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The behaviour of the lattice-regularized SU(2) Higgs model with a scalar doublet field is 
investigated near the critical line at vanishing gauge coupling. By the use of the expansion in the 
gauge coupling the determination of the renormalization group trajectories is reduced to a similar 
problem in the pure 44 model. The shape of the critical surface separating the confining and the 
Higgs phase can also be obtained by the weak gauge coupling expansion from the shape of the q~4 
critical line. 

I. Introduction 

The large cut-off behaviour of a gauge theory with scalar matter fields is in 
general quite different from a theory with spin-½ fermion matter fields. The scalar 
fields can have renormalizable self-couplings, in contrary to the fermion fields, but 
these couplings are typically not asymptotically free, therefore the question of the 
large cut-off behaviour is a non-perturbative problem. In the simplest case of the 
O( n )-symmetric n-component scalar q~4 model (without gauge fields) information 
about the large cut-off behaviour can be obtained by combining the hopping 
parameter expansion (" high temperature expansion" in the terminology of statisti- 
cal physics) and Callan-Symanzik renormalization group equations [1]. This proce- 
dure is particularly successful in the symmetric phase, where the high order hopping 
parameter expansion has, for intermediate cut-off's, a similar (or even better) 
precision than a good Monte Carlo calculation [2]. The renormalized scalar q~4 
coupling vanishes logarithmically with the cut-off near the critical line. As a 
consequence, for very high cut-off's the possible values of the physical parameters 
are severely constrained. In particular, in the limit of an infinite cut-off ("con- 
tinuum limit") the only possibility is a free (trivial, non-interacting) theory. In the 
case of the single component q~4 model the triviality of the continuum limit is also 
supported by several important exact results (for an incomplete list of references see 
ref. [3]). Of course, the triviality of the continuum limit does not necessarily mean 
that such theories are physically uninteresting, since probably every quantum field 
theory is physically valid only up to some high but finite cut-off. 
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An interesting question is, how does the inclusion of an asymptotically free 
non-abelian gauge coupling change the large cut-off behaviour? In the present paper 
this question is investigated in the simple and important case of the SU(2) Higgs 
model with a scalar doublet (in terms of real field components this is equivalent to 
the gauging of an 0(3) subgroup of the 0(4) symmetric 4-component q~4 model). 
The technical tool which will be used is the weak gauge coupling expansion 
(WGCE) [4] in the vicinity of the critical line at vanishing gauge coupling. 

In the next section first the lattice action will be defined with the lattice version of 
the covariant gauge fixing and then the WGCE master formula for connected Green 
functions will be derived. In sect. 3 the general procedure of deriving differential 
equations for the curves of constant physics will be discussed and applied to the 
standard Higgs model at arbitrary scalar self-coupling and small gauge coupling. In 
sect. 4 the phase transition surface separating the confining phase and the Higgs 
phase will be investigated. Sect. 5 contains the discussion. 

2. Weak gauge coupling expansion with gauge fixing 

In ref. [4] W GC E was derived in a gauge invariant formalism for gauge invariant 
Green functions of composite fields. For the discussion of renormalization it is, 
however, more convenient to consider the gauge dependent Green functions in the 
renormalizable 't Hooft gauges [5]. In this section first the gauge fixed lattice action 
will be considered and then the master formula of WGCE for connected Green 

functions will be derived. 

2.1. LATTICE ACTION WITH COVARIANT GAUGE FIXING 

Let us first consider the gauge action. The SU(2) gauge variable U ( x ,  ~ )  on the 
link (x, x +/2)  from the point x to the neighbouring point x +/2 will be described 
by 3 real components arxl~ ( r  = 1,2,3; ~t = 1,2,3,4) in the same way as in ref. [4]: 

U ( x ,  ~ )  = 1 - ax~ , + irra,x~,.  (1) 

Here rr ( r  = 1, 2, 3) are isospin Pauli matrices (over repeated isospin indices r, s . . . .  
an automatic summation is understood). The real variable ax~ , is given in general by 

a)¢~, - 1 - aox~, = 1 - zx~,~l - a,x~,arx~, , (2) 

where zx~ = _+ 1 is an Ising variable. In perturbation theory it is assumed that 
U ( x , / ~ )  = 1 dominates, therefore one can put Zx ,  - 1. In this case we have 

(2n - 3)!! 
a x ~ = ~arx~arx  q_ L 7arx~,arx~, + ~ .  (3) ,=2 2"n! (arx~ ,a ,x~ , ) ,  _ 1 

For  the gauge part of the lattice action Sg we take the Wilson action: 

sg=/3Z(1- ½Tr Up), (4) 
P 
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where fl =-4/g 2 gives the bare gauge coupling, Ep stands for a summation over 
positively oriented plaquettes and Up is the product of the link variables around the 
plaquette. 

The gauge field propagator and vertices can be obtained by substituting eq. (1) 
into eq. (4) and collecting terms according to the powers of ar~: 

s~= s ?  + s ?  + s~" + . . . .  (5) 

The second order term S~ 2) will be discussed later together with the propagators. 
The third and fourth order vertices can be simply expressed in terms of the 
Fourier-transformed variables arks: 

ark . -  E e x p ( - i ( k , x ) - ½ i k ~ , ) a ~ , ,  
x 

1 E e x p ( i ( k , x ) +  ½ik~,)~k~,. 
arx~ = N k 

(6) 

Here N = N1N2N3N 4 is the number of lattice points and Ek means a summation 
over the Brillouin zone (we always assume periodic boundary conditions). The 
scalar product of momentum and position is defined as 

( /~I-X1 /P4X4 ] 
(x, k)  --- 2~r --~-1 + . . .  ~44 ] '  (7) 

where v~ . . . . .  P4 are the integers characterizing lattice momenta. In terms of the 
variables in eq. (6) the three-point gauge vertex is given by 

0 
S~ga)=4ig-2erst ~_, ~.~rkl~ask2~tk3~COs(½kl~)Esin(½(ka~-k2~)). (8) 

klk2k 3 I.t,p 

The momentum sums are always taken over momenta which sum up to zero. 
Similarly, the four-point gauge vertex is: 

0 
Sg(4) = g -2 y'. E { ½ ~ r k l , ~ r k 2 , a s k 3 ~ s k , a 4 s i n 2 ( ½ ( k l ~ . + k 2 ~ ) )  

klk2k3k 4 Ix, u 

+ 4( ark~,ark2~,a.k3~a.k,~ -- ark,.a,k2~,ar,%~ask,~) 

× cos(½(kl~ - k2~))cos(X(k3 ~ _ k,~)) - 2 arkl.~rk2.~sk~ a.k,~ 

× [cos(½t ~ + ~ / )  - cos (½(k~-  ~)]  

X [cos(½(k3# ÷ k4/t) ) - cos(½(k3,tt - k4/~))] 

2,~ a a a 2sin(~k ]2sin(k + )~ (9) 
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This expression is somewhat simpler than the general formula for SU(n) with the 
usual exponential parametrization of U(x,  ~) [6]. 

The integration measure for the gauge variables is originally the invariant SU(2) 
Haar  measure d3U(x,  t~). In terms of the real variables arx ~ this can be written as 

O(I--arxlzarxlx) d 3 a r x . d a o x ~ y ' 8 ( a o x _ Z x . ~ l - a r x . a r ~ . )  
d 3 U ( x , / . t )  = 2¢r2~1 _ arxt, arx~ zx, 

1 _1 ( arx~,a,,~, . (10) 
d3 a~x~eXp 2 n 

n = l  

The second line is obtained from the first one by omitting an inessential constant 
factor and taking only z ~  = + 1. The exponent will be included in the action by the 
"measure"  term 

S , , = -  E ~n(a~,a~x~, )  ". (11) 
(x/x) n = l  

Here E(x~) denotes a sum over positively oriented links. 
The Higgs field variables can be chosen in several different ways. Here we shall 

use the real components o0~ and %~ (r  = 1, 2, 3) which are connected to the 2 x 2 
matrices % and ax ~ SU(2) used, for instance, in ref. [4] by 

• x - Pxax - °o~ + i%G~" (12) 

The connection to the SU(2) doublet field ~:~ (a = 1, 2) is: 

o0 = 

~rx~ = ½ i ( -  q~ + q~lx*), Ir2x = ½(q~ + if1*), ~r3~ = ½i (q~-  , 2 " ) .  (13) 

The o-field Oo~ can have a non-zero vacuum expectation value, which will be 
denoted by v. The fluctuation part G is defined by 

o x - Oo~ - v.  (14) 

The pure Higgs scalar action S h can be obtained in terms of G and ~rr~ from the 
usual 0(4) symmetric form with four components o0~ and %x by shifting the o-field 
according to eq. (14): 

S h = 20(1 - 2X - 8~ + 2xvz)Y'~ox - 2~ ~ (GOx+r,+ %x%~+~) 
x (x~) 

+ Y'~ { o2(1 - 2X + 6~t) 2 ) + ~rx'lrrx(1 -- 2X + 2Xo 2) 
X 

+ 4 h v G ( o 2 + G x ~ r r x ) + X ( o 2 + % d r ~ x ) 2 ) .  (15) 

This is the lattice action of the linear o-model [7], which is the limit of the standard 
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SU(2) Higgs model for vanishing gauge coupling g2 = 0. The bare parameters ), and 
stand, respectively, for the scalar self-coupling and hopping parameter. 
Besides the gauge term Sg, the measure term Sm and the o-model term Sh, the 

whole action S contains also the gauge fixing term Sg~, the Faddeev-Popov term 
SFp, and the interaction term S i describing the interaction between the gauge field 
and the scalar matter fields: 

~(~) =S[o , ' f f ,  a ] = S g + S m + S h + S g f + S F p ' + ' S  i . (16) S -= ox,#, ~ - 

The gauge fixing function f,x is chosen in such a way that the mixed second order 
term in arx,, and rtr~ be absent in S. This can be achieved by taking [5,6]: 

frx ~ E ( arx~ -- a,x-g,~,) - ½ a l c g 2 v ~  • 
,u>o 

(17) 

Here a is the usual arbitrary gauge parameter. The resulting gauge fixing term in the 
action is: 

2 
etg2 E E (arxt, -- arx-~t~)(arxv-  arx-t,v) + ½°tl~2g2v2~rrffrrx • (18) 

X p,,lP 

The corresponding Faddeev-Popov term, involving the Grassmann variables Crx and 

Crx is: 

SFp ~ Y~crxM[f f  , 'r;, a] rx,syCsy 
xy 

(x~) x 

-- ~_. { (½a~a~x~+axt , ) (c~-c~+f , ) (C~x-Crx+f , )  
(x~) 

"}-18r3tarxlz( Csx"l- Csx+~)( Ctx-- Ctx+~) } , (19) 

The interaction piece S i in the action is given by the hopping term 

Tr(q~{ +~U(x, t*) cp~). 

In terms of the variables arx ~ and o~, %x it is: 

S i = 2 K  ~ {O2ax~+(½ar~arx~+ax~)[v(°x+%+~)+°~°x+f,+rrrxCr~x+a]) 
(x~t) 

- 2r  ~7~ { axarx~rrx+;, + ~rrxarx~%÷f, + erstrr~a~x~%x+f, } + xv2 ~ a~x~ar~. (20) 
(xt,) (xt,) 
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The corresponding vertices in momentum space can be easily obtained from the 
above forms of S., ..... ~. Besides the variables in eq. (6), the Fourier transformation 

for the scalar field o is defined as 

1 
Ok---- Y'.e-i(k'x)%, ox= --~_,ei(k'x) 6 k (21) 

x *" k 

and similarly for ~r,~, C,x, C,x. 

2.2. PROPAGATORS 

The propagator  matrix is the inverse of the quadratic part  of the action. For the 

scalar fields o and ~r we have the well known lattice propagators 

1 Ee_i(k,x_y)[2r(g2o + ~ 2 ) ] - 1 ,  

a ~  = ~ k 

where 

1 
A~y= ~ y '  e-i(k'~-Y) [2K(g 2 + a g E  + k2)] -1 , (22) 

k 

~2 = 4 • sin2½k., k~ = 2sin½k. ,  (23) 
g > 0  

2 given by and the squared masses go,,~ are 

1 - 2X + 6~.v 2 1 - 2X + 2Xv 2 
g2 = - 8, g~ = - 8. (24) 

K K 

The W-mass squared/L2w will be given below. 
The quadratic part  of the action in the gauge field arx  ~ is 

2 
S (q)~-- S (2) -4- K02 (x~) ~-" a~ .a .~  + --a ~ t,, ~-'v ( a ~ -  a~x_~.)( arx  v --  a~x_~). (25) 

Here  the n = 1 piece coming from the measure term S m is not taken into account. It 
is left as a two-point interaction vertex, in the same way as in ref. [6]. Because of the 
factors g-Z, in the gZ ~ 0 limit the appropriate gauge variable is 

2 
A,x ~ = - . (26) g a rxl, t 

In terms of this let us write the quadratic gauge part  as 

sF  E A x'o  A - - r x g - -  rxl~, s y v -  - s y v • 
( x I~ ) (VV)  

(27) 
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Going to the momentum space by 

1 
K(,0 = ) . . , e x p ( - i ( k , x - y ) - ~ i ( k  - k , ) ) K ( ' ~ ) ( k ) , ,  . . . .  

rxl~ , syr N k 
(28) 

we have 

(29) 

According to eq. (25) the W-mass squared is 

2 2 
(30 )  ~xg v . 

The inverse of eq. (29) gives for the gauge propagator 

Ate) _~rs e-i(k'x-Y)[ /~,fC, ] 
rx~,sYr-- N ~ k / j2. .F/~2 ~ v - - ( 1 - - 0 t )  0/~W_t_---~2 " (31) 

Finally, the propagator of the Faddeev-Popov ghost field is 

, y= --N E e _ i ( k , x _ y ) [ a # 2  +/~2] -1. (32) 
k 

The squared masses #2, g2 and #2 w appearing in the propagators can be 
arbitrarily shifted according to g2~/~2+ 892. This corresponds to the freedom of 
splitting up the action differently into a free part and an interaction part. In order 
to compensate for the shift 8# 2 of the propagator mass, in perturbation theory one 
has to take into account also two-point vertices ("insertions") proportional to - 8 g  2. 
The convergence properties of the bare perturbation theory do, of course, in general 
depend on the choice of 8g 2. The freedom of choosing the propagator mass was, in 
fact, already exploited in eq. (30), where a negative piece coming from the measure 
term S m was not included. Correspondingly, a non-zero gluon propagator mass can 
be introduced in the confining phase where v = 0 or in pure gauge theory (at x = 0). 
It is possible that low order bare perturbation theory gives always a better 
approximation with some effective non-zero propagator mass. 

2.3. WGCE FOR THE GENERATING FUNCTION 

The aim of the weak gauge coupling expansion is to express the expectation 
values at an arbitrary point (~, r ,  r)  of the bare parameter space in terms of a series 
of expectation values at some point (~, fl = oo, r0) with vanishing gauge coupling. 
This is achieved by performing the integration over the gauge field variables in 
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perturbation theory, thereby explicitly displaying the dependence on the gauge field 
propagators and vertices. As an example, one can consider the generating function 
of connected Green functions defined as 

I[h, ilf, t~ } 
W[h, i]~,p, = log  - - - = w - ~  , 

I [ 0 , 0 l x a ~  
(33) 

where 

I[ h, il~,t~. = f[dooxd u(x, e,xd 

×exp(-C(~)ox,l~,~+ E(hox°o~ + h~%~) + E i,x,a~x~} 
x (xt~) 

(34) 

Of course, more complicated generating functions can also be considered, for 
instance containing also external currents coupled to gauge invariant composite 
fields. Such a generating function was considered in ref. [4] in the framework of a 
gauge invariant formalism. The general procedure is, however, always the same, 
therefore it is enough to consider here the above simple case. 

Since the procedure to derive WGCE for W[h, i] is the same as the one applied in 
ref. [4], it is enough to indicate the main steps of the derivation and to give the 
result. The relation between the action at the point (X,/3, x) and (X, fl = oo, ~) is 

S'•' + Stg ~)-  (K - ~o) Y'~ S x . -  x Y'~ [ -Sx .ax .  + iurx.a~x.]. (35) x.B.,, = Sx.B~oo.,% 
(x~) (x~) 

Here Sx,~=~,~o is the q¢ action at fl = ~ and the complete gauge action S~ (~) is 
defined from the pieces in eq. (16) as 

Sg (~) = Sg +Sm + Sgf + Svp. (36) 

The composite fields sx~ and Urx . are the same as in ref. [4]. In terms of the real 
field variables we have 

Sx~ = 2( o0xO0x + ~ + ~rJrrx + #), 

urx ~ = 2i(IrrxOOx+#- OOxfrrx+~, + e~,t%:rtx+~,). (37) 

Note that, for simplicity, the vacuum expectation value of the a-field is not 
displayed here. In most cases we shall treat the symmetric case with v = 0 and only 
discuss the changes (mainly of technical nature) which occur in the derivation if the 
broken phase is explicitly considered. 
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Substituting the decomposition in eq. (35) into eq. (34), the gauge integral one has 
to perform turns out to be the following: 

I [ j ] : =  f[d'U(x,#)d3?rxd3crx]exp{-S~ ~)+ Z (Jx,ax.+Jrx.arx.)}. (38) 
(x~) 

The composite fields ("currents") j ~  and Jrx~ are defined as 

.~. = - Ks~, Jrx. = irx. + ix ur~. (39) 

Using the integration variables A r~ ~ in eq. (26) and taking into account eq. (3), this 
can be written like 

l[j]Z=constf[d3A~.d3c~d3G~ l 

r 
1 • ggLx.A~x. + }g2(1 +jx,)A~x,A.x. 

(40) 

The last sum in the exponent is included here only for completeness. It contains 
higher dimensional vertices which are negligible in the large cut-off limit. 

The result of the gauge integration can be exponentiated by expressing it in terms 
of the connected expectation values of the gauge fields: 

gm+2n " " 1 + "  n 
I[j]~ = const-exp • E 2m+3.m!n! (J.)rx~( J.)yv 

m n  [ r x l ~ ] m [ y v ] n  

c 

Here the higher dimensional terms are already neglected and a shorthand notation 
for index repetitions, similar to the one used in ref. [4], is introduced: 

(f.)"~-L, L2 ...L., 

E (f.)~= E L,L: . . .L° .  (42) 
[v]. ~,... r. 
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In the definition of the connected gauge field expectation values ( . . . ) c s  the 
products in parentheses like (A~y~A~y,) have to be considered as a single entity. 
Replacing in eq. (35) Sg ~) by the exponent in eq. (41) one obtains the "effective ~4 
action" as a power series in g2. In order to obtain the terms of this series, the 
connected gauge field expectation values have to be inserted as obtained from pure 
gauge field perturbation theory with the action Sg C~). 

It is now straightforward to obtain the master formula for W[h,  i] in terms of the 
connected expectation values in the ~4 model containing, in addition to the original 
o0~ , ~r~, also the composite fields Sx, and U~x ~ defined in eq. (37). Let us first define 
the notations 

1 n C[i][mxn~].,[yr],,-~ (i  + ixu ) r r ~ ( 1  - -  KS.)yr, 2m+3nm!n! . 

c 

A(a)rrtn m n 
Z t [ r x t t ] m , y r ] n ~ ( ( A . ) r x g ( A s . A s . ) y u > a g  . (43) 

The result for the generating function of connected Green functions W is in this 
notation (applying the trick (42) twice): 

• o N 

Wth,'lx.. = E E E E E (ho.)Lx(h M 
LMN [X]L[RY]M[ZX] N K [m]x[n]K [[rxg].~[yu].]K K I L I M ! N !  

c 

>([r'm+2nA(a)mn]K / [ ~  ]L[qr'~M (S .~N [C[;lrnn]K \ 
\ 6  " ] [ r x g ] m [ y p ] . \ k o O . l x  k " ] R Y \  " ]ZX\  L ~ J  ""  ][rxg]m[YV]n/h~o 

(44) 

Here in the connected ~4 expectation value ( • • • )~,,0 the contents of the parenthe- 
ses have to be considered as single entities for connectedness. By taking derivatives 
of W[h ,  i] with respect to h and i one can obtain the WGCE for individual Green 
functions of the fields o0x, ~rrx and arx .. 

2.4. GRAPHICAL RULES 

The content of the formula (44) can also be summarized by formulating graphical 
rules for the calculation of individual Green functions. This has to be so, because in 
the limit X ~ 0 ordinary Feynman perturbation theory has to come out if the ~4 
Green functions are expanded in powers of )~. In short, in the WGCE formula for 
the connected Green functions the gauge field dependent parts of the Feynman 
graphs (like gauge and ghost propagators and vertices) are displayed explicitly, 
whereas the remaining parts are lumped together in the ~4 expectation values 
("")~,~o" These latter can be denoted graphically by blobs connecting external 
scalar lines to the composite fields sx~ and Urx~. 
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Let us formulate the graphical rules in the simpler case with x = x 0 (i.e. the 
expansion done only in g2, for constant ?~ and x): 

(i) draw all Feynman graphs up to the given order of g2 for the connected Green 
function in question; 

(ii) identify connected subgraphs consisting only of scalar lines and vertices and 
replace them by "scalar blobs" (Feynman graphs with identical gauge field parts 
and identical scalar blob structure belong to a single WGCE graph); 

(iii) the scalar blobs are connected to each other and to the gauge parts by gauge 
field lines ending on the blobs either as a single gauge line or as a pair of gauge lines 
in the same point; the former belong to a factor Urx ~ in the blob, the latter to a 
factor sx~ (see fig. 1); 

(iv) write down the factors to the gauge field and ghost parts in the same way as 
in ordinary perturbation theory; the scalar blobs represent factors like (o0. . .  ~r... 

u---s...)X,o; 
(v) in order to have all the constant factors (including the combinatorial ones) 

correctly, compare to the corresponding term in the master formula eq. (44). 
Sometimes the more general expansion with x 0 =~ x is also useful, in particular if 

(x - Pc0) is of the order g2. As it can be seen from eq. (44), the additional graphs are 
proportional to ( x - x 0 )  u and contain N external composite fields s~lxi... SzNXN 
entering some scalar blobs. 

With the help of WGCE the behaviour of the Higgs model at (X, g:, x) is given, 
for weak gauge coupling (g2 small), in terms of the properties of the ~4 model in 
the point (X, Xo). The convergence of the g2-expansion will, in general, depend on 
the choice of x o. A good convergence of WGCE cannot be expected if the mass 
scales at (~, g2, x) and (X, x0) are very different, or if one of the points is in the 
symmetric phase and the other in the broken phase. Of course, x 0 has to be chosen 

Urxp. 

Q 

Sx~. 

b 

Fig. 1. The gauge field lines end on the scalar blobs either as a single line (fig. la) or as a pair of lines in 
the same point (fig. lb). 
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in such a way, that the necessary information about the ~4 expectation values be 
available. For  the study of the critical behaviour one has to choose the expansion 
point (~, ~0) near the critical line of the ~4 model. In the present paper we shall use 
the knowledge about the critical behaviour of the O(4)-symmetric t~ 4 model in order 
to obtain a qualitative description of some aspects of the critical behaviour in the 
Higgs model. 

3.  C u r v e s  o f  c o n s t a n t  p h y s i c s  

Both in numerical Monte Carlo studies and in analytical calculations an im- 
portant  step is to find the "curves of constant physics" (or "renormalization group 
trajectories"). By definition, along these curves the physics described by the lattice- 
regularized quantum field theory is constant, only the value of the cut-off (or lattice 
spacing) is changing. In this section we discuss the differential equations determin- 
ing the curves of constant physics (CCP's) in the standard SU(2) Higgs model for 
arbitrary scalar self-coupling and small gauge coupling. We shall assume that the 
behaviour of the O(4)-symmetric ~4 model near the critical line at vanishing gauge 
coupling is known, in particular that the CCP's of the ~4 are known in both phases. 

3.1. GENERAL PROCEDURE AND A SIMPLE EXAMPLE 

Before going to the Higgs model, let us first formulate the differential equations 
for the curves of constant physics in the general case. Let us consider a lattice 
quantum field theory with n bare couplings gl, g2 . . . . .  gn. In order to define the 
CCP's one has to keep (n - 1) independent physical quantities F2, F3, . . . ,  Fn con- 
stant (we are assuming here that the number of relevant couplings is n): 

~ ( g l  . . . . .  g~) = ~0 = const ( j  = 2 . . . . .  n ) .  (45) 

The CCP's are characterized by the constant values Fjo. The points of a singled out 
CCP can be parametrized, for instance, by the first bare coupling gl: g j =  gj (gl )  
( j  = 2 . . . .  , n). In this case we have 

d g j ( g l )  d e t ~ l (  OF/Og) 
dg a det~_'~ ( a F / a g )  " (46) 

Here det![.~l(OF/Og) denote the (n - 1 )  × (n - 1 )  subdeterminant of the n × n  
derivative matrix 3F/Og belonging to the matrix element OFJOg k. 

Another possibility is to parametrize the points of a CCP by the value of some 
reference physical quantity F 1. (In practical cases F 1 is usually some physical mass 
in lattice units.) In this case the differential equations for gi(Ft) (i = 1 . . . . .  n) a re :  

dgi( F1) det~'_~( OF/Og) 
- -  - ( 4 7 )  

dF1 det°(av/ag) ' 

where de t , (  • • • ) is the n × n determinant of the derivative matrix. 

Sometimes it is also useful to consider curves in subspaces of the bare parameter 
space which belong to constant values of an appropriately smaller number of 
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physical quantities. These "curves of partially constant physics" (CPCP's) are 
defined by fixing ( n - k )  physical quantities F 2 . . . . .  Fn_k+ 1 and ( k - 1 )  bare 
parameters g,-k+2 . . . . .  g,. The differential equations for CPCP's have the same 
form as eqs. (46)-(47). For simplicity, let us consider here only the case with n = 3 
bare parameters (as we have in the standard Higgs model) and look at the plane 
with constant bare coupling g3. Keeping the value of some physical quantity 
F2(gt, g2, g3) = F2o fixed and parametrizing the points of the curve by the reference 
quantity Ft, the differential equation for the function g2(F~) is: 

dg2(F1) ( -OF2/Ogl ) (48) 

d F  1 ( OF1/Ogl )aFz / f fgT- ( -~ l /Og2)OF2/Og I gz=g2(F, g2gx) 

As an example in the standard Higgs model, one can take gl = x, g2 = X, g3 = g2 
and F 1 =/L w (the W-mass), F 2 = Rnw -/~H//~w (the ratio of Higgs- to W-mass). In 
this case eq. (48) gives the curves with constant Higgs- to W-mass ratio in the 
g2 = const planes. An interesting question along the CPCP's can be the dependence 
of the non-fixed physical quantities on the reference quantity. In the above case one 
can, for instance, ask for the function F3(F1). The corresponding differential 
equation can be obtained from eq. (48). 

In order to illustrate how these equations work, let us consider, as an exercise, the 
well known case of the O(N)-symmetric 44 model in ordinary perturbation theory 
(i.e. for small self-coupling ~). In this case we have n = 2, and the CCP's can be 
defined by keeping the renormalized t~ 4 coupling ~k r fixed: F 2 = X r. The reference 
quantity can be the renormalized mass squared: F x =/~z r. (We consider the symmet- 
ric phase, where ~r and /*2 r can be defined in the usual way at vanishing four- 
momenta: see e.g. ref. [8].) Up to l-loop order we have 

/~2r= #2 + 4(N + 2) X0Jx(/~) + O(XZo), 

Xr= X 0 -- 4( N -]- 8) ~2o,-~2 (~ 2) + O( ~k3o). (49) 

Here we used the bare parameters (X 0, ~t2o) which are connected to (X, K) in eq. (15) 
(with v = 0) by 

1 - 2 ~  )~ 
- -  8, X o = - -  (50) /t~ = x 4x 2 " 

On a finite lattice the function ock is a finite sum, on an infinite lattice an integral: 

1 ~ 1 f= d 4 k ( ~ 2 +  ~2) - "  (51) 
j . ( # 2 )  _= N E(/~2 + ~c2)-. (2qr) 4 

k - w  

The differential equation corresponding to eq. (47) for the function X0(~t2r) is, in 
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dXo ( O~t__Z~ ) 
+ 0(?~30)-- - 8 ( N  + 8) XzJ3( /~)  + o(X3o). (52) 

Using the logarithmic scale variable 

"r --  l o g / ~ r  I ( 5 3 )  

we have for large cut-off (small lattice spacing, i.e. ~r --~2 0): 

dXo(~ ) N + 8  
d---~- = 2~ ~---5-x2° + O(X30'[/'2r)" (54) 

On the right-hand side the well known universal l-loop Callan-Symanzik r-function 
appears. Since for • ~ ~ ,  Xo(~') is growing, at some point the higher order terms on 
the right-hand side become important, therefore eq. (54) is not suitable for the 
infinite cut-off limit. 

The other equation in (47) is: 

d~ 2 ~ - ~  ] + o(XZ0) = 1 + 4 (N + 2) ?~0~(/~2) + o(X20). (55) 

Since ,ff'2(~ 2) is logarithmically divergent for ~2 ~ 0, this equation is not as useful as 
eq. (52). If besides Xo(r ) one is also interested in ~2(~.), the better way to obtain it 
is to solve the first of eqs. (49) for t~ 2 in terms of/~2 r and the solution Xo(/~zr) of eq. 
(52). (In fact, for this one has first to shift the propagator mass ~2 to (t~ 2 -  2 t~cr)" 
Here/~2c~(Xo) is the critical line obtained from the condition t~ 2 = 0.) In WGCE we 
shall only consider in this paper the equations analogous to eq. (54) and leave the 
behaviour of/1~ (or K) implicit. Equations like eq. (46) will not be considered either. 
This will, however, be enough to determine the qualitative behaviour for large 
cut-offs, if the lowest order terms of WGCE give a reliable approximation. 

3.2. R E N O R M A L I Z A T I O N  AT NON-ZERO C ONS T ANT  o-FIELD 

In order to determine the CCP's in perturbation theory or in WGCE one has to 
find suitable physical quantities to be kept constant. For instance, the renormalized 
ck 4 coupling at zero four-momentum is, in principle, a possibility also in the Higgs 
model, but one has to be careful in the definition to avoid infrared singularities. It 
will be necessary to define renormalized quantities in both the symmetric and 
spontaneously broken phase of the 0(4) ~k 4 model and in both the confining and 
Higgs phase of the Higgs model. Infrared singularities at zero four-momenta 
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certainly occur in the spontaneously broken phase of the ,~4 model because of the 
Goldstone bosons. In the confining phase infrared singularities are produced by the 
zero mass gluons. Perturbative infrared singularities can appear also in the Higgs 
phase, for instance in the Landau gauge (a = 0), where the propagator mass in a'~y 
in eq. (22) is zero, because/~ vanishes at the tree level. In principle, one could use 
the different phases different renormalization schemes, but it is simpler to choose a 
unique scheme which is appropriate everywhere. Such a universal possibility is to 
define the renormalized quantities at zero four-momenta but at some non-zero 
constant value ~to of the o-field (see, for instance, ref. [9]). A non-zero constant 
o-field acts as an infrared regulator in both the scalar and gauge field propagators. 
The scale introduced by/% plays in the renormalization scheme a similar role as the 
momentum scale would play if the renormalized quantities would be defined at 
non-zero momentum. 

In the Higgs model we need two dimensionless renormalized quantities. These can 
be chosen as the renormalized q,4 coupling (hR) and the renormalized gauge 
coupling squared (g2). For the dimensionful (reference) quantity one can take 
either the renormalized W-mass (~WR) or Higgs mass (ttHR). In the/Lo scheme all of 
these quantities are defined by appropriate derivatives of the effective action 
F[o, 7r, a] at o x =/%, 7rr. , = a,x ~ = 0. In order to see in more detail how things work 
out, let us briefly consider the well known case of ~R(/~o) in ordinary perturbation 
theory. The l-loop effective action is given by 

F [o ,  ~r, a] = S[o, ~r, a] + ½Trlog(D[o, It, a] A) - T r log (M[o ,  ~r, a] AFP). (56) 

Here D is the second derivative matrix of the action with respect to the bosonic 
(scalar and gauge field) variables and A is the bosonic propagator matrix. The last 
term is the contribution of the Faddeev-Popov ghost loop. The l-loop effective 
o-field potential Veff(o ) in the Landau gauge (a = 0) is easy to obtain with the 
Feynman rules in sect. 2: 

1 
V, , (o)  = -~r[o x= o, ~ = 0, a =0]  

= (1 - 27~- 8 r )o (o  + 2v) + X[(o + v) 4 -  0 4 ] 

1([6 o(o+2v) 
+ E  log 1 + + 

2Xo(o + 2v) ] 
+ 3log 1 + x(/x~ +/~2) 

The vacuum expectation value v is 

[ +9log 1 +  2(/~v+~C2 ) . 

determined by the requirement 

(57) 

that 
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dVeff(o)/do[o= 0 = O. Using, instead of v, the more natural variable 

~ 2h 
w0= o - - ,  (58) t¢ 

with eqs. (50)-(51) the above condition gives 

{ ( g2 
9 2 1 4 1 2  0 =  w o w 2 +/z~ + 12XoJ l (g  2 + 3wg) + 12XoJl(/x 2 + wg) + ~g J1  0 16h0 

(59) 

The solution is either w 0 -- 0 or otherwise w 2 v~ 0 such that the content of the curly 
brackets vanishes. The first solution is relevant to the confining phase, the second 
one to the Higgs phase. The phase transition occurs on the surface, where the two 
solutions belong to equally deep minima of the effective potential. 

The explicit form of hR(go ) is the same in both phases if one takes the constant 
value of ax such that o0x = o ~ - v  = go- Let us consider here explicitly only the 
confining phase with v = 0, and let us introduce a suitable normalization factor in 
front of the constant o-field by defining #o to be the value of 2V'~-o~. The definition 
of the renormalized ~-mass squared and renormalized ,i,4 coupling is in this case: 

g 2 ( g o )  1 d 2 Vaf ov~=.o 
ZR(go)  2x do 2 

XR(~a)  ~-" ~ d4Weff (60) 

ZR(P~o) 2 4•2 do4 °2v~-=.." 

It is straightforward to obtain the one-loop expressions from eq. (57), but we shall 
not consider them explicitly here. The wave function renormalization factor ZR(/~o) 
can be obtained from the small momentum behaviour of the function 

1 32/" o.=o, Z(o, k) - -~ ~ e  i(k'x y) (61) 
OoxOoy xy ~,=a=O 

The definition is 

zR( o) = ok .  I,) 
k=O a2~=g a 

(62) 
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The derivation of the differential equations for the CCP's in the/ t  o renormaliza- 
tion scheme is, in principle, quite similar to the case considered before. One has only 
to take into account the additional variable/to introduced by the renormalization. 
In the specific case of the standard Higgs model the choice of the bare and physical 
parameters can be as follows: 

gl =/t2a, g2 = / t 2 ,  g3 = ~k0, g4 = g2 ,  

/t2 
F~ =/t2 R, F2 = ~-o' F3 = xR'  F4 = g2.  (63) 

This means that on the CCP's besides XR and g~, one has to keep constant also the 
ratio of the renormalized mass /tR to /to. In this case we have, for instance, 

t9 + / t  °0 -~  ~ d~ ' ° ( / tR) - -  / t o - ~  ° ~a(/to)+O(~,30,~k2g2,~kog4, g 6) (64) 
/tR d/tR 

It is straightforward to work out the one-loop expression for XR(#o ) from the above 
definitions and eqs. (56)-(57). We do not include here the somewhat lengthy result, 
but the industrious reader can verify that in the large cut-off limit, with r = log/tR ~, 
we have 

d ~ 0 ( r  ) 6 2 9 4 9 
d~" - ~ x ° +  51-i~5~ 2g 16~r 2~°g2+ " '"  

dg2(~ ") 43 
d - - - - ~  - 48~ 2 9 4 + ' ' ' "  (65) 

The second line is the analogous result for the bare gauge coupling. The right-hand 
sides are again the one-loop universal Callan-Symanzik fl-functions. 

3.3. THE CURVES OF CONSTANT PHYSICS IN WGCE 

In order to obtain differential equations for the CCP's in the weak gauge coupling 
expansion, one has to proceed very similarly to ordinary perturbation theory. As 
discussed in sect. 2, the expectation values at a point (X, g2, K) with weak bare 
gauge coupling and arbitrary bare scalar self-coupling are given in WGCE by 
explicit gauge propagators and vertices and by scalar blobs representing expectation 
values in the pure q~4 model and at g2 = 0 and (~, Xo). Let us now assume that the 
continuum limit in the pure q,4 model is trivial [3]. Then, if the point (~, x0) is close 
to the critical line, the renormalized q~4 coupling ~r in the pure q~4 model is small 
and the renormalized q~4 Green functions can be well approximated by a low order 
perturbative expansion in X r" In WGCE we need unrenormalized g 2 = 0 expectation 
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values, which are schematically connected to the renormalized ones by 

\ renormalized ( 6 6 )  (O0. . .  $'l"... U. . .  S . . .  )hgo= Zr'" Zu"  Zs"" (OO... 7?... t l . . .  S . . .  /Xgo 

Here Z~ denotes the (identical) wave function renormalization factor for the scalar 
fields o 0 and ~r, Z, ,  and Z s are the multiplicative renormalization factors belonging 
to the composite fields U~x ~ and Sx,, respectively. In a leading order calculation the 
renormalized truncated one-particle irreducible vertex functions of the o 0, ~r, u and 
s fields can be obtained from the lowest order ~4 Feynman graphs belonging to the 
vertex function in question. In this way the low order terms in WGCE are easily 
obtained in terms of g2, ~k r and the wave function renormalization factors Z~ . . . .  . 

Since the g 2 =  0 expectation values in WGCE are given in terms of the pure t~ 4 

renormalized coupling ?'r, it is natural to parametrize the points of the bare 
parameter space, instead of (~,, g2, x), by ()'r, g2, x). (In this case the (~4 Z-factors 
have to be considered also as functions of ~ r  and x: Z~ . . . .  = Z r  . . . .  (?~r, X).) In this 
way the problem of determining the CCP's for small bare gauge coupling is reduced 
to the problem of finding the CCP's, with ~k r = const, in the ~4 model at gZ = 0. The 
renormalization is also decomposed in two steps: after going to the renormalized 
variables at g2 = 0, X~ is considered as one of the bare parameters for WGCE in the 
Higgs model. The renormalized quantities of the Higgs model are introduced in 
W G C E  in the same way as in ordinary perturbations theory. The CCP's in the 
Higgs model can be defined by the requirement that the renormalized ~4 coupling 
X R and renormalized gauge coupling squared g~ be constant. (Note that capital R 
denotes renormalized quantities in the Higgs model, whereas small r is reserved for 
the renormalized quantities at g 2 =  0.) As a parameter along the CCP's, one can 
take the renormalized if-mass squared / ~  (or ~ = logtt~l). Our aim is to find the 
differential equations for Xr(T ) and g2(T). 

The relevant leading order WGCE graphs are depicted in fig. 2. The graphs for g2 
without scalar blobs are the same as in pure gauge theory, therefore their contribu- 
tions need not be recalculated. The differential equations corresponding to eq. (47) 
are, in the leading order approximation, in the large cut-off (small ~t2R) limit: 

dhr(~- ) 9 9 

d'r  - 1 6 7 r 2 X r g 2  + Z Z 2 5 1 2 " r r 2 g 4  + " ' "  ' 

dg2(~ ") 43 
_ _  _ 4 +  (67)  

dz 48~r i g  " " " " 

The absence of the ~2 r term, as compared to eq. (65), is due to the fact that, instead 
of X 0, ?~r is considered to be the bare parameter. The multiplicative renormalization 
factor Z u for the conserved current Urx ~ was put equal in eq. (67) to Zu = 1. This 
follows from the Ward-Takahashi identities for the vertex functions containing urx .. 
It is clear from eq. (67) that under rather mild assumptions about the behaviour of 
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Fig. 2. The WGCE graphs for 1PI vertex functions which have to be calculated for the leading order 
equations of CCP's. Wavy lines denote gauge fields, full lines the scalar field. 

ZZ 2 near the g 2 =  0 line, both Xr(Z) and g2( ' r )  tend to zero for T ~ 0. It is, for 
instance, enough to assume that Zs -2 is bounded. In fact, the assumption of 
triviality and scaling in the 0(4) symmetric q~4 model implies that Z s  2--'> Csx~k r for 

fixed and r ~ Xcr(~, ) (with some h-dependent constant Csx ). This can be easily 
deduced from a Callan-Symanzik equation following refs. [1, 8]. Therefore, the term 
proportional to Z 7 2 in eq. (67) is negligible for ~- ~ oo, and the asymptotic solution 
is: 

g o 2 +  ) , 

4392 ] - 2 7 / 4 3  

~r ( r )  = X,o 1 + 4---~2 ('r - 'r o)] • (68) 
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Here gg and ?~r0 are the initial values at • = %. A better approximation, which 
takes into account non-leading terms, can be obtained numerically once Csx is 
known. The ?~-dependence of Csx can be determined, for instance, by the strong 
self-coupling expansion [10]. 

According to eq. (68), for 1- ~ oo both g2(~.) and ~,r(~') tend to zero. Therefore, if 
the leading order approximation is qualitatively correct, the WGCE is an asymptoti- 
cally free expansion. The question is, whether the higher order graphs can indeed be 
neglected? Unfortunately, the answer to this question is not easy, because the 
internal momenta in the WGCE graphs like in fig. 2a (or in more complicated 
graphs) are integrated over all momenta. The renormalized q)4 perturbation theory is 
expected to be reliable for low momenta about the mass scale, but non-reliable for 
momenta near the cut-off if the cut-off is much larger than the mass. This could 
perhaps imply that the high momentum behaviour of the correct q)4 expectation 
values is such, that their contribution to the higher order WGCE graphs is not 
negligible even at small g2 and Xr. In the rest of this paper it will be assumed that 
this does not actually happen. Nevertheless, one has to keep in mind that the 
conclusions rely on this assumption. This question of the higher orders is obviously 
interesting and has to be investigated in the future. 

4. Critical surface in WGCE 

In the standard Higgs model there is a critical surface separating the Higgs phase 
and the confining phase. The g2 = 0 edge of this surface is the second order critical 
line of the 0(4) q,4 model. For finite g2 recent Monte Carlo calculations suggest a 
first order phase transition [11,12]. Irrespective of the order, the shape of the critical 
surface can be questioned in perturbation theory. Before going to WGCE, which 
gives the perturbation of the q)4 critical line by a small gauge coupling, let us recall 
how the position of the critical surface can be obtained for small couplings in 
ordinary perturbation theory. 

Starting from the Higgs phase with non-zero o-field vacuum expectation value, 
the critical surface can be localized in the large cut-off region up to one-loop by 
requiring that the non-trivial solution (Wo z > 0) of eq. (59) should tend to zero. In the 
Higgs phase we have at tree level tt~ = - Wo z < 0, therefore in the vicinity of w02 = 0 
we have to shift the scalar propagator mass squared according to /~2 o --->/~- 2 /tcr. 
Here 2 /Xcr =/x2(~ko, g2)c r is the critical value of/~2 we are going to determine now. In 
this case the one-loop equation for w 2 is: 

Wg = --~2-- 12~0'~¢1(g20 -- gcr2 3Wg) + -- 12)tO"J~'l(g20- ~2cr'4-Wg)-- 9g2~l(Wg gl-~o 

(69) 
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The solution for w02 -~ 0 is: 
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/12--/X2(X0, g2)cr = - ( 2 4 X  0 + 9g2 ) J l (O  ) . (70) 

Going over to the variables (k,  x) by eq. (50) and taking the infinite lattice value 
J l ( 0 )  = 0.1549 . . . .  the result for the critical hopping parameter xcr is [13]: 

K(~,  g2)~= ~ + ~0.6796.. .  +g20.005447. . .  + - . . .  (71) 

An identical result can also be obtained by starting from the confining phase. For 

instance, the second derivative of the effective potential at o = 0 with c = 0 is the 
renormalized o-mass squared /12 in the confining phase at zero four-momentum. 
R e q u i r i n g / ~  = 0 leads again to eq. (70). 

The coincidence of the perturbative result for the critical surface as found by 
starting from the two phases may seem at the first sight surprising in view of the 
known fact that the one-loop effective potential implies a first order phase transi- 
tion [9,14]. The expectation for a first order phase transition is illustrated by fig. 3. 
According to this ~¢cr should be slightly larger if defined from the confining phase 
(from below the critical surface) rather than from the Higgs phase (from above the 
critical surface). As we have seen, this difference turns out to be zero in perturbation 
theory. In other words, the difference is an exponentially small non-perturbative 
effect. 

%/ 

\ J  

phose 2 

order phese tnonsition 

phose I 

Fig. 3. The critical structure corresponding to a first order phase transition. On the left the qualitative 
behaviour of the effective potential is shown. Coming from either phase 1 or from phase 2, metastable 
states occur in the regions where the arrows are hatched. At the phase transition the two minima of the 
effective potential are equal. At the limits of the metatability the second derivative at one of the local 

minima becomes zero. 



500 L Montvay / Weak gauge coupling expansion 

Fig. 4. The lowest order WGCE graphs for the determination of the critical surface. The second graph 
has an external composite field s~ and is proportional to ( r -  ~0). (It corresponds to N =  1 in the 

master formula (44).) 

After this preparation let us consider the critical surface in leading order WGCE 
for small bare gauge coupling and any scalar self-coupling. As usual in WGCE, we 
assume that the critical line Kcr(l, g2 = 0) at g2 = 0 is known. In this case we need 
the option of expanding at different hopping parameter: K 0 ~ K. The shift (x - x0) 
in the master formula (44) is assumed to be of the order g2. The condition for the 
critical surface is that the renormalized mass squared / ~  should be zero. This 
requires that the sum of the two WGCE graphs in fig. 4 has to vanish at zero 
external four-momentum. From this condition a simple calculation gives 

Kcr(X, g 2 )  = igcr(X,0 ) + Kcr(~,0)~2292j~1(0) + . . .  

= K c r ( ~ k , 0 ) { 1  -Jr gZ0.04358. . .  + . . .  }. (72) 

The question of the higher order contributions remains to be settled also here (see 
the discussion at the end of the last section). 

5. Discussion 

In the previous sections the leading order WGCE predictions for the curves of 
constant physics and for the shape of the phase transition surface were derived. Let 
us now proceed under the assumption that the leading order approximation is 
qualitatively correct in the high cut-off region. The behaviour of the curves of 
constant physics for large cut-offs near the g2 = 0 critical line is determined by the 
asymptotic behaviour (68) of g2 and X r as a function of the logarithmic scale 
parameter ~ = log/~R 1. (See fig. 5.) Since both gZ(T) and Xr(r)  tend to zero for 
,r ~ oo, W G C E  is an asymptotically free expansion. This does not, however, mean 
that for z ~ oo a non-trivial continuum limit exists. The reason is that on the ('r, t~)  
plane not every point is possible. The triviality of the continuum limit of (/)4 implies 
that the CCP's in t~ 4 with A~ = const are ending at A = oo near the critical point 
Kc,(A = oo) for some finite cut-off. This means that on the ('r, Xr) plane there is a 
limiting curve and the allowed points are below this (at smaller values of r and t~). 
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(h=**, g2=O) 

h h 

;2 (~k=0, g2=0) 

Fig. 5. The qualitative picture of CCP's in the standard Higgs model projected on the (g2, X) plane. The 
small g2 behaviour is the result of WGCE. The extension to larger g2 is a guess supported by some 
approximate numerical Monte Carlo calculations at ~ = oo, fl = 2-3 [17,18]. Note that in reality there is 

a two-parameter family of CCP's, but here only a one-parameter subset is shown for simplicity. 

TO obtain the exact shape of the limiting curve is a non-perturbative problem in the 
four-component O(4)-symmetric ¢4 model. In the 1-component ¢4 model the 
limiting curve was determined from high order hopping parameter expansion and 
the Callan-Symanzik equation [1]. This method can also be extended to the 0(4) 
model, but at present the only non-perturbative information about the limiting 
curve in the four-component model comes from an approximate block-spin transfor- 
mation scheme [15]. In order to have a rough qualitative estimate, one can take the 
limiting curve for large T from the position of the "Landau-pole" in one-loop 
perturbation theory: 

~t 2 

~kr ('/')max = 6---~ " (73) 

The intersection of the curve  ~kr('l" ) in eq. (68) with Xr(~)~ ~ determines the 
maximal cut-off ~'max which belongs to the Higgs model CCP given by (g2(~.), Xr(z))" 
If the maximal cut-off is required to be the Planck mass (7 = 20), this crude estimate 
for a CCP with gauge coupling g2 = 0.5, roughly equal to the physical value in the 
standard electroweak model, gives ~R about a factor of 2 larger than a one-loop 
perturbative calculation [16] would give. 

According to eq. (68), Xr(r) goes to zero slower than T -1, therefore every CCP 
with a finite ~e. and g~ has a finite maximal cut-off "rma x < 00. The only possibility 
to reach an infinite cut-off is to put ~ R = g~ = 0. In other words, the continuum 
limit in the standard Higgs model at the g2= 0 critical line is trivial in both the 
confining- and the Higgs phase. (As discussed in sect. 3, in the #o renormalization 
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scheme at non-zero constant o-field the derivation of eq. (67) is the same in both 
phases.) The triviality of the g2 = 0 continuum limit in the Higgs phase was recently 
concluded also in ref. [13] on the basis of perturbation theory near the gaussian 
fixed point (X = 0, g2=  0, r = ~). Perturbation theory is, however, not applicable 
for large bare self-coupling ~,, therefore ref. [13] did not exclude the possibility of a 
non-trivial fixed point in the combined gauge-scalar system at g2 = 0 and large ~. 

In order to determine the two parameter family of CCP's quantitatively, the 
dependence on the third bare parameter (r or #2) has to be considered, too. (See the 
discussion in sect. 3.) For this, and for the transformation of variables (~r, g2, r) 
(~k, g2, r), a detailed knowledge of the CCP's in the O(4)-symmetric ~4 model (in 
particular, their r-dependence) is needed. This non-perturbative problem in ~4 can 
be solved by the methods developed in ref. [1]. Since the r-dependence in eqs. 
(67)-(68) is implicit, the problem of the order of the confinement-Higgs phase 
transition is avoided. The question of the order can be translated into a question 
about the allowed set of initial values (g02, Xr0 ). Alternatively, one can ask, what is 
the allowed set of the physical parameters (XR, g~)? If the phase transition is first 
order, some ()~R, g2) values belong to metastable situations. (Note in this respect 
that, because of the scale breaking lattice artifacts, the phase transition surface itself 
does not coincide exactly with a one-parameter subset of CCP's.) In principle, a 
more detailed r-dependent treatment with WGCE can also give non-trivial informa- 
tion concerning the small g2 behaviour of the phase transition, too. 

According to fig. 5 the behaviour of CCP's near fl = oo is qualitatively different 
from the conjectured picture in ref. [17]. The WGCE implies that the non-trivial 
X-independent continuum limit suggested there is not possible. The only open 
possibility for a search of a non-trivial continuum limit in the standard Higgs model 
is to go inside the bare parameter space, to points where also the gauge coupling is 
non-perturbative. However, even if such a fixed point would exist, it would not 
necessarily be adequate for the description of the standard electroweak physics. The 
absence of a X-independent continuum limit at the g2=  0 critical line also implies 
that a really strongly interacting standard Higgs sector is impossible. The reason is 
that once the cut-off is required to be reasonably high (say, > 10row), the upper 
limit for the renormalized q~4 self-coupling (or for the Higgs boson mass to W-boson 
mass ratio) becomes relatively low. For a numerical study of the upper limit in the 
standard Higgs model, see ref. [19]. 

The framework of WGCE is obviously more general than the specific case of the 
standard SU(2) Higgs model. It would certainly be interesting to consider in the 
future more general Higgs models, too. In particular, as one can see from eq. (68), 
there is an interesting class of models, where the Callan-Symanzik fl-function 
coefficients are such that the power of the squared brackets in ?~r(~') is, instead of 

27 ~ ,  equal to - 1 .  In this case the leading asymptotic behaviour of ?~ r(~') coincides 
with the asymptotics of the limiting curve in eq. (73). The question of a possible 
non-trivial continuum limit at ?~ = oo is then decided on the next-to-leading order 
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~ MC 

~tcr iX) 
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Fig. 6. The schematic lay-out of the regions where interesting Monte Carlo calculations for the coupled 
gauge-scalar system can be done (MC) and where WGCE can be expected to give a good approximation 
(WGCE). The uninteresting region of dominant lattice artifacts is denoted by LA. The confining-Higgs 

phase transition is at the dashed line. The whole picture is for ~, = const. 

level. In any case, even if the strict continuum limit would turn out to be trivial, 
such models are interesting, because they can easily allow for very large cut-offs in a 
wide range of physical situations. A simple example of a model with a T-1 leading 
?~ r-behaviour is an SU(2) Higgs model with 1 scalar doublet and 4 vector-like spin- 
fermion doublets. Namely, in this case the coefficient of the g4 term in eq. (67) is 
equal to -27/(48~r2) .  Because of the vector-like fermions, Yukawa couplings are 

forbidden. In  cases with Yukawa couplings and chiral fermions (as in the standard 
model) the appropriate lattice formulation has to be constructed first, and similar 
questions can be asked only afterwards. 

The Monte  Carlo calculations are complementary to the perturbative information 
obtained f rom WGCE. The shape of the regions where Monte Carlo calculations are 
interesting and where WGCE can give a good approximation is schematically shown 
in fig. 6, in a ~ = const plane. The figure is optimistic in the sense that the MC and 
W G C E  regions touch. In reality there might be some no-man's-land in between, 
where the correlation lengths are too large for a numerical investigation but not 
large enough to make the coupling small enough for a low order WGCE. In this 
sense the situation could be similar to the relationship between asymptotically free 
perturbat ion theory and the Monte Carlo calculations in QCD. 

I thank Martin Liischer and Peter Weisz for discussions. 
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