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We calculate the condensate gs<(:la~,,G~,,q > using Kogut-Susskind quarks in lattice-regularized quenched QCD. We obtain 
gs<qa~,~G~,~q>/(Clq) ~ 1.1 GeV 2 at#= 1 GeV. 

1. Introduction. In this letter we shall present the 
first results of  a calculation of  the condensate 
g,(CZla~,,Gu,q) on the lattice. This condensate is one 
o f  the parameters which determine the low-energy 
properties of  QCD in the framework of  QCD sum 
rules [ 1 ]. In contrast to lattice calculations, QCD sum 
rules do not determine hadronic properties in terms 
of  one fundamental  mass scale only, but they relate 
hadronic masses, couplings, etc. to a number  of  phe- 
nomenological parameters, which are vacuum 
expectation values of  local spin-zero operators (con- 
densates). These condensates must  be determined 
phenomenologically. For some condensates 
Shifman, Vainshtein and Zakharov also gave esti- 
mates f rom a dilute instanton gas calculation. 

One of  the least known condensates is 

- [ a a 

g~ ( q a , ,  32 G , , , q ) ,  (1) 

where q is a light quark field and G~, is the gluon 
field strength. This condensate is important  in two 
areas o f  QCD sum rules. It gives large contributions 
to sum rules for mesons composed of  one light and 
one heavy quark, as it appears there in the 
combinat ion 

m .  ( Cla~.G~.q) , (2) 

i.e. multiplied by the (large) heavy quark mass mH #~. 
The other important  area is in sum rules for bar- 
yonic currents [2].  The two-point function o f  two 
local interpolating baryon fields ~u has the form 

f d 4 x  exp(iqx) (01T(~ , , (x )  ~7~(0)) 10) 

= 4,aF,  (q2) -4- ~ # F z ( q  2 ) , 

where F2(q 2) has the form 

F2(q 2) =A (dlq) q 2 In(--q2/lt2 ) 

(3) 

+Bgs (Cla,, G~,q) In ( -q2/I t2  ) .... (4) 

Here (~tq) is the chiral symmetry breaking quark 
condensate. The knowledge of  the condensate 
gs(dtcru, G,~q), appearing in the second term, is par- 
ticularly important  for the calculation o f  the n N  
sigma term. 

The first at tempt to determine g~ ((:ta~,,G~,,q) was 
made in ref. [3],  where it was claimed that 

mg:=g~(Ctau, G~, ,q ) / (Clq)=O.5-1 .OGeV 2 . (5) 
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In refs. [4,5 ] phenomenological determinations were 
attempted, which yielded mo2~0.8 GeV 2 and 
m2o ~0.2 GeV 2, respectively. 

Since the knowledge of g~ (~lau~Gu~q) is essential 
not only to improve the accuracy of QCD sum rule 
predictions, but is even indispensible for an accurate 
determination of the nN sigma term by QCD sum 
rules (whose value is still controversial [6,7]), a cal- 
culation of gs(~qau~Gu,q) on the lattice is truly 
important. 

2. Method. For the calculation we shall use 
Kogut-Susskind [8] quarks, whose action is 

• 

+ ma~xZx ) , (6) 

where )?,)¢ are single-component Grassmann fields. 
The latter translate into physical four-component, 
four-flavoured Dirac fields, which reside on elemen- 
tary hypercubes, by [9] 

~ ( x )  = ~ Z r ~ q  ux , )~'( ux+~,.~)'~( u~+~, +.~.~)'~ 

X (  U x + o t  ' q-or2 q-ot3,4)°~4Xx+ot , 

a = (Ogl , a 2 , a 3 , a 4 )  , ( 7 )  

where the sum runs over the 16 comers of  the hyper- 
cube and/1, f a r e  Dirac and flavour indices, respec- 
tively. The action (6) preserves an explicit 
continuous chiral symmetry (for m = 0 )  which was 
shown to be broken spontaneously in ref. [ 10]. We 
shall use antiperiodic boundary conditions for the 
fermion fields. The importance of this choice is dis- 
cussed in ref. [ 11 ]. 

In the notation of eq. (7) the condensate can be 
written as 

g~ a 5 ( (:la~,~ ½2 ~ G;~ q )  

= ]¢,(x) U~.~ U~+.. .a~,(x+l~+ . )  >. (8) 

On the RHS it is summed over f, which is corrected 
by the factor in front. Like the ordinary chiral con- 
densate this expectation value is zero (for m = 0 )  to 
all orders in perturbation theory. To calculate eq. (8) 
we need to compute quark propagators 

-A B 
Xx+aZx+- (9) 

(A, B are colour indices), in total 48 rows (for 
SU(3))  of the inverse of  the fermion matrix for each 
gauge field configuration. Since the RHS of eq. (8) 
involves products of up to ten link matrices, which 
give rise to large fluctuations, it is favourable to write 

1 ~f  ~l~(X) = ~ Z l "azx+a  , (10) 
o~ 

and insert in (8) only those two link matrices which 
make the expression gauge invariant. This definition 
has the same continuum limit. 

The gluon interaction is described by the Wilson 
action 

SG = f l ~  [ 1 -- ] Tr Re U(Op)] , (11 ) 
P 

and we impose periodic boundary conditions on the 
gluon fields. All our calculations are done in the 
quenched approximation, where the contribution of 
virtual quark loops is neglected. 

3. Results and discussion. The size of  our lattice is 
84. So far we have computed the condensate on five 
independent gauge field configurations at fl = 5.7. We 
have performed this calculation at masses ma = 0.02, 
0.035 and 0.05. To invertthe fermion matrix we have 
used the conjugate gradient algorithm. We stop the 
iterative procedure once [12] r~< 10 -8. We also 
have computed 

a 3 ( ( tq)  = ¼ ( ~ p ( x ) ~ ( x ) )  , (12) 

which we will use to set our scale. On each hypercube 
one can compute 6 condensates ~(x)Ux,uUx+u,, 
×auW x+~+~) due to reflection symmetry and 16 
condensates tp(x)g/(x) .  The results of  our calcula- 
tion are shown in table 1 and fig. 1, where we have 
averaged over the 6 and 16 possibilities, respec- 
tively. We find that the mass dependence of both 
condensates is to a very good approximation linear 
for each of the five gauge field configurations. We 
therefore have extrapolated ((:lq) and gs (¢ia~G~,q) 
to m = 0  individually for every configuration and 
taken the average at the end. The result is 

a 3 (Clq) =0 .064+0 .08 ,  (13) 

and 

gsa s ( ela~,~Gu, q )  =0 .183+0 .028 .  (14) 
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Table 1 
The condensates a 3 < Qq > and &a 5 < ¢ta..G,,.q ) for the individual 
gauge field configurations at the various quark masses. 

Configuration ma a 3 < qq > g~a ~ < qcr~,.Gu.q > 

1 0.020 0.082-+0.007 0.167+0,015 
0.035 0.101-+0.006 0.188-+0.017 
0.050 0.117-+0.006 0.216-+0,022 

2 0.020 0.066-+0.002 0.189-+0.031 
0.035 0.088 -+ 0.002 0.240 _+ 0,036 
0,050 0,107-+0.002 0.282-+0,041 

3 0.020 0.111 -+0.010 0.323-+0.060 
0.035 0.132-+0.011 0.377-+0.064 
0,050 0.150-+0,011 0.419-+0,068 

4 0.020 0.083-+0.006 0.201-+0.025 
0.035 0.098+0.006 0.229-+0.029 
0.050 0.112-+0.006 0.253-+0.031 

5 0.020 0.099-+0.007 0.271 -+0.042 
0.035 0.119-+0.007 0.312_+0.047 
0.050 0.136-+0.008 0.348-+0.050 

Though (dlq)  and g~(Claz,.G~,.q) fluctuate consid- 
erably from one configuration to the other, we notice 
that the ratio of the two is relatively stable, which 
indicates that this quant i ty  is less affected by fluc- 
tuations of the small eigenvalues of the fermion 

matrix. 
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Fig. 1. The condensates g~a 5 ( ¢ta~,,,Gu,,q ) and a 3 ( qq ) for config- 
urations 1-5 versus the quark mass. Errors are not shown. 

The result (13) is in agreement with previous cal- 
culations [ 10] (notice the difference in normaliza- 
t ion though). If we want to use (13) to set the scale, 

we have to form the quant i ty  

( O~s (/.~2 ) )--4/11 

( q q )  lu~ = \ % ( n 2 1 a 2 )  (dlq)  

2 -- 4/1 1 

--= \C~s(Tr2/a2) j (dlq) I =~-' , (15) 

where 

2n 
O/s (/~2)~" 11 2 2 2-1n(/t /Amom) + ~  In ln(/z2/AZmom) 

(16) 

which is known "experimental ly" [ 7 ]. Assuming the 
two-loop formula for the lattice spacing, 

a =  (83.5/Amom)(~.j~2fl) 51/121 exp( - 3~j n2fl) , 

(17) 

we obtain the "experimental"  value of [13] 

(c lq)  11 oev2 = (225 MeV) 3 (18) 

for Amom ~ 160 MeV. This scale parameter  is ~ 20% 
lower than the value we obtained by fitting the mass 

of the p [12]. Notice also that (clq)llOeV~ and 
~ / / ~ ¢ ~ i n v  of ref. [10] are not identical; hence the dif- 
ference in A . . . .  though the Monte Carlo "data" agree 

within errors. 
Similarly, for the condensate g~ (qau .G~,~q)  we 

obtain 

gs ( ~lav. Gv,q) Iv2 
2 .2/33 

= \ , s ( Z t 2 / a 2 ) j  &(Otau , 'Gu,  q )  

" 2 .2•33 

~ \O~s(g2/a2), ] gs(CZla~,,,G~,,,q) In2/a2 . 

(19) 

For the above choice of scale parameter  this leads to 

gs ( Cla,,~ G,,,q ) I, OeV2 

= 0.0126 _+ 0.0020 GeV 5 , (20) 

and 

rn211 oev2= 1.1 +0.1 GeV 2 . (21) 
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N o t e  that  the  two- loop  f o r m u l a  (17)~ se rved  only  to 

c o m p u t e  Amo m which  enters  as. We e s t ima te  tha t  the  

obse rved  d e v i a t i o n  f r o m  (17) at ~ =  5.7 will  change  

our  results  by less t han  the  s ta t is t ical  errors .  

Th is  resul t  suppor t s  the  h igher  va lues  o f  

gs(f:ta~,G~,~q) o b t a i n e d  f r o m  Q C D  s u m  rules (see 
a b o v e ) .  I f  one  whishes  one  can  increase  the  s tat is t ics  

to r educe  the  errors.  Th is  w o u l d  r equ i re  h o w e v e r  a 

m a j o r  c o m m i t m e n t  o f  c o m p u t e r  t ime ,  because  on 

each  con f igu ra t i on  one  has to c o m p u t e  (a t  least)  48 

rows o f  the  inverse  o f  the  f e r m i o n  mat r ix .  

We are i n d e b t e d  to M e i n u l f  G 6 c k e l e r  for  he lpful  

d i scuss ions  and  for  a l lowing  us to use a p r o g r a m  

which  was d e v e l o p e d  in co l l abora t ion  wi th  h im.  
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