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The lattice 9 4 theory in four space-time dimensions is most likely "trivial", i.e. its continuum 
limit is a free field theory. However, for small but positive lattice spacing a and at energies well 
below the cutoff mass A = l / a ,  the theory effectively behaves like a continuum theory with 
particle interactions, which may be appreciable. By a combination of known analytical methods, 
we here determine the maximal value of the renormalized coupling at zero momentum as a 
function of A/m,  where m denotes the mass of the scalar particle in the theory. Moreover, a 
complete solution of the model is obtained in the sense that all low energy amplitudes can be 
computed with reasonable estimated accuracy for arbitrarily chosen bare coupling and mass in the 
symmetric phase region. 

1. Introduction 

T h e  t r iv ia l i ty  of the lat t ice ck 4 theory in four  d imens ions  has not  yet  been  

e s t ab l i shed  r igorously,  bu t  the pe r tu rba t ive  renormal iza t ion  group analysis  [1] 

toge ther  wi th  the accumula ted  evidence f rom high t empera tu re  series expans ions  

[2-4] ,  numer i ca l  s imulat ions  [5-9], exact  inequal i t ies  [10-14] and r igorous  b lock  

sp in  r eno rma l i za t i on  group studies [15-17] leaves l i t t le doub t  that  the conjecture,  

f i rs t  f o r m u l a t e d  by  Wi lson  many  years  ago [2], is in fact true. Other  field theories 

i nc lud ing  (pure)  Q E D  and the s t anda rd  SU(2) Higgs mode l  [18,19] are also be l ieved 

to be  tr ivial ,  a l though the a rguments  given in these cases are less convincing.  

Tr iv ia l  f ield theories are  not  necessar i ly  useless for the descr ip t ion  of e l emen ta ry  

par t i c les  a n d  their  interact ions,  nor  does t r ivial i ty  imply  that  the renormal ized  

p e r t u r b a t i o n  expans ion  is meaningless .  The crucial  po in t  to note  is that  trivial  field 

theor ies  exist  and  may  be far f rom being free p rov ided  we al low for a large bu t  
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finite ultraviolet cutoff A, which may be introduced explicitly in the form of a 
lattice, for example, or which can arise dynamically in the context of an embracing 
more complete theory. For low energy processes, the precise specification of the 
cutoff is unimportant, because the corresponding amplitudes are universal up to 
tiny effects of order E 2/A2, where E is a typical energy in the process. Thus, as long 
as the cutoff A is well beyond the experimentally accessible region, a trivial theory 
may provide an accurate and mathematically well-defined model of elementary 
particle interactions. 

Nevertheless, triviality signals a serious defect of the theory, because the cutoff A 
cannot be pushed to arbitrary high values once the renormalized coupling gR at 
zero momentum has been fixed experimentally (or otherwise). Quantitatively, this is 
expressed by an upper bound on A, which, at small gR, assumes the form 

ln(A/mR) <~ A/g• + B In gR + O( i ) ,  (1.1) 

where A and B are known constants and m R denotes a renormalized particle mass. 
We emphasize that this bound is only meaningful, when the details of the cutoff 
procedure have been specified, in particular, the O(1) term in eq. (1.1) is not 
universal and cannot be calculated in perturbation theory. 

In the context of the theory of electroweak interactions, the above considerations 
have led to upper bounds on the mass of the elusive Higgs particle [20-26]. A weak 
point in the derivation of these bounds usually is that only the first two terms in eq. 
(1.1) are kept, which is an approximation of unknown quality, especially so, if one is 
also interested in situations where the renormalized Higgs self-coupling is large and 
the cutoff A is as low as a few TeV. It has thus been proposed [25], to determine the 
exact upper bound for all values of gR in the lattice theory and this is what will be 
achieved in this paper for the simpler case of the one-component ¢4 theory in the 
symmetric phase, hoping that the methods developed will also be useful in the 
physically relevant cases. 

Other results on the (~4 theory obtained in the present work include a quantitative 
plot of the renormalization group trajectories (curves of constant coupling gR) in 
the plane of bare parameters and a determination of the region in the phase 
diagram, where renormalized perturbation theory may be expected to apply. To our 
surprise, this region turns out to be rather large and apparently includes the scaling 
region* defined by the inequality 

A >~ 2m R . (1.2) 

Thus, as long as one is only interested in situations where the cutoff is reasonably 
large, the low energy amplitudes seem to be essentially given by renormalized 
perturbation theory. 

* We use the term "scaling region" to denote an area in the phase diagram, where the low energy 
amplitudes depend only weakly on the cutoff (cf. subsect. 4.2). 
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The initial motivation for our study was that we wanted to compare the stock of 
known analytic results on the d~ 4 theory with high precision Monte Carlo data, 
which were generated in the course of an investigation of finite volume effects on 
the energy spectrum in this model [27]. As a consequence, the numerical aspects of 
our work are emphasized, in particular, we have taken care to estimate and quote 
errors throughout. 

To a large extent, our paper is a review of known methods and results. However, 
we feel that the perturbative techniques of ref. [1], for example, are perhaps not as 
well-known to the lattice gauge theory community as they deserve to be. Also, in the 
past 10 years or so, many new results on different aspects of the ~4 theory have 
been obtained which we here attempt to integrate in a unified picture. 

The organization of our paper is as follows. After introducing our notations on 
the lattice q,4 theory in sect. 2, the idea of how to "solve" it is sketched in sect. 3. 
One of the basic tools used is the lattice Callan-Symanzik equation, which we derive 
in sect. 4. This section also contains an extensive discussion of the scaling behaviour 
of the theory near the critical line. In sect. 5, we show that there is an interesting 
connection between the divergence of the renormalized perturbation series and the 
existence of scaling violations (the terms of order E2/A 2 mentioned above). The 
other basic tool used is the "high temperature" expansion, which allows us to 
determine the renormalized coupling gR and other relevant quantities in the 
non-scaling region A ~< 2m R (sect. 6). By considering a number of examples, we 
then argue (sect. 7) that renormalized perturbation theory should be applicable 
when gR is smaller than the tree level unitarity bound. In sects. 8 and 9, our main 
results, the triviality bound and a quantitative plot of the renormalization group 
trajectories, are obtained by combining the renormalization group equations with 
the data provided by the high temperature series analysis. The paper ends with a 
few concluding remarks (sect. 10) and three appendices, where we list the perturba- 
tion expansion coefficients for various quantities. 

2. Basic definitions 

We consider real valued fields q~(x) on the hypercubic lattice with points x ~ Z 4. 
For notational convenience, we choose lattice units throughout this paper, which 
means that all length scales are measured in numbers of lattice spacings. 

A popular way to write the action of the lattice ~4 theory is 

I 3 
s= E g (,(x)o(x+a) 

/*=0 

q-~(x) 2 -[- X(q~(x) 2 -- 1)2), (2.1) 

where/2 denotes the unit vector in the positive/,-direction and the bare parameters 
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x, )~ are restricted to the range r > O, )~ > O. This formulation, which is convenient 
for Monte Carlo simulations and the high temperature expansion, for example, is 
completely equivalent to the more traditional expression 

(3 1 s = E  x ~ E (0.,o(~))2+ 1 2<(~)~+go ~mo ~-. 4,o(X) 4 (2.2) 
p.=o 

where 

O.~o(X) = ~o(x  + 9)  - ~o(X) (2.3) 

denotes the lattice derivative of q)0- Indeed, eq. (2.2) is obtained from eq. (2.1) by 
setting 

q~o (x )  --- 2~-x q , (x) ,  (2.4a) 

m 2 =  (1 - 2 2 t ) / ~ -  8 ,  (2.4b) 

go = 6)t/g2" (2.4c) 

Note  that for ?x ~ oe and fixed x, the theory reduces to the Ising model, whereas for 
X = 0 one has a free field theory with mass m 0 (in this limit, the theory is actually 
only defined if x ~ ~). 

The lattice q5 4 theory is known to exist in two phases, one where the reflection 
symmetry ~ ~ - ~  is spontaneously broken and the other where it is not. The 
corresponding regions in the x, ?t-plane are separated by a critical curve Kc(~), 
which qualitatively looks as in fig. 1 (accurate numbers will be given later). In what 
follows, we shall only discuss the symmetric phase, which is characterized by r < K c. 

cr i t ical  l ine K ~(~,I 

Ising limit 

Fig. 1. Qualitative plot of the phase diagram of the lattice q¢ theory. The broken symmetry phase 
(x > xc) and the symmetric phase (K < xc) are separated by a critical line, where the mass gap of the 

theory vanishes. 
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Apart from q,(x), the composite field 

29 

which is proportional to ~(x)  2 in the formal continuum limit, will later play an 
important rhle in the renormalization group analysis. We thus consider the gener- 
ating functional W(H, K)  defined by 

e w = l  f l-~I dep(x)exp(-S 

where H, K denote the source fields and Z is determined by the requirement 
W(0,0) = 0. The coefficients in the expansion of W(H, K) in powers of H and K 
are the connected correlation functions of q~ and (_9. To obtain the corresponding 
vertex functions, we introduce the local magnetization 

OW 
M(x) OH(x) (2.7) 

and define the Legendre transform F(M, K)  of W(H, K)  through 

F= W-  ~_,H(x)M(x), (2.8) 
X 

where H is to be expressed as a function of M and K by solving eq. (2.7). Then, as 
is well-known, the coefficients F Cn,z) in the expansion 

n=O/=0 n.l.  ) -~  (2~r) 4 
d4p. d4ql d4ql (2,rr)48p 

(2~r) 4 (2~) 4 (2qr) 4 Pi + ~ q ;  
i=1 j = l  

×I"(" ' / ) (P l  . . . .  , P,; qx . . . . .  q/)ffl(pl).., l(4(p,)I£(ql)... I£(q,) (2.9) 

are the (unrenormalized) vertex functions of n fields ~ and l fields 0. In eq. (2.9), 
the Fourier transform of the source fields is defined by 

F(k) = Y'~e-'kXF(x), (2.10) 
X 

and 6p denotes the periodic &function expressing total momentum conservation 
modulo 2~. 

F ("'l) vanishes for odd n and for n = l =  0. Except for F(2,°)(p , -p) ,  which is 
equal to the negative inverse propagator of q~, all other vertex functions are the 

+ ~_,(H(x)ep(x)+K(x)(P(x))l, (2.6) 
X 

3 
0 ( x )  = ~ {q~(x)~(x+/2)  +q~(x)qS(x- /2)} ,  (2.5) 

g=0 
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one-particle irreducible parts of the connected n +/-point  functions with full 
propagator  amputated external ~-legs. For later use, we note 

0 

0~ 
--F~",')(p~ . . . . .  p , ;  qa,--. ,  q,) = / ' ( " " + ~ ) ( p t , - . . ,  p , ;  q l , . . . ,  q,,O) 

- 6nOS,0F(°'~)(0), (2.11) 

which is an easy consequence of the definitions of S, d) and F. 
We finally introduce a wave function renormalization constant Z R, a renormal- 

ized mass parameter m R and a renormalized coupling gR through 

F ( 2 " ° ) ( p , - p ) = - Z ~ a ( m ~ + p 2 + O ( p 4 ) }  ( p ~ O ) ,  (2.12) 

F(4 '°) (0 ,  0, 0, 0)  = - Z ~ 2 g R .  (2.13) 

These quantities are well-defined functions of ~:, ~ in the whole region 0 ~< )t ~ oo, 
0 < K < x~(?~), and one may show, using correlation inequalities, that gR >/0 [10-14]. 
Note  that m R and gR are distinct from the physical particle mass m and coupling 
g, which are defined through the pole of the propagator in the complex energy plane 
and the on-shell four-point function, respectively. However, as we shall see later, 
these two sets of renormalized parameters are numerically close when r is close to 
x c, in particular, m = m R is an excellent approximation in the "scaling region" 
characterized by the inequality (1.2). 

3. Tools and strategy 

When x approaches xc, the theory becomes critical and the mass m R goes to zero. 
In other words, the vicinity of the critical line in the phase diagram is a region where 
the ultraviolet cutoff A (which is equal to 1 in lattice units) is large compared to the 

mass of the ~-particle and the theory may be expected to effectively behave like a 
continuum theory at low momenta. It is also in this region, where the triviality 
bound (1.1), which we would like to make more precise, should apply. Our aim is 
thus, to determine the minimal possible value of m R along the curves in the phase 
diagram with fixed gR (i.e. along the "renormalization group trajectories"). To 
achieve this goal, we shall calculate the functions mR(K, ~) and gR(~c, ?~) with 
reasonable estimated accuracy using the analytic techniques described below. 

The classical tool of statistical mechanics is the high "temperature" expansion, 
which here amounts to an expansion of correlation functions in powers of x at fixed 
(arbitrary) X. For the correlation functions entering the definition of m R and gR, 
the expansion coefficients are known up to 10th order [3]. For ~c < x c the high 
temperature series is convergent, but the rate of convergence is of course slow when 
x is very close to xc so that the truncation of the series after the 10th order would 
then not be a sensible approximation. As we shall show in sect. 5, the truncation 
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criticol line t{c(h) 

X 

Fig. 2. Same as fig. 1, but showing the region where the theory will be solved by the high temperature 
expansion (cross-hatched area). To calculate m R and gR at point B, for example, the renormalization 
group equations will be integrated at constant X using the high temperature series results at point A as 

initial data, 

error can however be reliably estimated for x ~< 0.95K c by choosing a good expan- 
sion variable and by taking into account the structure of the singularity at x = xo as 
predicted by the renormalization group. At first sight, x = 0.95K c seems to be rather 
close to x c, but  it turns out that m R = 0.5 along this line so that in fact we only use 
the high temperature expansion in a region where the correlation length is less than 
two lattice spacings, i.e. in a region, which conforms with the typical size of the high 
temperature graphs included. 

With the help of the high temperature series, we can thus "solve" the theory in 
the cross-hatched part of fig. 2. To calculate m R and gR in the remaining white part 
of the symmetric phase region, we shall make use of the renormalization group 
equations, which are first order differential equations describing the evolution of 
mR, gR and other quantities, when ~ increases towards ~c and X is held fixed. The 
right-hand sides of these equations involve the Callan-Symanzik coefficients (the 
/3-function in particular) and are thus not known exactly, but for sufficiently small 
renormalized coupling gR, we may expect the perturbation expansion in powers of 
gR to apply. 

At this point, the following observations are crucial. The first one is that along the 
line ~ = 0 .95~,  the coupling gR (as calculated by the high temperature expansion) 
turns out to be rather small with a maximal value of about ~ of the tree level 
unitarity bound. For these values of gR, the perturbation expansion of the Callan- 
Symanzik coefficients and also of many other quantities appears to be reasonably 
convergent. A second remark is that if the integration of the renormalization group 
equations is started at say point A of fig. 2 and if the coupling gR is small there, it 
will be even smaller after the integration at e.g. point B, because the ]3-function is 
positive in the perturbative region. Putting these facts together, the use of perturba- 
tion theory for the calculation of the Callan-Symanzik coefficients in the relevant 
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range of gR appears to be justified and we can thus evaluate mR(X , ) t )  and gR(x, %) 
by integrating the renormalization group equations starting from the line ~ = 0.95x c. 

In the following sections, the theoretical background for our calculations will be 
recalled and the details, including a number of checks, will then be worked out. 

4. Scaling behaviour in the critical region and the Callan-Symanzik equation 

As already mentioned in the introduction, this section is basically a review of 
known results. It is included here to make our paper self-contained and because we 
would like to state clearly what (qualitative) assumptions have to be made for the 
analysis to work. 

4.1. RENORMALIZED VERTEX FUNCTIONS 

The renormalized vertex functions F~"' l) are defined as follows: 

= ( z . ) " / 2 (  ",t, 

Here, the wave function renormalization constant 
termined by 

F~R n, t) = 0 for odd n and for n = 0, l ~< 1, 

F~0,2)(q, _ q )  = ( Z~)2{ £(0,2)(q, _ q )  _ C(0,2)(0,0) ) ,  

for all other n, I. 

(4.1) 

(4.2) 

(4.3) 

ZcR of the operator O is de- 

(4.4) 

so that by construction, the renormalized vertex functions satisfy the normalization 
conditions 

FtRZ,0)(p, _ p ) =  _ { m 2 + p2 + O(p4)} 

o)  = - g . ,  

r#2 (0,0) = 0 ,  

(p-.o), (4.5) 

(4.6) 

(4.7) 

F~2'1)(0, 0; 0) -- 1 (4.8) 

(and eq. (4.1)). By eliminating K and X in favour of m R and gR, we shall always 
consider F(R n't) to be a function of m R, gR and the momenta. A subtle point here is 
that the mapping (x, X) ~ (mR, gR) may not be globally invertible in the symmetric 
phase region, in which case F~ n' i) would be a multi-valued function of mR, gR" This 
question has been discussed extensively in the literature (see ref. [28] and references 
quoted therein), but no definite conclusions were reached. Although the mapping is 



M. Lfischer, P. Weisz / Lattice ep 4 theory 33 

probably invertible for the simple lattice action we have chosen, there is in fact no 
deep reason for this. But since the following considerations do not crucially depend 
on the single-valuedness of the renormalized vertex functions, we shall for the 
moment ignore this problem. Also, we shall argue later (sects. 8,9) that our 
numerical results would in fact not be affected significantly in case the mapping 
should not be invertible after all. 

4.2. SCALING PROPERTIES OF THE VERTEX FUNCTIONS 

For small gR, the renormalized vertex functions can be expanded in powers of gR 
with coefficients, which are finite sums of lattice Feynman diagrams. From renor- 
realization theory, one knows that to all orders the continuum limit of these 
coefficients exists and is universal, i.e. it does not depend on the details of the lattice 
action chosen. Actually, a complete and rigorous proof of this important property of 
the lattice theory has only recently been given [29] (the old power counting theorems 
do not apply to Feynman diagrams with a lattice cutoff). 

To explain what precisely the existence of the continuum limit in perturbation 
theory means, we suppose the lattice spacing a is measured in some (externally 
defined) physical units. The renormalized mass in these units is then given by 

mR = m R / a  (4.9) 

and, similarly, the momenta p~, qj and the vertex functions are related to dimen- 
sionful quantities through 

Pi = p J a ,  ~tj = q j / a ,  (4.10) 

P~",'> = a"+ 2 ' - '  r ~  ",') . ( 4 . 1 1 )  

The continuum limit is now obtained by letting a, m R, Pi and qj go to zero in such 
a way that mR, Pi and E/j remain fixed. To all orders of gR, we then have 

lira F~". ')= F<a~'/)(fil . . . .  , P,; q l , ' " ,  q,; mR,  g R ) ,  (4.12) 
ct ---~ 0 

where F~s"' t) is the universal (and non-trivial) continuum amplitude, which could be 
calculated directly with continuum Feynman rules using the BPHZ finite part 
prescription, for example. We emphasize that F~ff'/) only exists as a formal power 
series in ge, and the limit (4.12) is to be taken only after expanding F<R"'/) in powers 
of gR- 

In perturbation theory, the rate of convergence to the continuum limit is de- 
scribed by the asymptotic formula [30] 

a ~ ~,(n,l)_ O( a 2 (ln a ) r ) ,  (4.13) 
Oa R 

where r is the maximal number of loops in the diagrams considered. These "O(a  2) 
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scaling violations" are not universal, i.e. they are lattice artefacts, which depend on 
the choice of lattice action. Still, as we shall discuss in more detail in sect. 5, their 
structure is not totally arbitrary but may always be described by a local effective 
lagrangian with a finite number of parameters. 

For  our choice of lattice action, the scaling violations are apparently rather small. 
Typically, what one finds at the tree and l-loop level is that they are less than 10% 
of the continuum amplitude and decrease according to eq. (4.13) provided 

a-1 >~ 2(~R + ~l~l  + ~l,~jl). (4.14) 
i j 

Thus, continuum behaviour sets in rather early and if the cutoff a - t  is a few orders 
of magnitude larger than the particle mass and the momenta, the scaling violations 
are totally insignificant. 

Because of the triviality bound (1.1) (which will be derived later), we do not 
expect to be able to take the continuum limit of the full vertex functions for a fixed 
coupling gp. > 0. As a working hypothesis, we shall however assume in this paper 
that the vertex functions at low momenta (say IPil, Iqjl ~< mR) scale in the sense that 

- - n l  a ~ a I "  ~ , ) << I (4.15) 

holds, whenever the cutoff a 1 is large compared to the mass ~R- More precisely, 
we expect the scaling violations to satisfy a bound of the form 

Oa " < mR C""(gR)(amR) ' (4.16) 

where Cn, l(gp. ) is continuous for gR >t 0 and e is positive (the perturbative result 
(4.13) suggests e = 2, but this additional information is not really needed). We shall 
also take it for granted that the renormalized perturbation series is indeed an 
asymptotic expansion of the renormalized vertex functions for gR-~ 0 no matter 
how large the bare coupling )~ and the cutoff a-1 are. 

The above assumptions will later be referred to as the "scaling hypothesis" and a 
region in the phase diagram where (4.15) holds will be called a "scaling region". We 
emphasize that our scaling hypothesis does in no way contradict the expected 
triviality of the theory, because triviality only implies a logarithmically vanishing 
coupling gR for a ~ 0 whereas the scaling violations go down with a power of a. 
Thus, eq. (4.15) will always be valid sufficiently close to the critical line even though 
~R ., O may actually vanish for r = x c. 
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4.3. THE CALLAN-SYMANZIK EQUATION 

Following ref. [1], we now derive the Callan-Symanzik equation by studying the 
variation of the renormalized vertex functions with respect to x at fixed Yr. Since 
F(R "'t) depends on r only through m R and gR, the chain rule gives 

0 0 = { 0 m R  0 0gR 0 }F~"'t). (4.17) 
a~ r~"' o~ Om~ + O~ Og. 

On the other hand, for n + 1 >/2 we have 

r~",',= (zR)"/ : (z~) ' (  r",' ,  - ~.o~,~r~°,:,(o, o)) 

and, using (2.11), one obtains 

--0~ O F~'' '= { n O ln - + OlnZ[}oK " -~F(~") 

(4.18) 

+ z ~  1( r~".'+,lq,.l_o- 8,08,2r&°.3~(0,0,0) } . (4.19) 

The combination of (4.17) and (4.19) now yields the Callan-Symanzik equation 

{ 0 0 } 

= ( r C  ,+,, q,+,=O ~n0~/2F(0' 3' (0' 0' 0) } ' (4.20) 

where the coefficients are given by 

OgR / OmR 
fl(mR'gR)=mRo~-~ / O-KK ' (4.21) 

8 In Z R / 0 m R (4.22) 
Y(mR, gR)= ½mR 0------'~-/ 0---~' 

0 In Z[ /Om R (4.23) 
8(mR'gR)=mr~ 0 ~ /  OK ' 

[ oOmP,] -1 
e(mro gR) = l mRZR-ff-~-x ] (4.24) 

(derivatives with respect to K are at fixed ?t). Actually, t is not an independent 
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coefficient, but is related to 3' through 

= 23' - 2 (4.25) 

as one may  show by evaluating (4.20) for n = 2, l =  0, Pl =P2 = 0 and using the 
normalization conditions (4.5), (4.8). 

So far no non-trivial property of the theory has been taken into account, i.e. the 
Callan-Symanzik equation (4.20) is just an exact identity, which follows from our 
definition of the renormalized vertex functions. However, if we now add the scaling 

hypothesis, the formalism becomes a powerful tool for the analysis of the theory 
near  the critical line. The basic observation is that the coefficients/3, 3', 3 (and e) 
can be expressed through the renormalized vertex functions by writing eq. (4.20) for 

three independent choices of n, l and the momenta  and solving the resulting linear 
system for/3,  3', & From this we conclude that/3,  3', 3 scale in the same way as the 
vertex functions so that in a scaling region (i.e. sufficiently close to the critical line), 
they are independent of m R up to scaling violation terms, which vanish like a power 
of m R. Taking this property into account, eqs. (4.21)-(4.24) become non-trivial 

differential equations for m R, gR, ZR and ZR ° as functions of x at fixed X, which 
allow us to determine the behaviour of these quantities for x ---, ~¢c as we shall now 
explain. 

4.4. SCALING-LAWS FOR mR, gR, ZR AND Z~ 

For  the solution of eqs. (4.21)-(4.24), it is more convenient to write them in the 

form 

OgR 
m R -  = /3 ,  (4.26) 

0m R 

0 In Z R 
m R - -  = 23,, (4.27) 

Om R 

0 In Z~ 
m R -  = 6, (4.28) 

Om R 

OK 
mR m0-- R = 2m~t(3' - 1)ZR°' (4.29) 

where m R is regarded as the independent variable and the differentiations are at 
fixed )t as before. Since we are interested in the asymptotic behaviour of the 
solution for m R ---' 0, we may neglect scaling violations and shall thus assume that/3, 

3' and 8 are independent of m w 
For  small gR, the /3-function can be calculated in perturbation theory and is 

found to be positive (the expansion coefficients for/3,  3', 3 are tabulated up to 3 
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loops in appendix A). This implies that once the coupling gR is in the perturbative 
range, the differential equation (4.26) monotonically drives it to smaller values as 
m e decreases and, for m R -~ 0, gR is eventually forced to zero according to the 
asymptotic formula 

= - B 2 
m e  C , ( f l l g R )  B~/ l e - a /B ,gR( l+O(gR)} ,  (4.30) 

where C 1 is a constant (depending on X) and ill, f12 are the one- and two-loop 
coefficients of the fl-function. As we have pointed out, the validity of (4.30) depends 
on the assumption that the initial value of gR is sufficiently close to the origin. We 
shall later argue that this condition is indeed fulfilled along the line K = 0.95Kc, 
where the high temperature series results are available. We thus conclude that the 
scaling law (4.30) is correct for all ~, in particular, the triviality of the theory 
follows since gR vanishes for x = ~c. 

Other scaling laws may now easily be derived by solving eqs. (4.27)-(4.29) for 
m e ~ 0. Because gR goes to zero in this limit, we may use perturbation theory to 
evaluate ~, 8 and the asymptotic form of the solutions is then found to be 

Z R = C2(1 + O(gR)},  (4.31) 

Z~ = C3gR1/3(1 + O(gR) } , (4.32) 

x c - r = C 3 m 2 g R 1 / 3 ( 1  + O(gF.)}, (4.33) 

where C 2 and C 3 are integration constants. Finally, combining eqs. (4.30)-(4.33) 
and setting • = 1 - x /x  c, we obtain the well-known scaling laws [1] 

m e - 6 4 1 " 1 / 2 1 1 n , r 1 - 1 / 6 ,  (4.34) 
~" ---' 0 

gR -- ~" 32~r2Jln~1-1 , (4.35) 

Z R - C 2 ,  (4.36) 
" r ~ 0  

Z [ -  CsIln~'l 1/3. (4.37) 
"r ---* 0 

Of course, given the perturbation expansion of fl, 3', 6 up to 3 loops, subleading 
terms in these asymptotic relations could be worked out easily. We also note that 
scaling laws for the bare vertex functions F (n'/) may now be obtained from eqs. 
(4.34)-(4.37) and the defining equations (4.1)-(4.3) of the renormalized vertex 
functions. For example, the 2-point susceptibility 

0 2 W  

Xz = 
O H ( x ) O H ( O )  H - K - O  

(4.38) 
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(cf. eq. (2.6)) may be shown to diverge according to 

X 2 r_~0 C6"r- llln "r[ 1/3 . (4.39) 

5. Scaling violations and the divergence of perturbation theory* 

In this section, we would like to show that the existence of O(a 2) scaling 
violations, the triviality of the theory as expressed by the scaling law (4.30) and the 
divergence of the renormalized perturbation series are apparently related aspects of 
the ,/,4 theory. To explain what the connection is, we first summarize what is known 
about the structure of scaling violations and how precisely the perturbation series is 
expected to diverge. 

Scaling violations in the q~4 theory were studied in great detail by Symanzik 
[30, 35]. The most important result of his work, which later gave rise to the 
"improvement programme" (for a review see ref. [36]), is that the leading scaling 
violation terms may be described by a local effective lagrangian involving a linear 
combination of composite fields with canonical dimensions up to 6. Explicitly, for 
the vertex functions FtR"'t) with l = 0, we have to all orders of perturbation theory 

0 _ 7 

a O---~F~Rn'°~=a 2 E c ~6-a~A F~'°~+ O ( a 4 ( l n a ) ' )  
A R A R 

A = I  

(5.1) 

where A A denotes a (renormalized) insertion of a composite operator OA of 
dimension d A ~< 6 at zero momentum. There are exactly 7 such operators respecting 
the discrete lattice symmetries, which are linearly independent up to scaling viola- 
tion and derivative terms (for a discussion of the renormalization of operator 
insertions see ref. [1], for example). The coefficients c A in eq. (5.1) depend on the 
lattice action chosen and are of the form 

o¢ 

c. = E & g l ,  (5.2) 
v ~ 0  

C~A ~) being a polynomial of ln(a~R) of degree r at r-loop order. 
It is of course possible to generalize (5.1) to all vertex functions ~n,t) ,  1 >/0, 

although further terms are then needed to account for the intrinsic cutoff depen- 
dence of the composite field O. We also note that a complete proof of eq. (5.1) to all 
orders of perturbation theory is still lacking and that the summation of the 
logarithms in the loop expansion (5.2), using a Callan-Symanzik-type equation, has 
not yet been achieved. 

From a low energy, "phenomenological" point of view, eq. (5.1) says that a large 
cutoff signals its presence through tiny effects, which may be described by a local 

* This section will not be referred to later and may be skipped in a first reading. 
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effective lagrangian. Put differently, if we think in terms of the whole universality 
class of lattice t~ 4 theories, eq. (5.1) is a measure for the ambiguities at low energies, 
which arise from the incomplete specification of the theory at very high energies. 
One could also say that the universal part of the renormalized vertex functions is 
only defined up to such ambiguities. 

We now proceed to discuss the divergence of the renormalized perturbation series 
in the continuum limit (cf. subsect. 4.2). According to the famous Lipatov analysis 
(for a review see ref. [37]), the growth of the coefficients in the perturbation 
expansion 

F¢a:")= ~ (FaC:'O)~g~. (5.3) 
u=O 

is expected to be given by the asymptotic formula 

(F(a~"'O)v - A("")v'b%!(1 + O ( 1 / v ) ) ,  (5.4) 

where A (n, o is a momentum dependent amplitude, s some power and 

1 

16~r 2 • 
(5.5) 

However, it was later realized [38-41] that renormalization upsets the naive Lipatov 
argument and that the divergence of perturbation theory is probably dominated by 
the "renomalon" singularity in the Borel plane. This implies an asymptotic be- 
haviour of the form (5.4) but with 

3 
b = t  - (5.6) 

~ 1  32Tr2 , 

where fll is the one-loop coefficient of the r-function. Recent rigorous results [42] 
also support this value of b and we shall thus assume here that eqs. (5.4) and (5.6) 
describe the true large order behaviour of perturbation theory*. 

The divergence of the series (5.3) implies that unless further information is 
supplied, it is not possible to sum it unambiguously, i.e. different reasonable 
summation procedures (modified Borel sums, for example) yield different results. 
However, since all these sums must have the same perturbation expansion, we may 
expect that the difference 8F~ '  t) between any two of them satisfies 

I I(r;o,',) olg  (5.7) 

* We note, however, that up to five loops, the perturbation coefficients of the renormalization group 
funct ions in the minimal subtraction scheme are alternating and do not  appear to grow more rapidly 
than a power. Thus, it seems that the asymptotic behaviour (5.4) only sets in at very high orders. 
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for small gR and large 1,. Using (5.4) and minimizing over u then leads to the bound 

]~J/'a~sn't'] < 2¢'2-~[A("'t)l(bgR) - s -1 /2  e --'/bgR (1 + O(gR) } . (5.8) 

Thus, we may say that the renormalized perturbation series in the continuum limit 
determines a universal set of full vertex functions up to exponentially small 
ambiguities as described by eq. (5.8). 

This observation obviously parallels our discussion above of the significance of 
the scaling violations in the lattice theory. In both cases we seem to be able to 
extract full continuum vertex functions only up to certain (small) ambiguities. The 
point we wish to make now is that these two kinds of ambiguities are apparently of 
the same size and have a similar structure. Indeed, from the scaling law (4.30) we see 
that as one approaches the critical line, the O(a 2) scaling violation terms (i.e. the 
contributions proportional to m~t) decrease with exactly the same exponential as the 
ambiguities ~/-'a~ 't) do (cf. eqs. (5.6), (5.8)). Moreover, as was pointed out by Parisi 
[40, 41], the amplitudes A TM 0 together with the higher order corrections in eq. (5.8) 
are proportional to a linear combination of vertex functions with operator insertions 
similar to the right-hand side of eq. (5.1), although here only Lorentz invariant 
operators (9 A contribute of course. The conclusion then is that without further 
insight, the precision with which universal, continuum vertex functions can be 

extracted either from the lattice regularized theory or by applying a summation 
procedure to the renormalized perturbation series, is about the same in both cases. 
We may also take this as an indication that there are no universal physical effects in 
this theory beyond those covered by perturbation theory. 

6. Results from the high temperature expansion 

As we have already mentioned in sect. 3, the high temperature expansion may be 
used to "solve" the theory for x ~<0.95x~. Our goal in this section is mainly to 
calculate m R, gR, ZR and Z°R for ~ = 0.95~ c and 0 ~< h g ~ .  These results will then 
be used in sect. 8 as initial data for the integration of the renormalization group 
equations (4.26)-(4.29). 

6.1. SUMMARY OF NOTATIONS 

In their paper, Baker and Kincaid [3] have tabulated the high temperature 
expansion coefficients up to 10th order for the susceptibilities 

X2 = Y'~ <g'(x)q~(O)) c , (6.1) 
x 

~2 = ]~_~xZ<e~(x )ep(O)) c , (6.2) 
x 

X 4 =  ~ ( , # ( x ) 4 ~ ( y ) q ~ ( z ) q J ( O ) )  c, (6.3) 
x ,  y , 2  
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where 

O'W(H, K) H=x=o ((~(X1)~(X2).-.~(Xn)) c= OH(x1)OH(X2). . .  on(Xn) (6.4) 

denotes the connected n-point correlation function of q~ (cf. sect. 2). At each order, 
the expansion coefficients are polynomials of the "one-point" expectation values 

( ~ n ) l  -~- I n / / I o  , (6.5) 

I , ( ) t )  = f0~d~f f "e  -4'2-x(q'2-17 (6.6) 

It is not possible to evaluate these integrals for all n and )t analytically, but up to 
10th order in x, only the integrals with n ~< 14 are required and these can be 
calculated numerically with high precision. 

The susceptibilities (6.1)-(6.3) are related to m R, gR, ZR and ZR ~ through 

= (  8X2] 1/2 (6.7) 
mR \ - ~ - 2 /  ' 

gR = - 64~2~, (6.8) 

Z R = 8 XA , (6 .9 )  
if2 

.2(  ox21 ' (6.1o) 

Thus, for all these quantities, the high temperature expansion may be deduced easily 
from the Baker-Kincaid tables. 

Instead of the bare coupling )~, we have decided to present our results in terms of 
the parameter 

1 ~4 _ ~ = - - 2 { (  )1 3((~2) 1)2}/((~2 )1) 2 , (6.11) 

which is more natural from the point of view of the high temperature expansion. 
is a strictly monotonic function of )~ rising from 0 to 1 in the range 0 ~< 2, ~< m. 
Furthermore, at small )t we have 

X = 3x + o ( x 2 ) ,  

and a list of values of )t versus X is given in table 1, p. 45. 

(6.12) 
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It is a well-known fact that in the case of the Ising model (h = oo), the character 
variable 

v = tgh2x (6.13) 

is a better high temperature expansion parameter than r in the sense that when the 
series are reexpanded in powers v, they become more regular and the convergence 
properties are improved. For ?~ < oo, a similar improvement is observed for the 
choice 

v =  ~--~-~ln f d q q  dqa2exp(2~e~l¢, 2 -  V(q~I)-  V(q,2)) , (6.14) 

V ( ~ ) = ~ 2 + ~ . ( ~ 2 - 1 )  2, (6.15) 

which reduces to (6.13) in the limit ~, ~ oo. Note that v is just the internal energy of 
the ~4 theory on a lattice with only 2 points and the substitution x--, v hence 
corresponds to an efficient partial summation of the high temperature series. 

6.2. CALCULATION OF x~(X) 

Following ref. [4], we now determine the critical line from the large order 
behaviour of the series 

X2 = ~ X(2 i)Ui. ( 6 . 1 6 )  
i=0 

A first observation is that apparently X(20 >/0 for all i and the singularity of X2 
closest to the origin is therefore on the positive real axis. It follows that the critical 
value of v is given by 

__ ,~(i-- 1 ) /v ( i  ) (6.17) v c = l i m  ri ,  ri - a 2 / / v  2 , 
i-+ oe 

if this limit exists. Actually, for 5 ~< i ~< 10 and all X, the ratios r~ are already nearly 
constant with a small monotonic trend and a superposed oscillation in the third 
significant digit. 

The behaviour of r i for large i is correlated with the form of the singularity of the 
susceptibility X 2 at the critical line. In the following, the aim is then to stabilize the 
extrapolation of the ratios r, for i ~ ~ by taking the scaling laws derived in sect. 4 
into account. Because the logarithmic corrections to the free field singularity of X 2 
are suppressed for small X, the ranges 0 ~< X ~< 0.25 and 0.25 ~< X ~< 1.00 are treated 
differently. 

(a) 0<~X<<.0.25. For all X > 0 ,  the behaviour of X2 in the limit x ~ x  c is 
described by the scaling law (4.39). However, when 2~ is small, the logarithmic 



M. Lfischer, P. Weisz / Lattice q~4 theory 43 

modification of the free field scaling law X 2 oc ~--1 is only seen when x is very close 
to x¢. Indeed, integrating the renormalization group equations taking into account 
that the initial value of gR is proportional to X, yields the improved formula 

( X2cc 1 -  1 - f ( ~ ) l n  1 -  ( l + O ( g R l n g R ) ) ,  (6.18) 

36 
f ( h )  = ~-SX + O(X2), (6.19) 

which is equivalent to eq. (4.39) when x is close enough to K¢ to overwhelm the 
suppressing factor f(?~). 

If we now define an auxiliary function h(z) through 

36 ~ 1/3 
h ( z ) = ( 1 - z )  1 1 - ~ T  ~ , l n ( 1 - z ) )  

= ~ h{i)z i, (6.20) 
i = 0  

we may thus expect the ratios rs and r / =  h(~-l)/h (° to behave similarly for i ~ m. 
In particular, compared to r,, the sequence of improved ratios 

R, = r /r /  (6.21) 

should be more easy to extrapolate from the range 5 ~< i ~< 10 to the limit i ---, m. 
The Ri's are actually rapidly convergent and, by inspection, the estimate 

is obtained, where 

Vc = v~*(1 + e), lel ~< 10 -3 , (6.22) 

1 
VC $ = U10 ~-~ ~ ( R  9 q- RIO ) . (6.23) 

We have also tried more sophisticated extrapolations of the sequence R i, but did 
not find results outside the error band quoted in (6.22). A further check on our 
method is obtained by comparing (6.23) with the expansion of K¢ in powers of X, 
which we have worked out up to two loops (appendix C). The agreement found is 
perfect for X ~< 0.05 and at X = 0.1, where the higher loop terms are no longer 
negligible, the deviation is about 1%. 

(b) 0.25<~X<<, 1. The procedure here is the same as above with two small 
changes. One is that the auxiliary function (6.20) is replaced by 

h(z)=(1-z)-l( 1 \ a / 3  
- 7 1 n ( 1 -  • (6.24) 
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The other is that we choose 

x = 2v(1 + v / V l o )  - I  (6.25) 

that the (weak) as a new expansion variable. The effect of this substitution is 
anti-ferromagnetic singularity of X 2 at K = - x  c is shifted far away from the origin 
and the oscillations in the ratios R i disappear. The remaining monotonic trend may 
then be fitted very well by 

R i = x*  + i- 5 , i = 5 . . . . .  10. (6.26) 

Thus, the result is again eq. (6.22) with v* calculated from the fit (6.26) and the 
transformation (6.25). In the Ising limit, the final value for x c obtained in this way 
agrees with the more accurate estimate 

Kc=0.074834(15), (6.27) 

which Gaunt  et al. [4] extracted from the 17th order susceptibility series. 
A list of values of K c versus ~ as determined by the above methods is given in 

table 1, As a last consistency check, we mention that at and around X = 0.25, the 
procedures (a) and (b) give identical results within the quoted errors. 

6.3. CALCULATION OF m R, gR, ZR AND Z~ AT ~ = 0.95g c 

The method of computation and error estimation is similar for all these quantities 
and we shall therefore present the details only for the mass m R- Furthermore, only 
the large X range 0.25 ~< X ~< 1 will be considered, the necessary modifications for 
the small X's being rather obvious from our discussion in the preceding subsection. 

The scaling law (4.34) suggests writing the high temperature expansion of m R in 

the form 

mR= 1 - - - -  V- ' /2rhR(X),  (6.28) 
/)c 

r~R(X ) = Y' rh~t)x i, (6.29) 

where x = 2v/ (1  + v/vc) .  In the neighborhood of the critical line, rh R is expected to 
diverge according to 

( X )  -1/6 
rhR(X) cx In 1----xc (1 + O(gRlngR)  ) .  (6.30) 

This is a rather weak singularity and it is therefore not surprising that at the value of 
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TABLE 1 

Values of ~, and xc versus ~ (eq. (6.11)) 

45 

~- ~;c 

0.00 0.0 0.1250(1) 
0.01 3.4574 x 10-  3 0.1257(1) 
0.02 7.1709 x 10 3 0.1264(1) 
0.03 1.1153 x 10 2 0.1272(1) 
0.04 1.5416 × 10 -2  0.1279(1) 
0.05 1.9974 x 10 -2  0.1286(1) 
0.06 2.4841 x 10-  2 0.1294(1) 
0.07 3.0032 x 10 2 0.1301(1) 
0.08 3.5562 x 10 2 0.1308(1) 
0.09 4.1445 x 10 -2  0.1315(1) 
0.10 4.7699 x 10 -2  0.1322(1) 
0.20 1.3418 x 10-1 0.1385(1) 
0.30 2.7538 x 10 ~ 0.1421(1) 
0.40 4.8548 x 10-1 0.1418(1) 
0.50 7.7841 x 10-1 0.1376(1) 
0.60 1.1769 0.1299(1) 
0.70 1.7320 0.1194(1) 
0.80 2.5836 0.1067(1) 
0.90 4.3303 0.09220(9) 
1.00 ~ 0.07475(7) 

x corresponding to r = 0.95xc, the series (6.29) is well convergent*. When truncated 
at 10th order, the mass m R comes out to be around 0.5, which is rather large and 
thus gives us additional confidence that we may safely use the high temperature 
expansion at this value of x. 

The systematic error which results from the truncation of the series (6.29) may be 
estimated as follows. Let 

1 ) -1/6 
h ( z )  = - zln(1 - z) = £ hU)z ̀  (6.31 / 

i = 0  

be an auxiliary function simulating the singularity (6.30). 
observes that for i >~ 5 

By inspection, one 

rh~) = C hU)/x~ , (6.32) 

where the constant C may be determined with an accuracy of 1 -2  significant digits. 

* Here and in what follows, we take ~ = g* ,  where x* is the critical value determined in subsect. 6.2. 
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Thus, if we define 6 through 

6 = C h z - h ( i ) z  i 

i=0 ] z=x/x~  

(6.33) 

the truncation error is approximately given by 

rh~x '-- 6. (6.34) 
i=10 

In this way we are led to take 

9 

t h e ( x )  = E rh~ )x '+  8 (6.35) 
i=0 

as our best estimate for rhR(X ) and to quote ½[81 as a realistic upper bound on the 
systematic error Irh~(x) - rhR(x)l. 

The result of our calculations is displayed in table 2. In all cases, the errors are 
largest in the Ising limit, which is perhaps understandable given that the coupling 
gR is maximal there. Anyway, they are reasonably small (~< 15%) and, if required, it 
would not be impossible to decrease them by working out a few higher orders in the 
high temperature expansion. At small ~, the numbers in table 2 agree very well with 
the two-loop perturbation expansions summarized in appendix C. They also com- 
pare favourably with a large scale Monte Carlo simulation of the Ising model [27] 
and we are thus confident that our methods of calculation and error estimation are 
reliable. 

6.4. FURTHER REMARKS AND RESULTS 

For all fixed ~, and for 0 < ~¢ ~< 0.95r~, we have found that m R and gR are 
monotonically decreasing when K is growing. Thus, in this region we have (of. 
subsect. 4.3) 

f l ( m R ,  gR) > 0. (6.36) 

Furthermore, one also observes that ZR ° is positive and monotonically increasing, 
which implies 

3'(mR, gR) < 1, (6.37) 

8 ( m R ,  gR) < 0. (6.38) 

Finally, since Z R is always positive and slowly decreasing, we conclude that 

7(mR, gR) > 0 (6.39) 

in the high temperature region. 
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TABLE 2 
Values of mR, gR, ZR and ZR ~ at x = 0.95~ c as calculated by the high temperature expansion 

47 

x m R gR ZR Zr~ 

0.00 0.118752 0.64886(3) 0.0 4.210(1) 0.0148(1) 
0.01 0.119436 0.6453(5) 1.380(5) 4.186(1) 0.0150(1) 
0.02 0.120125 0.6417(9) 2.68(3) 4.162(1) 0.0151(1) 
0.03 0.120818 0.638(1) 3.91(6) 4.138(1) 0.0153(1) 
0.04 0.121513 0.635(2) 5.1(1) 4.115(1) 0.0154(1) 
0.05 0.122208 0.632(2) 6.2(1) 4.091(1) 0.0156(1) 
0.06 0.122902 0.628(3) 7.3(2) 4.068(1) 0.0160(1) 
0.07 0.123593 0.625(3) 8.3(3) 4.045(1) 0.0162(1) 
0.08 0.124279 0.622(4) 9.3(3) 4.022(1) 0.0163(1) 
0.09 0.124960 0.619(4) 10.2(4) 4.000(1) 0.0165(2) 
0.10 0.125633 0.617(5) 11.1(5) 3.978(1) 0.0167(2) 
0.20 0.131591 0.592(7) 19 (1) 3.794(2) 0.0185(3) 
0.30 0.134986 0.575(8) 24 (2) 3.692(3) 0.0200(5) 
0.40 0.134737 0.561(9) 29 (3) 3.691(5) 0.0210(7) 
0.50 0.130740 0.55(1) 32 (4) 3.794(7) 0.0213(8) 
0.60 0.123399 0.53(1) 35 (4) 4.01(1) 0.0211(9) 
0.70 0.113398 0.52(1) 37 (5) 4.35(1) 0.0202(9) 
0.80 0.101333 0.51(1) 38 (6) 4.84(2) 0.0189(9) 
0.90 0.087593 0.50(1) 40 (6) 5.58(2) 0.0171(9) 
1.00 0.071017 0.49(1) 41 (6) 6.85(3) 0.0144(8) 

Column 2 contains the actual value of x used, which is equal to 0.95x*, where xc* is the estimate for 
~c defined in subsect. 6.2. 

Another interesting remark is that the curves in the x, h-plane corresponding to a 
fixed value of m R are simple lines, which are to a good approximation given by 
x / x  c = constant. Along these curves, gR is monotonically increasing with ~ and it 
thus follows that the mapping (K, ~) ---, (m R, gR) is globally invertible in the region 
K ~< 0.95xc (cf. the discussion in subsect. 4.1). It also follows that the maximal value 
of gR at fixed mg is attained in the Ising limit. In other words, at least in the high 
temperature region, the triviality bound (1.1) is saturated by the theory with the 
largest possible value of the bare coupling (as expected naively). 

With a canonical normalization of the bare lattice field as in eq. (2.2), the wave 
function renormalization constant would be given by 

Z ~ .  = 2 x Z  R (6.40) 

(cf. eq. (2.4a)). Curiously, it turns out that Z~ is very nearly constant in the whole 
high temperature region and just a little (a few percent) smaller than 1. This is very 
much in line with what was observed in Monte Carlo simulations [6, 8] and the 
bounds 0 ~< Z~t ~< 1 are also suggested by formal continuum arguments (ref. [43], 
subsect. 16.4). Nevertheless, it is surprising that the difference 1 - Z~t is so small 
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even in situations where the coupling gR is large. 

7. The tree level unitarity bound and the applicability of renormalized 
perturbation theory 

Neglecting higher order corrections and scaling violation terms, the S-wave phase 
shift 80 for elastic particle scattering in the if4 theory is given by 

--1 ( e2 i8° -1 )=  gR (s--4m2R) 1/2 (7.1) 
2i 32~r s ' 

where s is the centre-of-mass energy squared (4m~ ~< s ~< 16rn 2 in the elastic 
region). Since the real part of the left-hand side is bounded by ½, this relation can 
only be a valid approximation at low energies provided 

gR --< 32rr/V~- = 58. (7.2) 

In other words, if ga is close or above this value, higher orders in the renormalized 
perturbation expansion must be expected to be non-negligible and it is then even 
possible that perturbation theory breaks down. 

Actually, as is born out by explicit calculations up to two loops, the perturbation 
expansion of low energy quantities is in general rather well convergent when the 
unitarity bound (7.2) is satisfied. For example, for the true particle mass m defined 
through 

F~2'°)(p, - p )  = 0, p = (im,O,O,O), (7.3) 

we have 

m = m R{1 --0.001287a~+ O ( g 3 ) } ,  (7.4) 

a g = gR/16¢r 2 . (7.5) 

There is no one-loop term in this case and the two-loop correction is very small for 
gR < 58 SO that m is practically equal to m R. Another quantity we have considered 
is the scattering length 

1 
a o = lim (e 2ia° - 1) 

p~0  

gR 

32~rm g 
- -  ( 1 - o~ R "4- 0.9270a 2 + O(g3)  } (7.6) 

(p  is the magnitude of the particle momentum in the centre-of-mass system). Here, 
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the higher order terms are not negligible, but the series still appears to be 
convergent. The situation is slightly worse for the 6-point coupling 

1 0  ( F (4'0) [0 0))2 + R , , o , o ,  

~aR + =10~-~R{1- -3aR+9  2 O ( g ~ ) } ,  ( 7 . 7 )  

but this only shows that the tree level unitarity bound (7.2) is a realistic estimate of 
the "radius of convergence" of the renormalized perturbation expansion. 

As we have shown in sect. 6, the maximal value of gR along the line x = 0.95x¢ is 
about 41, which is roughly 2 of the tree level unitarity bound. By integrating the 
renormalization group equations, gR will turn out to be even smaller for x > 0.95K c 
(sect. 8). Thus, we conclude that renormalized perturbation theory is applicable for 
K >~ 0.95x c and the low energy properties of the theory are hence calculable in this 
region once m R and gR are known. In particular, our discussion in subsect. 4.2 of 
scaling violations in perturbation theory should be meaningful for the full ampli- 
tudes, i.e. we expect they are _< 10% at low energies. In this sense, the region 
x >~ 0.95K c (which is practically equivalent to m R ~< 0.5) is also a scaling region. 

8. Integration of the renormalization group equations 

We now proceed to integrate eqs. (4.26)-(4.29) using our results from the high 
temperature expansion as initial data along the line • = 0.95K c. Although we have 
just remarked that renormalized perturbation theory should be applicable in the 
range 0 < m R ~< 0.5, 0 ~< gR ~< 41, the series for the B-function is actually not so well 
convergent (see fig. 3). Still, for 0 ~< gR ~< 20 the higher order corrections are small 
and for the larger values of gR it seems reasonable to expect that the true B-function 
is sandwiched between the 2- and 3-loop curves since the perturbation coefficients 
are alternating in sign. As we shall see, this uncertainty has fortunately no big effect 
on the final result. What is really important, however, is that the B-function is 
positive in perturbation theory and since the same is also true in the high tempera- 
ture region (cf. subsect. 6.4), there is little doubt that the full lattice r-function is 
positive for all possible values of mR> 0 and gR >/0. Actually, the B-functions 
calculated in perturbation theory and by the high temperature expansion even agree 
quantitatively (within large errors) along the line ~ = 0.95K c (cf. fig. 4 below). 

The perturbation series for the other Callan-Symanzik coefficients y and 8 are 
rather well convergent so that their evaluation in the region where the renormaliza- 
tion group equations will be integrated presents no problem. In accordance with 
what was found in the high temperature region, 6 is negative and 7 is small ( ~< 0.05) 
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Fig. 3. Plot of the /-loop approximations to the fl-function neglecting scaling violation terms (cf. 
appendix A). The curves are labelled by / = 1, 2, 3. 

and positive. Thus, when m R decreases, gR and Z R also decrease while Z [  and x 
monotonically increase. 

With B, 3', d and the initial data from the high temperature expansion (cf. table 2) 
at our disposal, it is easy to integrate eqs. (4.26)-(4.29) numerically with negligible 
error using a Runge-Kutta algorithm, for example. In table 3, the result of the 
integration is shown for three values of X. The errors quoted are obtained by 
propagating the errors of the initial data. For /3, 7, 8 we have taken the 3-loop 
formulae with the exact lattice expressions for the tree level and the l-loop 
coefficients (eqs. (A.4)-(A.12)). The inclusion of the tree level coefficients is actually 
rather important  at small ~ although they are just scaling violation terms. The 
reason is that when the initial value of gR is small, the perturbation expansion is 
dominated by the first term and it is only when m R has decreased substantially that 
the universal l-loop term takes over. For m R _< 0.5, the scaling violations in the 
l - loop coefficients are less than 15% of the universal part and their omission would 
therefore have only a small effect on the result of the integration. For this reason, 
we are also confident that the scaling violation terms in the higher loop coefficients 
may be safely neglected. 

If one used the 2-loop instead of the 3-loop approximation for/3, 7 and 8, the 
numbers in table 3 would not be affected except for the values of gR at X = 1, which 
would change by up to twice the error quoted. We nevertheless take the 3-loop 
solution with errors as in table 3 for our final result, because it fits better with the 
extension of the high temperature curves down to m R = 0.2 (see fig. 4) and because 
it agrees very well with the Monte Carlo simulation data of ref. [27] at m R = 0.2 and 

m R = 0.5. 
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TABLE 3 

Results  f rom the solution of  the renormal izat ion group equations  at 7~ = 0.01, 0.10 and 1.00 

5 I  

m R gp, ZR ZeR 

0.01 IO0 1.590(31 4.478(11 0.01401(5) 0.11165111 
0.90 1.521(41 4.383(1) 0.01432(6) 0.1140711) 
0.80 1.459(41 4.298111 0.01460(7) 0.11632111 
0.70 1.406151 4.223(11 0.01486(9) 0.11839(11 
0.60 1.360(6) 4.158111 0.0151(1) 0.12025111 
0.50 1.32018) 4.103(11 0.0153(1) 0.12186111 
0.40 1.283(5) 4.058(11 0.0155111 0.12321(3) 
0.30 1.25315) 4.022(1) 0.015711) 0.12428(4) 
0.20 1.226(5) 3.997(1) 0.0158(1) 0.12507(5) 
1).10 1.198(5) 3.982(1) 0.0160(1) 0.12554(5) 
0.09 1.19415) 3.98011 ) 0.0160(1 ) 0.1255715) 
0 0 8  1.191151 3.980(11 0.0160(11 0.12560(5) 
1/./17 1.187151 3. 979( 1 ) 0.0160( 1 } 0.12562( 5} 
0.06 1.182/51 3.979(11 0.0160111 0.12564(5) 
0.05 1.177151 3.978(11 0.0161111 0.1256615l 
0.04 1.171141 3.97711) 0.0161(11 0.12568(5) 
0.03 1 164(41 3.977/ 1 } 0.0161( 1 ) 0.12569( 51 
0.02 1.153(4) 3.977( 1 ) 0.(}1621 l ) 0.1257015} 
{}.111 1.136{41 3.977( 1 ) 1/.0163{ l) 0.12570151 

0 1 0  1.00 13.813t 4291141 0.01523(81 11.11651/181 
0.90 13.0131 4.196181 0.0156111 0.11914(9) 
0.80 12.3141 4.111t(4) /}.016{X 11 0.12161{9l 
0.70 11 6(4) 4.034{4) 0.0164(2} 0.12389(9} 
0.611 11.0( 5 ) 3.96N 4l 0{)16812) 0.1259619} 
0.50 11/.4161 3.911(31 00171(3) 0.12778(8) 
0 4 0  9.8(4) 3865(4t 0.0176(21 0.1293111 
0.30 9.2141 3.828(4) 0.0180121 0.1305(11 
11.20 8.5(3) 3.802(4) 0.0185131 0.1314(21 
0.111 77(3) 3.78414) 0.0192131 01320(2) 
0.09 7.6(2) 3. 783( 51 0~019313 ) 0 1320{ 21 
0.08 7,4( 2 ) 3.782( 5 } 0 0194( 31 (1,1320( 2} 
007  7.3(21 3 781(5) 0,019513) 0.1321(2} 
0 0 6  72121 3 78(1(5/ 0,0197(3l {).1321(2l 
(}05 70(2} 3.77915) 0,0198(3) 0.1321(2) 
0.04 6 8{ 2 ) 3.778{ 5 )' 0 {120{113 ) /). 1321 { 2) 
0.03 6.6(2) 3778(5} 0,0203(3) 0,1321(2) 
0.02 6.3{ 2 ) 3.77715 } 0 020613 ) 0.1321 { 2 } 
0.01 5.8{2} 3.776(5} 0.021114) 0.132212} 

1 O0 1 0 0  78 ( 3 ) 7.85( 3 ) 0.(}11112 ) 0.0626( 1 ) 
0.90 69 13l 7.61(4) 031116(3) l).0644(1 ) 
0.8(} 62 {41 7,40(4) 0.0122(4} 0.0662( 1 ) 
0.70 55 (5) 7.20(4) I11112915) 0.0679(2) 
0.60 48 (6) 7./12151 0013617) 0.0694(2) 
0.50 42 (7} 6.86(5) 0.0143(9l 0.1/709121 
1/.40 35 (5) 6.74(5) 0.015(1) 0.0722(2) 
0 3 0  29(31 6.65(5) 0.016111 0.0732(3) 
0.20 24 (2) 6.58(6) 0.017( 11 0.0741(4} 
0.10 18 (1) 6.54(6) 0.0i 9(2) 0.0746(4) 
0 0 9  18 (1) 6.53(6) 0.019121 0.0746(4) 
1/.08 17 (1) 6.53(6) 0.019(2) 0.0747(4) 
0.07 16 (D, 6.52(61 0.020(2} 0.0747{4) 
0.06 15,7(9) 6.52(6) 0.020(2) 0.0747(4} 
0.05 15 0(8) 6.52(6) 0.020(21 0.0747(4) 
0.04 14.1(81 6.52(6) 0.021121 0.0748(4) 
0.03 13.2171 6.51161 0.021121 0.0748(4) 
0.02 12.1161 6.5116) 0.022(2) 0.0748(4) 
0.01 10.614) 6.50(6) 0.023(2) 0.0748(4) 

For completeness, the values from the high lemp~azure series analysis in the range 1.0/> m a 
/> 0.5 are also displayed. 
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Fig. 4. Comparison of the high temperature expansion at ?, = 1 (dashed curve, 0.2 ~< m R -%< 1.0) with the 
solution of the renormalization group equation (4.26) using m R = 0.49, gR = 41 as initial data (curves a 

and b corresponding to the 2-loop and 3-loop approximation of the r-function). 

For  m R --~ 0, the values of K obtained from the solution of the renormalization 
group equations must converge to x c. As is apparent from table 3, x is indeed nearly 
constant within errors for m R ~< 0.05 and it turns out that the asymptotic values are 
in complete agreement with our earlier estimation of Kc (table 1), thus providing a 
good check on our calculations. 

We finally come back to the discussion at the end of subsect. 4.1 of the possible 
non-invertibility of the mapping (x, ~ ) ~  ( m R ,  gR)" As we have already noted in 
subsect. 6.4, the mapping is invertible in the high temperature region so that here we 
mainly comment on what may happen close to the critical line. A first observation is 
that one may always find acceptable lattice actions for which the mapping is not 
invertible somewhere in the plane of bare parameters. A simple example of such an 
action is obtained by adding an "irrelevant" term 

At 
~x ~ . ~ ( X ) 6  (8.1)  

to the action (2.1) and choosing ~,' = ~k'(X) appropriately (in the space of parameters 
x, )~, )V, a two-dimensional submanifold ~' = )~'()~) can always be defined such that 
some of the lines with fixed m R and gR are cut more than once). Thus, for a given 
lattice action the invertibility of the mapping of bare to renormalized parameters is 
a rather accidental property which cannot be of fundamental importance. The 
crucial point to note is that if there are several regions in the K, )~-plane with the 
same ranges of m R, gR, the corresponding renormalized vertex functions need not 
be different if we disregard scaling violations. In other words, a simple and natural 
possibility is that the theory in all these regions belongs to the same universality 
class and that the associated scaling laws are hence the same everywhere. 
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Fig. 5. Quantitative plot of the renormalization group trajectories in the plane of bare parameters. The 
curves are labelled by gR and arrows are in the direction of decreasing m R. 

Of  course, if the parameter  mapping should not be invertible for the action (2.1), 
we cannot be absolutely sure that universality in the above sense holds. There are 
however good reasons to believe so, since the coupling ge, is already rather small for 
x > 0.95x~ (and perturbation theory is universal [29]) and because our solution of 
the renormalization group equations agrees very well with the high temperature 
analysis and the available Monte Carlo data. 

9. Renormalization group trajectories and the triviality bound 

From our numerical solution of the renormalization group equations, it is now 
easy to determine the curves of constant coupling gR in the scaling region K >/0.95%. 
As may be seen from fig. 5, these curves are first parallel to the free field line ~ = 0 
(as one would expect from bare perturbation theory) and are then repelled by the 
"gaussian fixpoint" at ~, = 0, x = x c. All the trajectories end at the Ising line ~ = 1 
after having followed the critical curve at a small distance approximately given by 

8x ~ e -32~r2/3g. . (9.1) 

Tha t  all the interesting near continuum physics happens in such a narrow strip 
around the critical line is of course just a reflection of the fact that x is associated to 
the " re levant"  operator 0 in the action (K is a "fine tuning" parameter  in other 
words). 

Without  detailed calculations, the qualitative aspects of fig. 5 could have been 
anticipated from simple monotonicity arguments. As an example for this type of 
reasoning, we now prove that the minimal value of m R at fixed gR (the triviality 
bound in other words) is obtained in the Ising limit if the r-funct ion is single 
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Fig. 6. Maximal value of the ultraviolet cutoff A in units of m R for given coupling gR- The size of the 
estimated errors as quoted in table 3 is indicated at two representative points. 

valued, positive and continuous for 0 < m R ~< 0.5 and gR > 0. Indeed, from the high 
temperature analysis we know that for m R = 0.5, gR is monotonically rising with h. 
Since this property is conserved by the differential equation (4.26), it holds for any 
m R < 0.5,  tOO. The curves in the phase diagram with a fixed value of m R hence cross 
a given renormalization group trajectory at most once. In particular, m R cannot 
assume a minimum on these trajectories in the interior of the region 0 ~< m R ~< 0.5,  

0 ~< ~ ~< 1. Finally, invoking the positivity of the r-function, all boundary points 
except those with ~ = 1 can easily be excluded thus proving our assertion. 

As we have discussed in the preceding section, the true r-function is perhaps 
multiple valued somewhere close to the critical line and the above argument would 
then break down. However, assuming universality, the multiple valuedness of fl is 
only present (if at all) on the level of scaling violations and we therefore expect that 
the true minimal value of m R along a given renormalization group trajectory is 
always very close to the value of m R in the Ising limit. In particular, there is no 
reason to doubt  the validity of our approximate determination of the renormaliza- 
tion group trajectories, which was based on a single valued r-function and which 
hence yields the minimal m R at ~ = 1. 

To sum up, we have thus shown that the triviality bound (1.1) is (essentially) 
saturated by the Ising model. Using our numerical solution of the renormalization 
group equations (table 3), we hence obtain the curve shown in fig. 6, where we have 
reintroduced the ultraviolet cutoff A to conform with the notation of sect. 1 (by 
definition, A = 1 in lattice units). Fig. 6 reveals that as expected from eq. (1.1), the 
maximal value of the cutoff is very rapidly rising when gR is made smaller. On the 
other hand, when gR increases towards the tree level unitarity bound, A becomes of 
order m R thus showing again that near continuum physics is apparently tied up 
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with the applicability of renormalized perturbation theory. We finally note that at 
small gR a more definite expression for the triviality bound, replacing the asymp- 
totic formula (1.1), is given by 

ln(A/mR) <~ ~ + -271n(fllgR) + C(gx) ,  
Of 

(9.2) 

where C(gR) satisfies 

-1 .7  ~< C(gR) <~ -1 .3  for gR ~ 10. (9.3) 

10. Conclusions 

The results of this paper suggest the following remarkably consistent and simple 
picture of the lattice ~4 theory in the symmetric phase. 

(i) In the phase diagram there is a region F (the white area below the critical line 
in fig. 2), where the scaling violations in the scattering amplitude at low energies and 
in other physical quantities are small. Thus, in this region the theory effectively 
behaves like a continuum theory at low energies. 

(ii) The maximal value of the renormalized coupling gR in F is about 41, which 
is roughly ~ of the tree level unitarity bound. In general, renormalized perturbation 
theory may therefore be applied to calculate the vertex functions at momenta well 
below the cutoff A. 

(iii) In F and at fixed gR, the cutoff A may assume any value between 2m R and 
the triviality bound, which is given by fig. 6 for large gR and by eqs. (9.2), (9.3) 
otherwise. This bound is (essentially) saturated in the Ising limit of the theory, i.e. 
for infinite bare coupling. 

An important and perhaps surprising qualitative aspect of this picture is that a 
truly non-perturbative sector, where the coupling is well above the tree level 
unitarity bound and the cutoff is reasonably large (say A = 10mR), does not exist. 
In other words, there is no strongly interacting lattice ~4 theory, which could be 
regarded as an effective continuum theory at low energies. 

We expect that our methods also apply to other lattice field theories including 
QED, the U(1) Higgs model and, of course, the n-component ~4 theory. In the 
latter case, we have already worked out the large n limit and found that 
the situation there is qualitatively the same as in the one-component model. In the 
O(4)-symmetric theory, which is related to the physically interesting SU(2) Higgs 
model, we would therefore be surprised, if a very different picture would result [44]. 
The broken symmetry phase of the ~4 theory is more difficult to treat because there 
is apparently no convenient expansion in this part of the phase diagram, which 
could play the rgle of the high temperature expansion in our analysis. However, 
perturbation theory and the Callan-Symanzik equation are still at our disposal so 
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that at least the scaling laws and the qualitative shape of the renormalization group 
trajectories can be derived (cf. ref. [1]). One may perhaps also be able to carry over 
the results from the symmetric phase to a small region on the other side of the 
critical line using mass perturbation theory. 

As we have already mentioned in the introduction, it is conceivable that the 
ultraviolet cutoff, which is needed to make a trivial theory interacting at low 
energies, may be provided by an embracing asymptotically free (or otherwise 
stabilized) theory. An interesting and also very difficult question then is, whether for 
a given trivial model such an embracing theory exists at all. Perhaps some restric- 
tions could be obtained in this way on the possible scalar sectors in phenomenologi- 
cally relevant theories, although one could always object that at energies as high as 
the Planck mass, nature is probably no longer describable by a quantum field theory 
and ultraviolet stability would then be provided by a different structure. 

Appendix A 

PERTURBATION EXPANSION OF THE CALLAN-SYMANZIK COEFFICIENTS/3, 7 AND 

The renormalization group functions in the ~4 theory have first been calculated 
up to three loops in the massless case using dimensional regularization and a 
momentum subtraction scheme [34]. With minimal subtraction, computations have 
later been performed through four loops (ref. [33] and references quoted therein) 
and more recently even to five loops [31,32]. All these nice results are not 
immediately useful here, because our renormalization scheme is different. However, 
it is not too difficult to determine the relation between the various schemes up to 
two loops and this is then sufficient to obtain r ,  y and ~ as defined in this paper up 
to three loops. We do not present the details of this calculation here but merely 
quote the result in table 4, where we have used the notation 

/3(0, gR) = gR ~ /3~g~, (A.1) 

v(o, gR) = (A.2) 

8(0, gR) = ~-] 8~g~ (A.3) 

for the loop expansion. 
As discussed in sect. 8, the scaling violations in the Callan-Symanzik coefficients 

are not always negligible and we have therefore also calculated r ,  7, 8 for arbitrary 
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TABLE 4 
Perturbation expansion coefficients for fl, y and 3 according to eqs. (A.1)-(A.3) 
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(16~2)~fl. (16~2)~% (16~2)~6~ 

1 3 0 -1  
2 -17/3 1/12 5/6 
3 26.908403 0.14065121 - 3.7708683 

mR up to one loop. Defining u ,  G, % through 

we have 

fl(mR, gR) = gR ~ u , (mn)g~,  
r'=0 

Y(mR, gR)= ~ G(mR)g~,  
t~=0 

OD 

3(too., gR) = Y~. w,(mR)g~, 
.v=0 

4.,2 
Uo= 8 + m  2 , 

Jl(mR) } 
u l = u  o 3(8+m2)J3(mR)- -J2(mR)  2 ( 8 + m  2) ' 

1 
U 0 = ~ U  0 , 

1( 
U1 = 8 U o  J2(mR) 8 + m 2 ' 

WO= - - l U o ~  

w 1 = - 2 v  1 -  ¼m2{(8 + m 2 ) 4 ( m R )  -- 2 4 ( m R )  + 
J~(",.) } 
8 + m ~ .  ' 

where the lattice l-loop integrals Jp(#) are defined by 

Jp(/~) = f "  d4k _~r (2~)4 (/-t2 + k 2) P, k , =  2sin½k~. 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 
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It may come as a surprise that the tree level coefficients u o, v 0 and w o do not 
vanish, but since they are of order m~, they are just scaling violation terms which 
disappear in the continuum limit. One may also easily show, using the asymptotic 
expansion of the integrals Jp given in appendix B, that the l-loop coefficients 
u 1, 01, w 1 agree with the universal coefficients /31, "¢1,81 up to terms of order 
m2Rln m R as expected. 

Appendix B 

P R O P E R T I E S  O F  T H E  I N T E G R A L S  J1, ,/2, ./3 

For  # - ~ 0 ,  the integrals Jp(#) defined in appendix A have an asymptotic 
expansion of the form 

j~(~)  = j / s ( ~ )  + O(~8-2p In ~2), (B.1) 

J;S(#)=ro+#2(rl +s,lnpZ)+t~'(r2+s21n#2), (B.2) 

1 0 
a s  ~ _ _  _ _  a s  

Sp+l(I ~) P Oi.t2Jp ( / / ) ,  ( B . 3 )  

where the coefficients in (B.2) are given by 

r o = 0.154 933 390, (B.4) 

r 1 = -0 .030  345 755, (B.5) 

r 2 = 0.002 775 927, (B.6) 

1 
s 1 - 16~r2 , (B.7) 

1 
S 2 --  128~.2 . (B.8) 

A useful numerical representation of J1, J2, -/3 in the range 0 </~ ~< 1 is 

N 
Jp(l~) = jps(/~) • cp,,r,(2ll_ 1) + e, (B.9) 

n = 0  

where T,(X) denotes the Chebyshev polynomial defined by 

T,,(cos 0) = cos nO, (B.10) 
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TABLE 5 
Coefficients in the Chebyshev expansion (B.9) of the integrals J1, J2, J3 
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11 C1, n C2, n C3, n 

0 0.999 533 1.009 218 0.966 548 
1 -0.000 790 0.014 679 -0.049 015 
2 -0.000 472 0.007 226 -0.017 210 
3 -0.000 193 0.002 002 -0.000 822 
4 - 0,000 049 0.000 240 0.000 832 
5 - 0.000 006 0.000 006 - 0.000 032 
6 0.000 003 - 0.000 032 
7 0.000 010 
8 - 0.000 002 

a n d  fo r  t h e  e r r o r  r to  s a t i s fy  

I r / J p ( / ~ ) [  < 10 - 6 ,  ( B . 1 1 )  

i t  is  s u f f i c i e n t  to  t ake  N = 5 , 6 , 8  fo r  p = 1 , 2 , 3  r e spec t ive ly .  T h e  c o r r e s p o n d i n g  

c o e f f i c i e n t s  cp , ,  a re  l i s t ed  in  t a b l e  5. 

Appendix C 

EXPANSIONS IN POWERS OF X 

S t a r t i n g  f r o m  the  a c t i o n  (2.2),  o n e  de r i ve s  in  t he  u s u a l  w a y  t he  p e r t u r b a t i o n  

e x p a n s i o n  o f  t h e  v e r t e x  f u n c t i o n s  F ("'1) in  p o w e r s  o f  go. I n s e r t i o n  o f  t he  r e l a t i o n s  

(2 .4)  t h e n  y i e l d s  t h e  e x p a n s i o n s  in  p o w e r s  o f  X, w h i c h  we h a v e  w o r k e d  o u t  u p  to  

t w o  l o o p s  fo r  v a r i o u s  q u a n t i t i e s .  T h e  r e su l t  of  t h e s e  c a l c u l a t i o n s  is g i v e n  in  t a b l e  6, 

w h e r e  we  u s e  t h e  n o t a t i o n  

x= ;~p f x(")~," (c.1) 
v ~ O  

f o r  t h e  e x p a n s i o n  o f  X. 

TABLE 6 
Perturbation expansion coefficients for various quantities X according to eq. (C.1) 

X p X(o) X (]) X(2) 

1 3 - 33 576 
~c 0 0.12500 0.2148 -2.351 

m R ( t~ ) 0 0.64889 -- 1.106 22.67 
gR(x) 1 4.2548 X 10 2 --8.815 X 10 3 2.421 X 105 
Z R ( K ) 0 4.2105 - 7.235 89.47 
Z~(t¢) 0 1.4844 X 10 -2 6.007 × 10 -2 -0.7464 

mR, gR, Z R  and ZR ° are evaluated along the line x = 0.95x,:(X). 
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