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Abstract. The SU(2) Higgs model with a scalar dou- 
blet field is studied by Monte Carlo calculations on 
12 4 and 16 4 lattices. The gauge coupling is chosen 
to be similar in magnitude to the physical value in 
the standard model. The numerical results at large 
scalar self-coupling imply an upper limit m~/mw~-9 
for the ratio of the Higgs boson mass to the W-mass. 

1 Introduction 

Some time ago Dashen and Neuberger [-1] suggested 
to determine the non-perturbative upper limit for the 
Higgs boson mass within the Higgs sector of the stan- 
dard model by Monte Carlo calculations. One way 
to obtain this upper limit is to perform the numerical 
calculation in the broken symmetry phase of the four- 
component pure scalar theory and use perturbation 
theory in order to incorporate the effect of the weak 
SU(2) gauge coupling. The difficulty one has to face 
in this way is the presence of infrared singularities 
due to the zero mass Goldstone bosons. Another pos- 
sibility is to introduce the weakly coupled gauge field 
in the Monte Carlo calculation which acts, via the 
Higgs mechanism, as an infrared regulator. As it was 
shown recently [2], numerical Monte Carlo calcula- 
tions are possible also in the physically interesting 
range of the SU(2) gauge coupling. 

The reason for the existence of an upper limit for 
the Higgs mass is that, as it was assumed also in 
[1], the standard Higgs sector is most likely an effec- 
tive field theory with a necessarily finite cut-off (its 
continuum limit is trivial [3]). The qualitative behav- 
iour of the renormalization group trajectories (or 
"curves of constant physics") can be determined for 
small gauge couplings from the weak gauge coupling 
expansion (WGCE) E4] around the critical line of the 
scalar q54 model. The result is [5] that the curves 

of constant physics go, for increasing cut-off, in the 
direction of increasing bare scalar self couplings (2). 
Every such curve has an endpoint in the 2 = oo plane 
for some finite cut-off. In other words, the points with 
maximal cut-off, where "new physics" has to come, 
are to be found in the 2 =  0o plane. In addition, 
W G CE also tells that the ratio Rnw=-mn/mw is a 
monotonously decreasing function of the maximal 
cut-off. Therefore, in those points of the 2 = oe plane 
where the Higgs mass in lattice units is of the order 
1 (i.e. the cut-off is of the same order as the Higgs 
mass), one can obtain an absolute upper limit for 
the ratio of the Higgs mass to W-mass. 

In the present paper we report  on a detailed explo- 
ratory study of the standard Higgs model in the weak 
gauge coupling region. The main emphasis is on the 
investigation of the qualitative behaviour of some 
physical observables as a function of the bare cou- 
pling parameters for weak gauge coupling and large 
scalar self-coupling. The comparison of the results on 
124 and 16 4 lattices gives also a first insight into the 
finite lattice size dependence. For  the upper limit of 
the ratio Rnw=mn/mw we can only obtain a first 
crude estimate. A more precise determination of its 
value has to await future Monte Carlo calculations. 
The present work is a straightforward continuation 
of the numerical calculation in [2] at (2 = 1, fl = 8). 
In fact, we shall include the 12'* point obtained there 
also in the present analysis. In the next section the 
numerical results on the Wilson-loop expectation 
values will be given and the value of the renormalized 
gauge coupling will be determined from the Yukawa 
potential between external SU(2) charges. In Sect. 3 
the correlation functions in the Higgs- and W-chan- 
nels will be summarized and the difficulties of the 
extraction of the corresponding masses will be dis- 
cussed. The last section contains a short summary 
and the conclusions. 
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2 The renormalized gauge coupling 

The notations used in this paper are identical to those 
of [2]. We only repeat here the definition of the lattice 
action for convenience of the reader. At finite 2 we 
have 

Sx,,,~=fl ~,(1-�89 Tr Up) 
P 

+~ ,  {p2 --3 log px + 2(p 2 -- 1) 2 
x 

-re  ~' px+~pxTr(e++~ U(x, #)C~x)}. (1) 
~t>0 

In the limit of infinitely strong bare scalar self-cou- 
pling (2= oo) the length of the Higgs scalar field is 
frozen to p ~ - 1  and only the angular Higgs variable 
~eSU(2)  remains: 

S~ = ~o,~,~ = fl ~', ( 1 -  �89 Up) 
P 

- t c  ~" Tr(~++~U(x,#)ax). (2) 
x , ~ > 0  

The static energy V(aR) of an external SU(2) charge 
pair (the "potential") is obtained at lattice distance 
R from the expectation value of rectangular Wilson- 
loops WR, r, as usual: 

a V ( a R ) = -  lim 1 r-~ ~o T log (WR, T). (3) 

The potential is distorted on the lattice by scale 
breaking lattice artifacts and by finite size effects. In 
our case, due to the weakness of the SU(2) gauge 
coupling, these can be corrected for, to a large extent, 
by comparing the numerical results directly to the 
lattice potential obtained from a single W-exchange 
in lattice perturbation theory. The necessary formulas 
were given in [-2] : the renormalized SU(2) gauge cou- 
pling C~sv~2 ) at lattice distance R can be obtained from 

a [V(aR)- V(aR-- a)] 
0~SU(2 ) ( R )  -= 3 n [J (/2, R -  1, L ) - - J  (/2, R, L)-I" (4) 

Here J(/2, R, L) is given on an L 3 lattice by 

l e ip3R 
S(/2, R, L)=~-X ~'. . (5) 

p + 0 /22 _1_ Z i  4 sin 2 p~ 
2 

The numerical value of d(/2, R - 1 ,  L)--J(/2, R, L) can 
be easily calculated. In [2] a few representative exam- 
ples were given. Unortunately, there is a small mistake 
in Table 4 of [2] : the mass in columns 2 and 3 should 
be read/2=0.20 instead of/2=0.19. The expressions 
in (4-5) do not take into account the finite time (T) 

extension of the lattice: it is assumed that in (3) the 
limiting value for T ~  oo can be obtained numerically 
to a good approximation. (This point will be dis- 
cussed below.) 

The numerical Monte Carlo calculations were 
performed partly on the CYBER 205 at the Karlsruhe 
University and partly on the Fujitsu VP-200 at IABG, 
Ottobrunn. The updating was done by the Metropolis 
method with 6 hits per variable (including the Higgs 
variables ax, px as welt as the SU(2) link-variable 
U(x,/2)). The effect of the bare self-coupling 2 on the 
physical observables was investigated for approxi- 
mately constant expectation value of the gauge in- 
variant link variable L (keeping at the same time the 
bare gauge coupling fl fixed). The definition of L is, 
together with some other average quantities: 

1 + L = (~Tr(a~+~ g(x, p)ax) ) 

P = ( 1 - - � 8 9  Up) P (Px)- (6) 

It is known from previous Monte Carlo studies [-6] 
that keeping L constant for fixed fl minimizes the 
effect of changing 2. (Actually it would be possible 
to tune the value of L to a better precision than we 
did, but we did not want to have grotesque hopping 
parameter values with many digits.) At 2 =  oo and 
/3 = 8 we have chosen 3 points to look for the depen- 
dence on the hopping parameter (~). The point at 
tc = 0.42 was repeated also at fl = 10, in order to have 
an idea about the dependence on the bare gauge cou- 
pling (fl-4/g2). The number of Monte Carlo sweeps 
was between 60000 and 200000 per point. The corre- 
lations were measured after every sweep. On the 164 
lattice the Wilson-loops were calculated only after 
every 20th sweep. On the 124 lattice separate runs 
were done, due to some technical reasons, for the 
correlations and for the Wilson-loops (roughly �89 to 
�88 of the sweeps was devoted to the Wilson-loops). 
An estimate of the statistical errors was obtained by 
binning the data sequences into bins of length 2 k, (k 
=0, 1, 2, ...) and estimating the standard deviations 
from the fluctuations of bin averages. For  a summary 
of the measured points see Table 1, where also the 
values of the average quantities in (6) are included. 
The number of points in the 3-dimensional parameter 
space is not too large, but smaller lattices or less sta- 
tistics per point would not be appropriate for the 
questions we are interested in. 

A convenient definition of the renormalized gauge 
coupling in the Monte Carlo calculations is based 
on the static potential between external charges. In 
order to obtain the potential, one has to determine 
the expectation value of Wilson-loops. Our results for 
the 164 points are collected in Table 3 a-d, together 
with the Creutz-ratios 
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Table 1. Summary of the points where the Monte Carlo calculations were performed. The average quantities in (6) are also given 

2 fi x lattice sweeps L P p 

0.1 8.0 0.177 12'* 113000 0.38164 (12) 0.09592 (1) 1.47464(11) 
0.1 8.0 0.182 124 98000 0.46227 (7) 0.09565 (2) 1.55315 (7) 
1.0 8.0 0.28 12'* 200000 0.36947 (6) 0.09599 (1) 1.15598 (2) 
oo 8.0 0.37 12'* 115000 0.36919 (3) 0.09600 (1) 1.0 
oo 8.0 0.42 12'* 120000 0.46328 (3) 0.09579 (3) 1.0 
oe 8.0 0.34 16'* 65000 0.28965 (3) 0.096198 (3) 1.0 
oe 8.0 0.37 16'* 108000 0.36923 (2) 0.096013 (3) 1.0 
oo 8.0 0.42 164. 64000 0.463310 (14) 0.095743 (3) 1.0 
oo 10.0 0.42 164 89 000 0.469211 (12) 0.076238 (2) 1.0 

(Wg, T) ( WR- I,7"- I )  (7) 
;tg, T-- --log (WR-1 ,T ) (WR,  T-1)"  

The results on the 124 lattice look similar but the 
errors are about a factor of 3 larger. As an example, 
the point at ( 2 = ~ ,  f l=8,  tc=0.37) is shown in Ta- 
ble 4. For the other 124 points see [7]. 

The physical quantities of interest, like the poten- 
tial or the "force" (=potential  difference) are func- 
tions of several Wilson-loops. In order to obtain an 
estimate of the statistical error of such quantities, one 
possibility is to calculate them in data bins and esti- 
mate the standard deviations from the fluctuations. 
The errors of the Creutz-ratios in Table 3a-d were 
determined in this way. Another way of estimating 
the errors is to measure the correlation matrix of the 
Wilson-loops 

c(w) =/w, WR~)- - (W~)(W~T~) .  (8) RIT1,R2T2--\ R1T1 

If these numbers are available to a reasonable pre- 
cision, one can estimate the error of any gentle func- 
tion of an arbitrary subset WR, T . . . . .  , WR,,Tk of the 
Wilson-loops by assuming a correlated multi-dimen- 
sional Gaussian distribution for WR,T . . . . .  , WRkTk" 
The simplest procedure is to diagonalize the correla- 
tion matrix C (w) and produce a random sequence of 
WR, T~, ..., WR,,Tk values by Gaussians in the direction 
of the eigenvectors. An arbitrary function of the Wil- 
son-loops can be calculated on the sequence and the 
standard deviation gives the desired error estimate. 
In this way the higher order correlations among 
WR, T . . . . . .  WR,,T,, are neglected, but these are usually 
unimportant for an error estimate. In fact, applying 
this method to the Creutz-ratios in Table 3 a-d, the 
statistical errors can be recovered almost exactly. The 
correlation matrix C (w) could be determined in our 
164 runs to a good precision. As an example, a repre- 
sentative sample of the Wilson-loop correlations is 
included in Table 5. (For similar other tables see [7].) 
The diagonalization of submatrices of C (w) shows that 
the largest eigenvalue is usually a factor 20 100 larger 

than the next one. This implies that the Gaussian 
fluctuations are almost an order of magnitude larger 
in the direction of the largest eigenvalue than in other 
directions. It is not a surprise that the largest eigen- 
value belongs to an eigenvector with roughly equal 
positive components in the direction of every Wilson- 
loop, whereas the small eigenvalues have eigenvectors 
with opposite sign components. In other words, the 
Wilson loops fluctuate mainly coherently. The relative 
fluctuations are much smaller. 

This way of estimating the statistical errors is par- 
ticularly convenient if, for instance, the question of 
the errors of some fit parameters arises. (The parame- 
ters of a fit can also be considered as functions of 
the input data.) The error estimate by binning the 
data sequence and performing the fit in the bins is, 
of course, possible also in this case, but the recording 
of all measured data during long runs is usually cum- 
bersome. It costs less effort to measure and collect 
during the run only the correlation matrix and to 
do the fits at the end on sequences which are distrib- 
uted according to the measured Gaussian correla- 
tions. (This method is also applicable to other quanti- 
ties, like correlations and masses etc. [8].) 

The errors of the Wilson-loop expectation values 
are quite small, therefore a relatively precise determi- 
nation of the Yukawa potential parameters is possi- 
ble. The main difficulty is, however, to extrapolate 
in (3) to T =  ~ .  The simplest method of obtaining 
a V is to form ratios of two Wilson-loops with a given 
R and neighbouring T. The best estimate can be ob- 
tained from the maximum possible T-value (in our 
case Tmax=6 or 8): 

aV(aR)~-log WR'Tmax-1 (9) 
WR, Tmax 

Taking this approximation for the potential difference 
in (4) gives the Creutz-ratio gn, Tmax- The inspection 
of the logarithmic slopes or Creutz-ratios for increas- 
ing T shows, however, that (9) gives only an upper 
limit both for the potential and the potential differ- 
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Fig. 1. a The Yukawa potential obtained at (2= oo, #=8 ,  ~=0.34) on a 164 lattice. The circles show the values given by (9). The line 
connects the extrapolated T =  oo values obtained by the two-exponential fits. The statistical errors are in most cases smaller than the 
circles, b The same as a, for (2=oo,  #=8 ,  ~=0.37). e The same as a, for (2=oo,  #=8 ,  ~=0.42). d The same as a, for (2=o0,  fl=10, 
K = 0.42) 

ence, because for fixed R the subsequent values in 
T are still decreasing. A better extrapolation to T =  
can be obtained from two-exponential fits of the T- 
dependence by taking the lower exponent as the 
T =  ~ value. We tried fits in several T-intervals and 
performed consistency checks. On the 164 lattice a 
good T-extrapolation of the potential Could be 
achieved in this way for l < T < 4 .  Appart  from a 
slight, barely significant, increase in the point 
(2,/3, ~c)=(~, 8, 0.34), on the 164 lattice the renormal- 

ized SU(2) coupling (~su(2) obtained from (4) turned 
out to be independent of the distance for 2 < R < 4: 

( ~ ,  8, 0.34): 

( ~ ,  8, 0.37): 

( ~ ,  8, 0.42): 

( ~ ,  10, 0.42): 

~sv(2) = 0.049 + 0.001 

~sv{z) = 0.047 + 0.001 

~su(2) = 0.048 + 0.001 

C~sv(z ) = 0.037 + 0.001. 

(lO) 



We consider the observed independence on R as a 
sign of the correctness of T-extrapolation. The differ- 
ence between the simplest estimate in (9) and the re- 
sult of the two-exponential fits is illustrated by 
Fig. 1 a-d. On the 124 lattice the situation is still some- 
what more difficult. In the points where both 124 and 
164 were measured, the C~sv(z)-values turned out to 
be about  5% higher on 124 . Besides, on the 124 lattice 
there was still some increase also for 2<R_<4. As 
a summary, we quote for 2 < R < 4: 

(0.1, 8, 0.177): 

(1.0, 8, 0.28): 

(o% 8, 0.37): 

(oo, 8, 0.42): 

asv(2 = 0.049 + 0.001 

c%v(2 ) = 0.050 4- 0.001 

~su(2) = 0.051 _+ 0.002 

asv(2) = 0.0514- 0.002. 

(11) 

A precise definition of the renormalized gauge 
coupling has to specify the value of the distance R, 
too, where asv{2)(R) is taken. A possible choice is, 
for instance, R~-(amw) -1 which means in our case 
(as we shall see below) R-~4-7. Unfortunately, the 
time extension of our 164 lattice does not allow for 
a reliable determination of esv(2) for R > 4. On a some- 
what formal level we can take in the definition of 
the renormalized gauge coupling, for instance, R 
~(2amw)  1 and use the values in (10). Of course, 
in future Monte Carlo studies it would be interesting 
to check the R-dependence of esv(2) also in the range 
of R ~ (a row)- 1. 

The renormalized SU(2) coupling is usually de- 
fined by the W-exchange between fermions and not 
by the Yukawa potential. Since in our case the lattice 
scale is of the order of row, the best we can do is 
to compare to the usual coupling at the scale mw. 
Taking a~m(mw) = (128)- 1 [9] and sin 2 0 w (row) = 0.226 
El0] one has for the usual renormalized SU(2) cou- 
pling: 

(row) 0.035. (12) 

Among the values in (10) the last one, in the point 
(2, fl, ~c)=(oo, 10, 0.42), is closest to this. 

3 The mass of the W-boson and Higgs boson 

The masses were determined from the same two-point 
correlations as in E2]. For  2 <  oo we considered in 
the W-channel, with V (x, i~)- ex++ f, U (x, /~)c~: 

Cw(xl,)~-= Tr(z, V(x,/~)) (r = 1, 2, 3) ) 
wxru=].w(~)u=-p~+p,p~Tr(z, V(x,/0) (#=  1, 2, 3) 

(13) 
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Fig. 2. The W-correlation as a function of the time-slice distance 
on 164 lattice at (2= oo, f l=8,  •=0.34) 

and in the H-channel: 

1 I :h(~a) = px 
hx = ~h~x 2) -= Tr V(x, #) (14) 

I [h~3)=px+~,pxTrV(x,# ) (#=1,2 ,3 ,4) .  

In the case of 2 = oo the Higgs field length is frozen 
to p~= 1, therefore in (13) only the first line and in 
(14) only the second one remain. 

The W-mass could be determined with good pre- 
cision in all the points, except for the 164 point at 
(2, fl, ~c)=(oo, 8, 0.34). For  an example of the time- 
slice correlations see Table 6 (otherwise [7]). The W- 
correlations can be fitted very well with a single cosh 
(corresponding to a single state) for d > 3. The point 
(oo, 8, 0.34) is in this respect an exception, because 
the W-correlation for d >  3 is rather flat (see Fig. 2) 
and we could not find a stable cosh fit. The dominance 
of a single W-state is well demonstrated also by 
Fig 3 b-d, where the W-mass obtained from a single 
cosh between pairs of time-slices is shown. In contrast, 
on Fig. 3 a for (oo, 8, 0.34) a clear decrease of the mass 
is observed for increasing time distances. On the 124 
lattice the dominance of a single W-state is illustrated 
in the point (0.1, 8, 0.177) by Fig.4a. The summary 
of all W-mass values is contained in Table 2. 

The correlation in the H-channels is more difficult 
to determine, because the H-mass is much larger than 
the W-mass. Therefore, the value of the correlation 
at larger time separations is very small. Another, more 
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Table 2. Summary of the masses. The estimated errors in the last 
numerals are given in parenthesis. The last column is the H-mass 
to W-mass ratio 

2 fl ~c lattice amw amn Rnw 

0.1 8.0 0.177 124 0.207 (8) 0.73 (5) 3.5 +0.4 
0.1 8.0 0.182 124 0.243 (9) 0.98 (7) 4.0___0.4 
1.0 8.0 0.28 124 0.194(7) 1.1 (1) 5.7+0.7 
oo 8.0 0.37 124 0.195 (9) 1.3 (2) 6.74-1.3 
oo 8.0 0.42 124 0.244 (6) 1.7 (3) 7.0+ 1.4 
oo 8.0 0.34 164 0.13 (2) 0.8 (I) 6.2_+1.7 
oo 8.0 0.37 164 0.172(7) 1.4 (1) 8.1_+0.9 
oo 8.0 0.42 164 0.217 (5) 1.7 (2) 7.8+ 1.1 
oo 10.0 0.42 164 0.198 (7) 1.8 (2) 9.1+ 1.3 

731 

subtle, problem is that for Rnw - mu/mw > 2 the Higgs 
boson is not stable" it is a resonance in the multi-W 
channels. This latter problem can only be considered 
at a later stage, when the large distance H-correlation 
will be calculated to a good precision. The reason 
is that the multi-W states couple only weakly to the 
local variables in (14), therefore their contribution is 
negligible for small distances (they will, however, 
dominate at some very large distances because of the 
smaller mass). In most cases we could determine the 
H-correlations with reasonable errors only for d <  3 
(see, for instance, Table 6). In the points where amn 

is less than 1 the situation is better, but still worse 

Table 3a. Expectation values of the Wilson-loops WR, r= WT,R o n  164 lattice at (2= o% fl=8.0, x=0.34) 
and above it. Entries below the main diagonal are the Creutz-ratios )~R,r. The first value of T belongs 
second one to the Creutz-ratio. Statistical errors in the last numerals are ~jven in parentheses 

are given in the main diagonal 
always to the Wilson-loop, the 

T = I ,  2 T = 2 ,  3 T=3 ,  4 T=4 ,  5 T = 5 ,  6 T = 6 ,  7 T = 7 ,  8 T = 8  

R = 1 0.903802 (3) 0.838542 (6) 0.781564 (10) 0.729164 (13) 0.680457 (15) 0.635063 (18) 0.592718 (22) 0.553211 (24) 
R = 2  0.031716 (6) 0.753707 (11) 0.686877 (14) 0.628028 (18) 0.574792 (21) 0.526267 (25) 0.481918 (27) 0.441357 (29) 
R = 3  0.022481 (7) 0.011535 (9) 0.618794 (20) 0.560938 (24) 0.509506 (27) 0.463163 (31) 0.421192 (33) 0.383123 (36) 
R = 4  0.020172 (6) 0.008592 (9) 0.005346 (10) 0.505781 (29) 0.457491 (33) 0.414352 (37) 0.375526 (39) 0.340486 (42) 
R = 5  0.019442(7) 0.007592 (9) 0.004177 (10) 0.002921(10) 0.412604(40) 0.372822(44) 0.337199 (47) 0.305188(50) 
R = 6 0.019161 (9) 0.007163 (14) 0.003676 (9) 0.002349 (10) 0.001742 (20) 0.336288 (49) 0.303739 (52) 0.274597 (55) 
R = 7 0.019027 (8) 0.006955 (15) 0.003402 (10) 0.002037 (13) 0.001374 (11) 0.000954 (29) 0.274078 (55) 0.247614 (58) 
R = 8 0.018940 (8) 0.006814 (10) 0.003217 (15) 0.001795 (17) 0.001117 (20) 0.000679 (21) 0.000362 (31) 0.223624 (61) 

Table 3b. Expectation values of the Wilson-loops Wa, r=Wr,  R on 164 lattice at ()~=oo, fl=8.0, x=0.37) 
and above it. Entries below the main diagonal are the Creutz-ratios ZR.r- The first value of T belongs 
second one to the Creutz-ratio. Statistical errors in the last numerals are given in parentheses 

are given in the main diagonal 
always to the Wilson-loop, the 

T = l , 2  T=2~3  T = 3 , 4  T = 4 , 5  T = 5 , 6  T = 6 , 7  T = 7 , 8  T = 8  

R =  1 0.903987 (3) 0.838915 (6) 0.782099 (8) 0.729836 (11) 0.681249 (14) 0.635953 (18) 0.593693 (20) 0.554252 (23) 
R = 2 0.031472 (7) 0.754406 (11) 0.687840 (16) 0.629207 (19) 0.576142 (22) 0.527739 (26) 0.483499 (29) 0.443004 (31) 
R = 3  0.022247(6) 0.011318 (10) 0.620089(21) 0.562503 (26) 0.511278 (29) 0.465068 (33) 0.423212(36) 0.385208 (38) 
R = 4  0.019935 (8) 0.008370 (7) 0.005123 (13) 0.507658 (30) 0.459590(34) 0.416591 (38) 0.377877(41) 0.342902(43) 
R = 5  0.019215 (5) 0.007378 (6) 0.003990 (8) 0.002756(12) 0.414927 (40) 0.375282(44) 0.339769(46) 0.307805 (48) 
R = 6  0.018948 (6) 0.006977 (8) 0.003500(16) 0.002197 (10) 0.001602(26) 0.338881 (50) 0.306436(52) 0.277327(53) 
R = 7  0.018791 (6) 0.006758 (12) 0.003226 (8) 0.001873 (8) 0.001232(19) 0.000861 (29) 0.276858 (56) 0.250413 (58) 
R = 8 0.018728 (8) 0.006619 (14) 0.003033 (10) 0.001679 (16) 0.001009 (11) 0.000581 (19) 0.000320 (35) 0.226422 (61) 

Table 3c. Expectation values of the Wilson-loops WR, T=WT,R o n  164 lattice at (2=o% fl=8.0, x=0.42) 
and above it. Entries below the main diagonal are the Creutz-ratios Xg.r. The first value of T belongs 
second one to the Creutz-ratio. Statistical errors in the last numerals are given in parentheses 

are given in the main diagonal 
always to the Wilson-loop, the 

T = I ,  2 T = 2 ,  3 T=3 ,  4 T=4 ,  5 T = 5 ,  6 T = 6 ,  7 T = 7 ,  8 T = 8  

R =  1 0.904257 (3) 0.839442 (5) 0.782850 (8) 0.730783 (10) 0.682355 (13) 0.637195 (17) 0.595046 (18) 0.555699 (21) 
R = 2  0.031108 (7) 0.755405 (10) 0.689217 (13) 0.630886(17) 0.578052(20) 0.529840(22) 0.485731 (25) 0.445344(28) 
R = 3  0.021902 (6) 0.011003 (7) 0.621947 (19) 0.564726 (23) 0.513763 (27) 0.467762 (29) 0.426035 (32) 0.388127 (34) 
R = 4  0.019606 (7) 0.008084 (6) 0.004879 (9) 0.510274 (28) 0.462485 (32) 0.419702 (35) 0.381115 (40) 0.346216 (41) 
R = 5  0.018896 (3) 0.007116 (6) 0.003753 (11) 0.002548 (15) 0.418106(38) 0.378666(41) 0.343258 (44) 0.311351 (46) 
R = 6  0.018615 (10) 0.006714 (7) 0.003269 (13) 0.002010 (14) 0.001409 (16) 0.342463 (48) 0.310099 (49) 0.281037 (50) 
R = 7 0.018483 (11) 0.006518 (6) 0.003006 (13) 0.001728 (13) 0.001101 (10) 0.000753 (20) 0.280582 (52) 0.254156 (53) 
R = 8 0.018396 (7) 0.006381 (8) 0.002850 (13) 0.001524 (15) 0.000844 (14) 0.000510 (16) 0.000260 (35) 0.230160 (55) 
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Table 3d. Expectation values of the Wilson-loops WR.T = WT.R on 164 lattice at (2=  0% f l= 10.0, tc=0.42) are given in the main diagonal 
and above it. Entries below the main diagonal are the Creutz-ratios )~R.T. The first value of T belongs always to the Wilson-loop, the 
second one to the Creutz-ratio. Statistical errors in the last numerals are given in parentheses 

T = l , 2  T = 2 , 3  T = 3 , 4  T = 4 , 5  T = 5 , 6  T = 6 , 7  T = 7 , 8  T = 8  

R =  1 0.923762 (2) 0.871411 (3) 0.824989 (5) 0.781627 (7) 0.740694 (10) 0.701955 (12) 0.665263 (15) 0.630501 (18) 
R = 2  0.024138 (4) 0.802423 (7) 0.746878 (10) 0.696930 (12) 0.650806 (15) 0.607907 (19) 0.567911 (22) 0.530591 (24) 
R = 3  0.016990 (4) 0.008547 (4) 0.689261 (14) 0.639129 (17) 0.593531 (20) 0.551513 (23) 0.512613 (26) 0.476546 (28) 
R = 4  0.015225 (4) 0.006297 (4) 0.003821 (8) 0.590383 (21) 0.546644 (25) 0.506640 (28) 0.469788 (31) 0.435755 (33) 
R = 5  0.014683 (6) 0.005544(3) 0.002956 (5) 0.002010 (7) 0.505130(29) 0.467425 (33) 0.432841(36) 0.401004(39) 
R = 6 0.014472 (7) 0.005236 (4) 0.002573 (6) 0.001580 (5) 0.001137 (11) 0.432042 (38) 0.399722 (42) 0.370058 (45) 
R = 7 0.014370 (5) 0.005086 (5) 0.002376 (5 0.001350 (6) 0.000884 (10) 0.000603 (12) 0.369598 (46) 0.342026 (49) 
R = 8 0.014307 (7) 0.004983 (6) 0.002244 (8) 0.001196 (10) 0.000712 (12) 0.000418 (14) 0.000202 (20) 0.316447 (55) 

Table 4. Expectation values of the Wilson-loops WR, T=WT, R o n  124 lattice at ( 2=o  e,  /~=8.0, lc=0.37) are given in the main diagonal 
and above it. Entries below the main diagonal are the Creutz-ratios ;~mT- The first value of T belongs always to the Wilson-loop, the 
second one to the Creutz-ratio. Statistical errors in the last numerals are given in parentheses. The errors of the Creutz-ratios are calculated 
from the errors of the largest Wilson-loop only 

T = I ,  2 T = 2 ,  3 T = 3 , 4  T = 4 ,  5 T = 5 , 6  T = 6  

R = I  0.90400 (1) 0.83892 (1) 0.78209 (2) 0.72982 (3) 0.68121 (4) 0.63591 (5) 
R = 2  0.03146 (4) 0.75443 (3) 0.68786 (4) 0.62924 (5) 0.57618 (7) 0.52783 (6) 
R = 3  0.02222 (6) 0.01123(10) 0.62017 (6) 0.56264 (8) 0.51148 (9) 0.46542(11) 
R = 4  0.01990 (8) 0.00827 (14) 0.00498 (20) 0.50792 (10) 0.46001 (12) 0.41729 (13) 
R = 5 0.01917 (12) 0.00724 (18) 0.00373 (26) 0.00241 (34) 0.41562 (14) 0.37638 (15) 
R = 6  0.01882 (15) 0.00674 (24) 0.00311 (31) 0.00170 (40) 0.00090 (50) 0.34053 (17) 

Table 5. The correlation of the Wilson-loops on the 164 lattice at (A= oe, /~= 10.0, tc=0.42). Above the main diagonal the first length 
is fixed to 1, below the main diagonal to 8. Statistical errors were obtained by binning the data sequence 

~ = 1  ~ = 2  ~ = 3  ~ = 4  ~ = 5  ~ = 6  ~ = 7  ~ = 8  

R2 = 1 1.90 (5) E-8 3.12 (8) E-8 4.10 (11) E-8 4.95 (13) E-8 5.72 (18) E-8 6.38 (20) E-8 6.94 (25) E-8 7.44 (28) E-8 
R2 = 1, 2 1.19 (3) E-6 6.36 (15) E-8 8.93 (23) E-8 1.12 (3) E-7 1.32 (4) E-7 1.50 (4) E-7 1.65 (5) E-7 1.79 (5) E-7 
Rz=2, 3 1.35 (3) E-6 2.27 (5) E-6 1.40 (3) E-7 1.84 (4) E-7 2.23 (5) E-7 2.58 (6) E-7 2.89 (7) E-7 3.17 (8) E-7 
R z = 3 , 4  1.40(4) E-6 2.45 (6) E-6 3.23 (8) E-6 2.58 (6) E-7 3-24 (7) E-7 3.82 (9) E-7 4.33(10) E-7 4.79(11) E-7 
R z = 4 , 5  1.45(4) E-6 2.60 (7) E-6 3.45 (8) E-6 4.22 (9) E-6 4.23(10) E-7 5.11(11) E-7 5.88(13) E-7 6.57(14) E-7 
Rz =5,  6 1.51 (5) E-6 2.73 (7) E-6 3.66 (9) E-6 4.49 (10) E-6 5.21 (12) E-6 6.35 (13) E-7 7.43 (15) E-7 8.40 (18) E-7 
R2 = 6, 7 1.58 (5) E-6 2.89 (8) E-6 3.87 (10) E-6 4.76 (11) E-6 5.53 (12) E-6 6.26 (14) E-6 8.89 (18) E-7 1.02 (2) E-6 
R2 = 7, 8 1.64 (5) E-6 3.00 (8) E-6 4.05 (10) E-6 5.00 (12) E-6 5.82 (13) E-6 6.59 (15) E-6 7.30 (16) E-6 1.19 (2) E-6 
R2 = 8 1.69 (6) E-6 3.09 (9) E-6 4.18 (11) E-6 5.18 (12) E-6 6.05 (14) E-6 6.87 (15) E-6 7.64 (17) E-6 8.34 (18) E-6 

Table 6. The zero momentum correlations as a function of the time-slice distance T on the 164 lattice at (2 = oe,/~ = 8.0, ~c = 0.37) 

T = 0  T = I  T = 2  T = 3  T = 4  T = 5  T = 6  T = 7  T = 8  

H-channel 

7.35 E-05 9.23 E-06 2.09 E-06 5.09 E-07 1.67 E-07 1.67 E-07 2.40 E-08 3.13 E-08 9.20 E-08 
_+8.0 E-08 +6.5 E-08 ___6.0 E-08 -t-5.7 E-08 +6.1 E-08 _+5.7 E-08 +5.5 E-08 _+6.2 E-08 _+8.2 E-08 

W-channel 

4.78 E-05 8.36 E-06 5.86 E-06 4.98 E-06 4.44 E-06 4.04 E-06 3.77 E-06 3.60 E-06 3.58 E-06 
_+1.1 E-07 _+1.1 E-07 +1.1 E-07 _+ 1.0 E-07 _+ 1.0 E-07 _+ 1.0 E-07 • 1.0 E-07 _+1.1 E-07 _+1.1 E-07 
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Fig. 5. The ratio of the Higgs mass  to W-mass  for fl = 8 and nearly 
constant  link expectation value (L) on 124 lattice as a function of 

than for the W-channels: see Fig. 4b for the H-mass 
obtained from the time-slice pairs at (2=0.1, f i=8, 
tc=0.177). The best estimates we could obtain for the 
H-boson masses are given in Table 2. 

The summary of the masses in Table 2 shows that 

�9 The W-masses on the 164 lattice are both at 
(2, fl, x)=(oe,  8, 0.37) and (oe, 8, 0.42) about 10% 
smaller than on 124 . 

�9 In the 124 points with approximately constant link 
expectation value L (see Table 1) the W-mass is, with- 
in errors, independent of 2. For constant fl and L 
the mass ratio Rnw is increasing with 2 (see also 
Fig. 5). The upper limit of Rnw at fl = 8 is about -~ 7 
on the 124 and about ~-8 on the 164 lattice. The 
mass ratio at 2 =  oe and f l=8  is not very sensitive 
to x. 

�9 The upper limit of Rnw at fl = 10, which from the 
point of view of the renormalized SU(2) gauge cou- 
pling corresponds quite well to the phenomenological 
situation in the standard model, is about R ~ - ~  9. 

4 Conclusion 

The aim of the present numerical calculation in the 
standard SU(2) Higgs model was to explore the quali- 
tative behaviour of the dependence of physical vari- 
ables on the bare parameters in a region of weak 
gauge coupling and strongest possible scalar self-cou- 
pling. The obtained upper limit for the Higgs boson 
mass mn< 9mw is only a first crude estimate which 
can be improved considerably in future Monte Carlo 
studies. Since the renormalized gauge coupling turned 
out to be near to its physical value in our f l=10 
point, future numerical calculations should be con- 
centrated near fl = 10. Of course, even a more precise 

value obtained in the Higgs sector is still approximate, 
because the coupling to fermions and the electromag- 
netic U(1) coupling are neglected. 

Staying within the standard SU(2) Higgs model, 
there are three main sources of errors coming from 
the small lattice size and from the limited statistical 
accuracy: 

(a) Due to the limited statistics at fl = 10 the Higgs 
mass was determined from the correlations at dis- 
tances d <  3. This presumably implies that amn is ac- 
tually smaller than the value in Table 2, because of 
the contributions of excited states at short distances. 

(b) The W-mass on a larger lattice is probably 
smaller. (This is the trend we saw by comparing 124 
and 164 lattices in the same points.) 

(c) Since the H-mass in lattice units in our fl = 10 
point is about 1.8, the upper limit for RRw at x = 0.42 
is almost certainly an overestimate, because the upper 
limit is most probably a monotonously decreasing 
function of the cut-off (and the cut-off is proportional 
to (a mn)- 1). 

The points (a)-(b) have an opposite effect on the 
Higgs- to W-mass ratio and could together effect the 
upper limit only moderately. A much more important 
effect seems to be (c), which could easily reduce the 
upper limit by a factor of 2. Namely, in order to be 
able to talk about a quasi-continuum effective theory, 
one has to require something like amn< 1 (see the 
recent study of this question in the 1-component ~b 4 
model [11]). The upper limit for the mass ratio at 
amn= �89 can be substantially smaller than its value 
at atonal.8. For the numerical determination of a 
better upper limit one has to go, in the vicinity of 
f i= 10, closer to the phase transition line, which 
means decreasing tc (and L). On the technical side 
amn ~-�89 could require a lattice by a factor of 2 larger 
in linear size (i.e. 324). 

In view of this, admittedly speculative, evaluation 
m a x  of possible systematic errors, the upper limit Rnw_ 9 

is surprisingly low. The real upper limit for the Higgs 
boson mass belonging to a cut-off, say, 1 TeV could 
be easily as low as ~-6m w. Note in this respect, that 
the use of the tree-level formula for the Higgs boson 
mass plus approximate block-spin transformation in 
the four-component q54 model seems to give some- 
what higher upper limits [12]. Since the Higgs sector 
is the only unknown piece of the standard model, 
the improvement of the upper limit for the Higgs mass 
certainly deserves further effort, especially as long as 
the Higgs boson is not yet found experimentally. 
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