ~dO, O, e-i . . . .  ~, ,, ~- O~B o 

1 d - v - 1  cotO~(~_)a/2l(d-2)/2(Z/i) 
2sin 20~..- " 2 t, S l n  0 v _  1 

(C2) 

~ s l t , ~ t  - - i z c o s ~  Br v = Sd~zq) vve 

1 d - v - 1  
it �9 2 it _dp OvBo 4 2sin201...Sl n 0 v - i  

^,,/2~i~ dIE 

= f , 4 o ' O '  O' ,~-~=~o~O _ O~O~Bo Bo~o~ j - - -  v v - u -  

, �9 2 ,, cot 0~ 
+ sin 201.. .  sin 0 v_ i 

-] / 27ri ~ dl 2 
(sin 0 i . . - s ln  O,_l)  

, , 2  - i z c o s @  Bo~ = Sd~2 0~ e ..~ n,,2u - -  v v l ."  0 

1 + (d - v - 1) cot 0: 
+ 

sin 20~--. sin 20~_ 1 

"( 2~--~i ) a/2l(d_ 2)/2(z/i ) 

where the equat ions are valid up to terms of O(e (d+ i)/2). 
The  integrals are now more  compl ica ted than  in 
Appendix  B. Nevertheless,  (C2a) is relatively easy to 
prove�9 With the use of  [12, p. 488] 

2~r p c o s x + q s i n x  C O S / ~ / X  (s nmx) 

"[ (p+iq )m+(+i ) (p - iq ) '~  1, (C3) 

one gets for the e - in tegra t ion  in Bo(fv=sinO'l 
! tf , �9 sinO~ .- .sin O~_l sin 0~_ O. 

2 u  

e *zyd- ~~176162162162 = 2UJo(zfd- 1), (C4) 
0 

so one has to consider in the next steps the i terated 
integrals: 

% 

B o = 2~ ~ dO] sin d- 20 t  l e - i  .... 0] r 
0 

f r l l ~  t ~ * Q /  o - - l z f d - 2 C O S O d - 2 C O S O d - 2  
" "  J t~ W d - 2 o ~ .  t ,  d _  2 ~" 

0 

�9 Jo(zfd- 2 sin 0~_ 2 sin 0~_ 2). (C5) 

These integrals can be calculated using the formulas  



(see [12, pp. 1031, 830, 938], respectively): 

J1/2- 4 (z sin a sin fl)(z sin a sin fl)1/2- 4 e-~z cos c~ cos fl 

= ~/Sr(~) ~ (k + ~)i -~ 
F(2 + 1/2) k = o 

Jk + 4(Z) C~(cos c0 C~(cos fl) (C6) 
z4C~(1) 

rc F ( 2 2 +  1 )  s 
I C~(c~ e) sinz4eda - 254 F z ~ i ~ v k ,  o' (C7) 
0 

2 2 x  - 1 
V(Zx) = ~ r (x ) r (x  + 1/2) (c8) 

in each step, yielding finally: 

/ i \ (a-  2)/2 
B o =(2rc)a/2~7 ) I,a_2)/2(z/i). (C9) 

The integrals (C2b, c) are calculated by expanding (C3) 
on both sides about m = 0 and using the asymtotic 
form of the modified Bessel functions 

I k ( Z ) ~ _ ~ e x p  z--  ([zl >> 1) (el0) 
x/2n z 2z 

together with the completeness relation 

U~(x) U~(y) = 6(x - y)(1 - x2) 1/2 - 4 (Cl 1) 
k=0  

for the orthonormal Gegenbauer polynomials: 

b~, , / r(,~)(k + ,~) C~(x) 
k iX) = ~/x~-F- ~ + U2) C~(1)" (C 12) 

The integrals in (C2) containing powers of 0~ are 
calculated in the same manner up to the vth integration. 
There one has to use the approximation 

Ik+4(z)~-I4(z)[l+k(k+22)/z] ([zl >> 1) (C13) 

and the defining differential equation for the Gegen- 
bauer polynomials 

X 
F"(x) + ~ (2,~ + 1)F'(x) 

1 
x 2 - 1 k(k + 22)F(x) = 0 (C14) 

in order to perform the summation: 

k(k + 22)U~(x)U~(y) 
k=0  

d 2 
= (x 2 + 1) d -~  [6(x - y)(1 - x2) x/2- 4] 

q- (2/~ + 1) d [(~(X - -  y ) ( l  - -  X2) 1 / 2 -  4]. ( C 1 5 )  

With these means the equations (C2) are easily derived 
and the Schr6dinger equation is proved. 
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Appendix D 

In this appendix we shall derive the Schrfdinger 
equation from the short-time kernel of the radial path 
integral (III.11). For the time evolution from t to t + e 
we have: 

r t + e)= ( m  ~r,,(2-d)/2 e(im/2e)r"2-i~V(r") 

�9 ~ e(im/2~)r2Ii+(a_2)/2((m/ie)rr")ra/2r t)dr. (D1) 
0 

Taylor expansion yields: 

a~(r ' , t )  
(r",t) + ~ a--S-- + " "  

=(m~r,(2-d>/2e(,m/2~)r"2-i~v(,") 
\ E l  

�9 ~r ~ &p(r",t) [B1 - r"Bo] 
( aY" 

1 a 2 0(r", t) t + 2 ar,,~-- T -  [B2 - 2r"B1 + r"2Bo] 
J 

with (n = 0, 1, 2): 

..[" e \/2ei~"/z+e'/4F((n + d + l)/2) 
= i-( l+d/2-1~ _ _  _ _  

"e-irar'2/4"eMn/2+d/4'(1/2)(l+d/2-1)\ 2e I 

/ e \l'2ie'V'/2+d/4e_im,..:~/g~:il_a/2_,, 

/'((l + d + n)/2) 
F ( ( I -  n)/2) W-(./2)-(d/4).(1/2)(l+(a/2)- 1) 

imr "2 

( : ) r  e ,.~ (d 2)/2 + rar"2/2 

�9 I 1 -  2~r,,2 [ ( + d - 2 ) - n ( n + d -  

/ 2e \n+d/21/ e \ 
"4- [ - - /  1 - - )  i - l + n + l r - n - d / z - l e i m r ' 2 / z e  

\ m i /  \ m /  

ie 2d]} .{l + ~ [ l ( l + d - 2 ) - n ( n + d +  2)- 

(D2) 

(D3) 
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where we have used the integral formula 

xU e-~X2 Jv(flx)dx 
o 

F((# + v + 1)/2) 2 /f12\ 
(D4) 

and some properties of the Whittaker functions: 

M~,~,(z) = F(2# + 1)e i=~ 

.] 
L/ ' (u  + ~ + 1/2) t- F(ff - 2 + 1/2) A (D5) 

�9 { 1 +  s ( # 2 - ( 4 - 1 / 2 ) 2 ) ' " ( # 2 - ( 2 -  k + 1/2)2)} 
k=l  k ! z  k " 

(D6) 

H e r e  the  las t  e q u a t i o n  is va l id  for  ]z] >> 1, ]arg(z)l < re 
(see ]-12, pp.  716, 1062, 1061], respect ively) .  In  (D3) we 
h a v e  to  t ake  in to  a c c o u n t  on ly  the  t e rms  O ( &  Th i s  
impl ies  t ha t  o n l y  the  first t e r m  in (D3) is r e l evan t :  

1 2~rr,, z [ l ( l + d - 2 ) - n ( n + d - 2 ) ]  . (97) 

In particular: 

B1 ~Bor" 1 2mr,,2 

B 2~-Bor "z 1 2mr, 22d . 

These equations inserted in the Taylor expansion (D2) 
yield in the limit e ~ 0: 

Or [ 1 (ct 2 d - 1  0 )  
i a t  - -  r ~ - r  

1(1 + d - 2) 1 
+ 2mr2 ~-V(r) ~(r,t) (D9) 

_J 

which is the correct Schr6dinger equation. 
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