
Commun. Math. Phys. 113, 403-417 (1987) 
Communications in 
Mathematical 

Physics 
0 Springer-Verlag 1987 

C h a r g e d  P a r t i c l e s  in Z2 G a u g e  T h e o r i e s  

Jo~o C. A. Barata* and Klaus Fredenhagen** 

II. Institut ffir Theoretische Physik der Universit~it Hamburg, 
Luruper Chaussee 149, D-2000 Hamburg 50, Federal Republic of Germany 

Abstract. In the free charge phase of the Z 2 gauge-Higgs model on a lattice 
charged particles are shown to exist. 

1. Introduction 

Charged particles in gauge theories cannot be created by applying local fields to the 
vacuum: In a massive theory, this fact leads to strong restrictions for charged 
particles to exist. In relativistic quantum field theory [1 ] as well as in a certain class 
of Hamiltonian lattice theories [2], it has been shown that in a particle state 
expectation values of local observables approach at spacelike infinity rapidly the 
vacuum expectation values: In a case where the total charge is the sum over the 
electric fluxes at spacelike infinity as in U(1) gauge theories, it therefore must vanish 
(Swieca's theorem [1-411): If  however, the gauge symmetry is multiplicative like the 
triality in SU(3)gauge theories, this conclusion is no longer valid, and charged 
particles may exist, provided the electric fluxes in different directions are strongly 
enough correlated: The absence of such correlations may be used as a criterium for 
confinement [5]. 

In [6] charged states of the Z2 gauge-Higgs model [7, 8] in the so-called free- 
charge phase (Fig: 1) have been constructed: This phase is massive, and the general 
discussion applies: It was left open in [6] whether there are particles in the charged 
sector: This gap will be closed by the present paper: 

The starting point of our analysis is the euclidean Green's function in the 
charged sector: 

G(xo, x) = U(x) r tx°l , (1:1) 

* Supported by DAAD 
** Heisenberg fellow 
1 Note that the arguments in [2] and [1 ] do not use Lorentz covariance, in constrast to the original 
argument of Swieca [3] and the treatment in [4] 
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h= tan h~h 
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oo g =e-2~9 

Fig. 1. Conjectured phase diagram for the Z~ gauge-Higgs model 

where (Xo, x)e 7/x 2g d, d>2 ,  • is the vector constructed in [6], which induces 
the charged state, U is the unitary representation of the lattice translations in 7/a 
and T is the transfer matrix in the charged sector: We show that in some part 
of the free charge phase the joint spectrum of T and U contains an isolated shell 
{(e -°~(p), e~px), pe ( - n ,  n] ~} with an analytic function co(p) >0: 

The existence of stable particle excitations in lattice gauge theories has first been 
proved by Schor [9] (see also [10, 11]. More references may be found in [12]), His 
analysis is based on the different exponential decay of G and its convolution inverse 
F in the presence of an isolated shell in the energy-momentum spectrum: Up to some 
modifications due to the non-local character of the particle creating fields, we can 
closely follow Schor's ideas in our proof. Another more recent approach to the 
particle structure in lattice gauge theories is due to Bricmont and Fr6hlich [14-16]: 
Using their method it is also possible to prove the existence of charged particles in 
the 7Z 2 gauge-Higgs model ([16] and private communication). 

The 7/2 gauge-Higgs model has the action 

S = ~ fl0fir (p) + ~ flhz (b) ha(b) (1.2) 
p b 

with coupling constants fig, flh > 0, Ising spin fields a and z living on the sites and 
bonds, respectively, of the lattice 7/n + 1: The symbol 5 denotes the lattice exterior 
derivative: 

~(p)= FI ~(b), ~(b)= l-I ~(x), (1.3) 
beOp xeOb 

where @ is the set of bonds contained in the plaquette p and 0b the set of sites 
contained in the bond b. In this model a represents the Higgs field and z the gauge 
field. 

All gauge invariant local functionals of the fields a and z are linear combinations 
of the functionals ZL(a, -c), where L is a finite set of bonds and 

ZL(a,Z)= I-[ a(x) 1-[ z(b) , (1.4) 
xeSL  beL  

~L denoting the set of sites which are boundary points of an odd number of bonds 
in L. 
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2r 

Fig. 2. The set N~ 

}Z (r) 

The Green function G in (1.1) cannot be obtained as an expectation value of 
local fields in the Gibbs state defined by the action (1.2). The easiest way to describe 
G is as a square root of the Green function of two infinitely far separated charges, 

G(x)= l im  { (ZON.ZN~ +(Ixol,x~)/ (ZON.ZN~> } 1/2 . (1:5)  
r - C o o  

Here N, is the rectangular path from 0 to z (~) = (0, 2r, 0 . . .  0) with corners in 
( r ,0 . . . 0 )  and (r, 2r, 0 . . . 0 )  (Fig. 2) and 0 is the reflection on the (x0=0) - 
hyperplane. 

Note that the transfer matrix T used in the definition of G differs from the 
transfer matrix given in [6] by a constant factor due to the automatic choice of the 
appropriate zero point of energy in the definition (1.5) (cf. [6, Theorem 6.2]): 

G decays exponentially for h -= tanh flh and 9 - e-2 ~ sufficiently small. One can 
therefore define, for pe  ( - = ,  rc] d 

I (27z) d/2 ~ eip 'xG(t ,x) ,  t>O 
G p ( / )  = xeZ d 

[ 0  , t < 0  
(1.6) 

For small couplings Gp (t), t > 0 is a nonzero analytic function of p: For those p 
for which Gp(O) 4= 0 the convolution inverse Fp of -Gp exists. It is given by the finite 
s u m  

t n 

/ ' p ( t ) = - G p ( 0 ) - '  Y~ ( -1 ) "  ~ I1 {G~(t,)/Gp(O)} . (1.7) 
n=O t~.,...,tn>O i=1 

~ti =t 

Let J/g1 denote the Hilbert space which is spanned by the vectors U(x)T(°~, 
t > 0, x e 2gd: ~f~ admits a representation as a direct integral with respect to the 
spectrum of U, 

= ( 1 . 8 )  

T is a diagonal operator in ~ ,  , 

T= 5 ddpTp • (1.9) 
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With 4~= ~ dnp~b(p), ~ ) e  Jr(p) we have 

6d0=(~(p), r;e(p)), t__>0, 

and for p with ]]¢(p)NZ=G.(O)*O we find 

ip(t) [(q~(p),Tp{(1-E)Tp)t-~q~(p))t]q~(p)H-4_ , t>_>_l (1.10) 
- LL (p)LI-2, t = 0 '  

where E is the projection onto {2~b(p), 2~117}: 
Then 

co(p) = lim ( - 1 / t  In Gp(t)) =inf  sp ( - l n  Tp) , (1:11) 
t--+ O0 

and from the minimax theorem [•8] 

03(p) = lim ( - 1 / t  In Fp(t)) < in f  {sp ( - l n  Tp)\{co(p)}} . (1 .•2) 
t ~ c o  

In Sect. 3 we show that for h and g sufficiently small Gp(0)4= 0 and 03(p)> co(p) 
for all p: 

Thus co(p) is an isolated eigenvalue of - l n  T w Moreover, since the Fourier 
transform ~p (co) of Fp is an analytic function of p and co for real p and Im co < 03 (p) 
with a single zero at co=ico(p), co(p) is an analytic function of p: 

We conclude that there are normalizable states with energy-momentum 
spectrum contained in {(co(p), p), p ~ (-z~, ~z]a}: These states may be interpreted as 
particle states: Actually, one can even show by methods of Burnap [13, 9] that the 
spectrum of (T, U) in the orthogonal complement of ~1  is contained in the set 
{(e- 4, eip. ~), 2 > 03(p), p e ( - zc, ~]a}: Thus the mass shell of these particles is isolated 
in the whole energy-momentum spectrum: 

The existence of particle-like excitations in euclidean lattice gauge theories is a 
necessary condition for a particle interpretation of these models: In a next step it has 
to be investigated whether there are also states which can be interpreted as outgoing 
or incoming multiparticle states: In contrast to continuum quantum field theory 
where this property follows from locality by the Haag-Ruelle scattering theory 
([1 9-21], for a generalization to gauge theories (massive case) see [1]) in euclidean 
lattice models no similar result is known: 

2. The Polymer Expansion for G 

In the free charge phase the 7Z. 2 gauge-Higgs model admits a convergent expansion 
which has first been described by Marra and Miracle-Sole [17]: We shall briefly 
review this expansion (for a more detailed exposition see [6]) and shall then give a 
representation of G which is meaningful also for space-time dependent couplings h 
and g: This will be important for the application of Schor's method for the proof of 
exponential decay of F/G: 

The Marra and Miracle-Sole expansion is a polymer expansion where the 
polymers 7 ~ ~ are pairs 7 = {P~, N~} with P,~ being a coclosed set of plaquettes, N~ a 
closed set of bonds, and where 7 is connected as a graph in the following sense: The 
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vertices are the co-connected components P~ of Pr and the connected components Nj 
of N~, and the edges are the pairs {Pi, Nj}, where Nj winds an odd number of times 
o) (Pi, Nj) around Pc, 

(Pi, Nj) = ( - 1)~ tp'' N j) = ZNj (~i, ZP¢) = -- 1 , (2.1) 

where ze, is a gauge field configuration with 6zp,(p)= - 1  iffp ~ PC. 
Two polymers 71, 72 are compatible, 7~ ~72, if no elementary 3-cube has 

plaqnettes in P~ and Pr2 as faces, if no point is a boundary point of bonds in N~ and 
N~ and if no co-connected component of P~ has an odd winding number with a 
connected component of N~,~ and vice-versa. 

The activity of a polymer 7 is 

t t (7) = h N~ge~. (p~, N~) (2.2) 

with h N~= rI  h(b),g e~= 1-I g(P). [We 
bEN v pePv 

h (b) = tanh/38 (b), g (p) = e-  2 a~(p).] 
The partition function of the model is 

use space-time dependent couplings 

and its logarithm is 

z =  Z 0/n0 Y, 
n = 0  71, , . . ,7n 

7 i ~ j , i ~ j  

P(Ta).. .#(7,) , (2.3) 

l n Z =  ~ Cr# r , (2.4) 
F e N  

where f# is the set of nonnegative, integer valued functions on fqc with finite support 
(called clusters) and # r =  1~ /~(7) r(r)- The coefficients Cr (the so-called Ursell 

7~fee 

functions) are of a purely combinatorial nature. We shall often exploit the fact that 
Cr = 0 if F=/ '1  + F2 with 71 "~ 72 for all 71 ~ supp/"1, 72 ~ supp F2, as well as the 
estimate 

Icrl IJl~Fl(/3)171 , (2.5) 

where/3= - l n  (sup {[h(b)], [g(p)]}) and F1 is a monotonically decreasing function 
related to the generating function of the polymers. For each flo < fl with F1 (rio) < o% 
(2.5) implies the following bound for the contribution of large clusters: 

ICr[ t#rl <e-(a-P°)"F1 (/3o)171 , (2:6) 

IIr li _>_n 

where IIF I[ = ~, F(7)[71 and [71 = [P~[ + IN~.I. 
The expectation value of ZL has the following expansion: Let S be a finite even 

family of lattice sites, and let S be the set of sites occurring an odd number of times 
in S: Denote by Conn (S) the set of all sets of bonds M with t3M--S such that 
each connected component of M meets at least one point in S. Furthermore, for 
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OM = 0L = S, set 

aL,M,s(Y)={(Opr,LAM) 
if N~ is connected with M or S, 

otherwise 
(2.7) 

(A denotes the symmetric difference) and at = at, ~,~ i fL is closed. Then for all S with 
S = a L  one gets 

(ZL) = ~ hUexpI~cr#r(ar,M,s--1)~. (2:8) 
M ~ C o n n  (S)  c . r ~  j 

This expression is a generalization of the expansion for (ZL) given in [6] 
[expressions (4:6) and (4:16)] where S = 0L was chosen: Different choices of S (with 
S =  OL) correspond to resummations in (2:8): The freedom in the choice of S allows 
a more symmetric treatment of open and closed paths L which turns out to be 
convenient in the proof of Theorem 3.2 below. The convergence of (2.8) follows 
from the estimate (2:5) for the exponent together with the combinatorial estimate 
[{M: M~ Conn (S), ]M[__< n}] =< tSl(2d+ I)". 

To obtain an expansion of the Green function in the case of variable couplings, 
one has to take the dependence of the normalization factors on the couplings 
properly into account: Let the symbol k denote the dependence of the expectation 
values on the configuration of couplings: k = {h(b), 9(P)}b,p: Let k ~) be periodic 
with respect to translations by z (n and coincide with k on bonds and plaquettes 
which belong to the set { x e Z  d+l, -r<xl  <r}; let k~_ (respectively kt,+) be 
symmetric with respect to reflections on the Xo = t plane and coincide with k on 
bonds and plaquettes in the half space Xo ~ t(Xo > t). 

Let us denote 
( ~ O N r  + X ~Ur  + y ) k  ~" Mr (x, ytk ) . (2:9) 

Then we define the Green function G for space-time dependent couplings by 
(Xo _-__yo): 

G(x,y)k= lira {H,(x,y[k~))/[H~(x, xtk~')o,_)Hr(y, ylk~)o,+)]l/2}l/2 (2.10) 
r ~ oo 

with the square root functions being uniquely fixed by the condition (.)~/2 _> 0 for 
real positive couplings. Now we apply (2.8) and choose S = {x, y, x + z ~), y + z (') } for 
the numerator and S =  0 for the expectation values in the denominator in (2A0). 

We identify bonds, plaquettes, 3-cubes, etc., of the lattice with their geometrical 
central points (which are points in (1/2 7/)~+ 1): For a < b, define ff~,b as the set of all 
clusters F ~ fq such that all bonds in N~ and all plaquettes in Pr are contained in the 
time-slice a < Xo < b for all ~ ~ Y: 

To control the convergence of the right-hand side of (2: I0) we divide the set of 
clusters into several subsets if,,+ ~ and ~#_ ~,t: Using the representation (2:8) with 
the abbreviations 

r _ _  ( a~,y;M(7)-- a(ON,  + x) Zx(N, + y),  M, { x , y , x  + z~'~, y + z r ) } 0 ~ )  , 
(2.11) 

4 (~) = a(oN, u Na +z, 6, ~ (~) , 

and defining (for zo < wo) ~*o,~,o = ~\(f~- ~o,,o v0 ~ . . . .  ) we may write G (x, y)2 as the 
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limit r ~ oo of 

2 
M ~Conn (x,y,xr , yr) 

q- 2 r r r r r Cr# ((ax,r;M) --(a~) ) +  

--1/2 Z r Cr#~o,- ((a~) r -- 1) 

r r F  } - 1 / 2  Z Cr~L,o,+((a~)-1) . 
re~*.o 

Z 
re~*~,~o 

f 
hMexp~ ~ r ~ r r Cr# ((a~°y;M) --(a~) ) 

( 
F ~ o  , c~ 

r r r Cr~ ((a~,,;M) -1)  

(2.12) 

The subscript Zo, ± on #to, ± indicates that the activity is defined on k~o ' ±, # and h 
being defined on k. 

By straightforward application of the estimates (2.5) and (2.6) we may control 
the limit r ~ m  of the expression above and get 

with 

where 

and 

G(x,y)k= ~ hMo(M;x,y)  , (2.13) 
M e Conn (x, y) 

0(M; x, y) =exp (DM;~,y) , (2.14) 

DM;x,y= A + (M ; x, y) + A _ ( M  ; x, y) + B ( M  ; x, y ) - C  + (y)/2 - C _ ( x ) / 2  , 

(2.15) 

A + ( M ; x , y ) =  ~ r r r Crl~ (ax,y;M--ay) , (2.16) 
r~aJyo ,~  

A _ ( g ; x , y ) =  ~ r r Cr# (a~,y;M--a r) , (2.17) 
F ~ a d - ~ , x o  

B ( M ; x , y ) =  ~ cr#r(ar, y ; u - 1 ) ,  (2.18) 
F~*o,~o 

C+ (x) = ~ r r Cr #~o, ± (ax - 1) (2.19) 
r~G*o,~o 

with ax(7)= lim a~(v) and for M e  Conn (x,y), ax,y;M(~')= lim ax, y;Mr A(M'+z'r~) for 
r--* oo r - - * ~  

some M '  ~ Conn (x, y). 
The representation (2A3) converges provided [h(b)[ <he, [g(p)[ < g~ for some 

he, g~ > 0. It will be the basis for the analysis of the energy-momentum spectrum in 
the charged sector. 

Using the estimates (2.5) and (2:6) we can easily derive the following bound for 
DM;x,y : 

IDM;~,yl ~ / q I g [  + k2 , (2.20) 
kt and k 2 being constants. 

The term kllMI is a bound for A + + A_ + B and k 2 is a bound for C+ + C - .  The 
first bound is an easy consequence of (2.5). The second one follows simply from the 



410 

estimates 

J. C. A. Barata and K. Fredenhagen 

~. r r _ l )  < r r cr#~o(a~ ~ ~ tCrl I#~oI tax --11 
F~d~o ,x  ° y : y e Z a +  1 r : F 4 , y  

YO = xo  

< 2  Z E ]Crl I#rol 
y : y e Z  d + l  F : F , / , , y  

ro=xo ltrll >ty-xl 
___<2 F~ f~ (Bo)e  -(~-p°)I'-~I , 

y : y e Z  d + 1 

y o = X o  

(2.21) 

where the last sum is a finite constant: Above we used improperly the symbol F ~ y  
to indicate that the clusters F touch the point y: [] 

Inserting (2.20) into (2:13)-(2:14) one obtains the following bound: 

IG(x, Y)I < cl (c2 ho) I~- rl (2.22) 

for Ih(b)[ <ho, Ig(P)t <9o ; 0 < ho <he ; 0 <9o <9c and constants q ,  c2 > 0, where hc 
and 9~ are sufficiently small. 

We also need a lower bound for Gp(t), t>0 ,  in the case of constant positive 
couplings: Since 

Gp(t) (~(p),T(tp)~(p)) >F(~(p) ,  T(p)~(p)).T_FGp(1) 1' (2:23) 
c~(o) H~(p)ll 2 =L l[~(p)ll ~ J -LG.(o)J ' 

a lower bound on Gp(1) provides a lower exponential estimate on Gp(t). A lower 
bound for Gp(1) is easy to find. According to (2:13) and (2:14), G(xo = 1, x = 0 )  is a 
sum of positive terms and using (2:20) we find immediately 

G (Xo = 1, x = O) > he- k~ - k2 . (2:24) 
Now 

Gp(l)=(2rO-d/2[G(xo=l,x=O)+ ~ G(xo=l , x )e  -ip'x] . (2:25) 
x# :O  

So using (2.21) we find c3, c4 such that 

Gp(1)>(2rC)-d/Zh[e-k'-k2--ClC2 ~ (c2h)lXI]>c3h(l-c4h), (2.26) 
x # 0  

which is positive for h small enough. 

3. Decay Properties of Fp 

We now want to show that the exponential decay of Fp(xo) is faster than that of 
Gp(xo) for sufficiently small couplings, The reason for this behavior is that the 
leading term in the expansion of Gp(xo) is absent in the expansion of Fp(Xo): Schor's 
method of  proof  relies on a decoupling property of  Gp(Xo, Yo) for space-indepen- 
dent but time-dependent couplings: We will consider 9(P)= gt for all plaquettes in 
the hyperplane Xo--t, h(b)=h~ for all time-like bonds connecting the hyperplanes 
Xo=t and x0 = t +  1: For all time-like plaquettes or space-like bonds we have 
g(p)=g and h(b)=h. 
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In order to write down an expression for Fp we need to prove that Gp(tz, t2) is 
non-zero. We have 

GP(q'q)=(2~z)-a/z I G(q'q ;x=O)+~.o ~ G(q'q ;x)e-~P~l " (3.1) 

But, according to (2:1 3), G(q, q ; x = 0) = Q (0; (q,  0), (q,  0)) whose modulus, 
according to (2:20) is bounded from below by e-k~: 

So 

[G'(q'q)[>=(2n)-d/2 [ e-k~-x.o ~ IG(q'q ;x)'l 

>(2n)-~/2[ e-k2-cl x.O ~ (c2h°)lxll ' (3.2) 

according to (2.22). Choosing ho small enough we get a non-zero Gp(q, q) for all p's, 
which enables us to write 

F ~ = - P p  ~ (-1)"Q~, , (3.3) 
n=>0 

where Fp, Pp, and Qp are understood as operators on l z (Z), the matrix elements of 
the two latter being 

Pp(q, t2) = (ap(q,  q) ) - i  fir,,t: (3:4) 
and 

Qp(q, t2) = (Gp(q, t2)/Gp(t2, t2)) (1 -~t,,,~) • (3:5) 

For each matrix element Fp(q, tz) the sum in (3.3) is finite since Q~(q, t2) = 0 if 
n > It1 -t21. This establishes the existence of an inverse for Gp on 12(Z). 

Now we start with the analysis of the exponential decay of Fp. We will study the 
dependence of  Fp on the variables ht and gt: In order to determine the leading 
contributions we investigate the derivatives of Gp and Fp with respect to ht and gt for 
v a r i o u s  t 's :  

Lemma 3.1. i) Gp(xo,Yo)th~=o=Ofor xo~t<yo: 
ii) Y~(xo,Yo)lh,=o=O if xo~t < yo: 

Proof. i) is obvious from (2:13). For ii) we note that i) means that G~lh~=O, seen 
as an operator acting on 12(7/), reduces the sub-spaces t2(Zt+) and 12(Zt_ ), 
(Z,+ = {xo s Zlxo > t for + or Xo < t for - }), and Fp[h~=o, being its inverse, does the 
same: Alternatively, ii) is a consequence of (3:3) and i) since at least one of the matrix 
elements Qp in the expansion of Q~,(Xo,yo) is zero at h~=0, Xo<t<yo . [] 

Theorem 3.2. 
0h~Gplh~=~=0 = GpA, Gplh~=~=o (3.6) 

with At (Xo, Yo) = (2 n) ~/2 exp [ f  + 1 ] 6~o,t 6to, t+ 1, where ft + 1 is a holomorphic function 
of h, 9, and gt+l for Ihl<a, 19[, [gt+l[<b for certain a, b>0.  
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This is the central theorem of this work. Its proof is somewhat technical and will 
be given in the Appendix: The function f + l  will also be defined in the Appendix: 
( - f  + ~) can be interpreted as the contribution of the gauge field to the mass of the 
particle. It corresponds to - l n  a in the notation of [6, Theorem 6.2]. 

Corollary 3.3. 
a,fplh,=g,=o =At , (3:7) 

hence a h f  p(Xo, Yo)Ih~=g,=o = 0 f o r  Yo - xo > 2. 

Proo f  From the relation Fp Gp = - 1  we get an~Fp = Fp (ah~Gp)Fp. Inserting now the 
relation (3:6) we obtain the desired result: [] 

Comparing Corollary 3.3 with Theorem 3:2 we understand the essential reason 
why Fp has a faster decay than Gp : the dominant dependence of Gp on ht, Xo < t <Yo, 
is of first order, but the one of Fp is of higher order: Corollary 3:3 is the crucial point 
of the proof of the existence of isolated singularities of Gp as we shall see below: 
Nevertheless, informations about the other derivatives of/ 'p are also useful since 
they provide information about the spectrum of the model beyond the one-particle 
singularity: 

I_emma 3.4. 

m X i) Og~G( ,y)10~=0=0 

ii) a~G(x,y)lo~=o=O 

iii) 0h'~Gp(xo, Yo)lht =o = 0 

Vt, 1 < m < 2 ( d - l ) ,  (d=>2), V(x,y) , 

i f  m is odd , 

i f  Xo < t < Yo and rn is even . 

(3:8) 

Proo f  Part i): I fd  > 2 the smallest co-closed set ofplaquettes in the hyperplane x0 = t 
is formed by 2 ( d -  1) plaquettes. These sets correspond to co-boundaries of isolated 
bonds in 2~a: So, ifa polymer contains plaquettes on the hyperplane Xo = 0 its activity 
contains at least one factor 9t z (d- 1): If  d =  2 such a polymer contains also at least one 
factor 9~ in its activity since in order to be co-closed it cannot have only one 
plaquette on the hyperplane: 

Part ii) is a consequence of the fact that all polymers contain an even number of 
plaquettes on the hyperplane x0 = t: 

Part iii) comes from the observation that the lines M e Conn (x, y) for Xo < t < Yo 
contain an odd number of variables ht, but the polymers 7 contain an even 
number: [] 

Corollary 3.5. 

i) a~Fplg~=o =0  

ii) a~Fp]o~=o=O (3.9) 

iii) a g f  p(Xo,Yo)lh~=o,=o=O 

Proo f  The above relations are simple consequences of the Leibnitz formula, 

s - r , =  Z (a~rp)(am-~Gp)r,  , (3.10) 
s = O  

Vt, 1=<m<2(d-1)  , 

i f  m is odd , 

i f  x o < t < y o  . 
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with the use of the Lemmas 3.1 and 3:4, of the Theorem 3:2, Corollary 3.3 and 
induction: 

We show explicitly the proof ofiii), the others can be done in an analogous way. 
We have at h ,=g t=0 ,  

a g~ r ,  = I"p ( O~, G.) r ,  + 2 ( oh, r,) ( Oh, ap) r ,  = r ,  ( a~, ap) r .  + 2At apAt Gp r ,  

= r . ( o ~ , o , ) r p  . (3.11) 

2 0 Now, for Xo N t <Y0 we conclude from the last equality that Oh, F~(Xo, Yo)[h~=o~=o ---- , 
since Fp reduces/2(Zt+) and/2(TZt_) and, according with Lemma 3:4, iii), 8~Gp 
does the same. [] 

It suffices to consider the function Fp(O, yo), y o > l .  We have proven the 
following facts about it: 

1) Fp(0,yo)th,=o =0 
2) QhtFp(O, yo)lh~=o,,=o=O 

m 3) ~otFp(O, yo)[o~=o-O 
4) 2 ~htl-'p(O, yo)lOt=ht=O =0 

if 0 < t < y o  , 

Vt(since lYol > 1) , 

Vt; l < m < 2 ( d - l ) ,  or m odd , 

if 0 < t < y o  . 

(3:12) 

We consider now h,=h and 9t=g for all t outside of the interval 0 < t < y o .  
Considering Fp(O, yo) as a function of ht and O, for a t on 0 < t < y o ,  Fp(0,yo) is 
holomorphic in all the couplings and has an absolutely convergent power series 
expansion for Ihtl <a, t0,1 <b, 

Fp(0,yo)= ~ a,n,,,hP9'l, (3.13) 
n , r a  >= O 

where the coefficients a,.., are holomorphic functions of all other variables: The 
relations (3:12) impose constraints on the coefficients am,,. An analysis of these 
constraints brings the following general structure for Fp(O, yo) as function of ht 
and 9t: 

Fp (0, Yo) = htu,(ht, 9t) (3.14) 

with ut (ht, 90 = hZ~ c~t (ht) + 9zt (d-1) fit (h,, 9~), where et (h,) is a holomorphic function of 
h~ (for [h,] < a) and of all other variables except 9t: fit is also holomorphic in all 
variables: The dependence of r,  on g~ comes from the fact that F depends on even 
powers of 9t. 

ut(ht, 9t) is a holomorphic function of ht, 9t for ]ht[ < a, 19t[ <b. We define 

q)OO=ut(2d-tht, 29t)=22(a-1) rhZ,,, g2a-lh ]_~..12(d-1)R t)ca-1 h 22,,231 
L t " ~ t k  t ]  ~ t  P t \  t~  ~ t / J  • 

(3.a5) 

~o(2) as function of 2 is holomorphic for 2's satisfying 12a-lht] < a  and t,tg, l_-<b: 
From Schwarz' lemma we have 

ko(2)1<12/2c12(a-1) sup Iq~(2')l (3:16) 
2 '  

I;t'l__<2c 

with '~c = rain (]a/ht ]l/(a- 1); Ib/9,[). 
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So setting 2 = I we get 

[u,(h,, g~) <Jr" sup lu~ (h~, g;)[ , (3.17) 
h;, g; 

where Jt = max (Iht/a 12; ]gt/b ]2 ca- 1)): 
Inserting (3.17) in (3:14) and using the maximum modulus theorem, we arrive 

finally at the estimate 

lip(O, Yo)l < (]h,l/a)j~ J sup Ird(o, yo)l~ , (3.18) 
]lh;I <a 
(Eo;l<b 

where Fp' (0, Yo) is a short-hand notation for Fp (0, Y0) as a function of h; and g~ for the 
specified t, the other variables being maintained: Iterating this inequality for all t 
with 0 < t < Yo, we find 

yo-1 I sup IFp'(0, / ' (3.19) ]Fp(0,yo)[~ I~ (Ihtl/a)j, Yo)[ 
t= 1 |lh;I <a, 10;I <b f 1. O_-<t < y o  

The supremum of the right-hand side can be estimated by inserting into the 
expansion (3.3) for Fp the upper bound for tGp(tl, t2)l implied by (2:22) and the 
lower bound for IGp(tl, tl)l of (3.2): One obtains 

} sup Irp(0,yo)l <sup ~ IGp(h-l,h)l  IGp(h,h)l 
Ihtl <a, Igtl < b  t . k = l  0 = t o < t 1  . . .  <tk=yo i = 1  i 

0 < t < y o  

< cl (c2) y° (3.20) 

for some Cl, c2 > 0: 
Taking finally h~ = h, gt = # Vt, we get 

IFp(0, Yo)l < cl (c2) y° [Ih/al "j]ly°l , (3.21) 
where 

j = max [(h/a) 2, (g/b) 2 (d- 1)] . (3.22) 

Now, using (3:21) and the exponential bound on Gp(t) given by (2:22) and 
(2:23) combined with (2:26), it follows that, for h and g sufficiently small 
o3(p)= lira ( - 1 / t  In Fp(t))>co(p), which completes our proof for the existence 

t~oO 

of an isolated eigenvalue of - l n  Tp at co(p): We note that co(p)_~-lnh and 
o3(p)___ - I n  h - l n j .  It is interesting to see that - l n j  is just the mass gap in the 
vacuum sector in first order of approximation: We may interpret - l n j  as the mass 
of a stable "photon" (case j = # 2 (d-1) d > 2) or as the energy of a scattering state of 
two charged particles (case j =  h2). 

4. Appendix. Proof of Theorem 3.2 

In this appendix we will present the proof of Theorem 3.2 above: According to (2.13) 
we have for Xo<_t<yo : 

Oh~G(x,y)Ih~=O = ~ @h~hM)lh~=oQ(M;x,y)tht=O . (4:1) 
M EConn  (x, y) 
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Fig. 3 x 

Y 
d [ _ /  M " 

M' 

• CI" 

bl 
At 

For  t outside of  the interval Xo < t <Yo the derivative vanishes at ht= 0, since in 
this case the sets M~ Corm (x, y) contain an even number of timelike bonds in the 
time slice t < z o < t +  l, z ~ Z  d+a. 

The lines M which contribute to the sum (4.1) have in general the form found in 
Fig. 3. M is a disjoint union M = M '  w M" u {b }, where M '  is the subset of M which 
lies below the hyperplane At = {x ~ 2~a+1 :Xo = t}, M" the sub-set which lies above 
At+l and b is the (unique) bond in M connecting M '  and M". Let a', a" be the 
boundary points of b, with a' in At and a" - a' + ~o, d0 being a unit vector in positive 
time direction. The set M '  belongs to the set Conn (x, a') and the set M "  belongs to 
Conn (a", y). So, we are able to write (for x o < t < y o ) :  

Here 

a'~At M" ~Conn(x,a') 
M "  e Conn (a"  , y) 

(hM'hM")lh~=oQ(M;x,y)lh,= o . (4.2) 

Now we have the following factorization formula: 

a'" ~M" a" "~' o(M;x,y)lh~=o,=o=exp [ f t+ t ] ' [Q(M' ;x ,  )0~ ; ,Y)llh~=o~=o . (4.3) 

j~+l =1/2 ~ r Cr#t+ 1,- (ar~ - 1)lh,=o, =o , (4.4) 
~ E ~ t , t  + 2 

where s e At. Note that f t+l depends only on h, g, and gt+l, in particular it does not 
depend on s: 

Expression (4:3) follows from the relations (valid at ht =gt = 0) 

A + ( M ; x , y ) = A + ( M " ; a " , y )  , (4.5) 

A_ (M; x, y) = A_ (M' ;  x, a') , (4.6) 

C + ( a ' ) = A + ( M ' ; x , a ' ) = A _ ( M " ; a " , y ) = O  (4.7) 
and 

B ( M ; x , y ) = B ( M ' ; x , a ' ) + B ( M " ; a " , y ) + f ~ + l  - l / 2 C _ ( a " )  . (4.8) 

The last relation follows from the fact that at ht = 91 = 0 the clusters belonging to 
fg*,y o for which #r '~0  are contained either in the set f¢*,t, in the set f¢t*l,ro or in 
the set f#t,t+ 1. Thus the sum in the definition of B ( M ;  x, y) splits into a sum over 
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f~*,t r r over  f¢t*t ro (where a r rM r (where a~,r;M =a~,~.;M,), a sum , , , = a.,,,r;M,, ) and  a sum 
over fft,t + 1 (where ax,r r; ~t = at,): The first sum coincides wi th  B ( M ' ,  x, a'), the second 
one with B(M",  a",y) and  the th i rd  one yields (at  h t = g t = 0 )  

Crf~r (a r - 1 ) = f t + 1 - 1 / 2 C _ ( a " )  . (4.9) 
r ~ t , t  + 1 

So, for  h z = o t = 0 ,  XoNt<yo ,  we have 

c3ntG(x,y)=exp [ f + l ]  ~ G ( x , a ' ) G ( d + ~ o , y ) .  (4.10) 
a'  ~ A t  

By Fou r i e r  t r ans fo rm with respect  to x - y  and y - a '  the s ta tement  o f  Theo rem 
3.2 follows: [] 
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