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We demonstrate the applicability of four-dimensional spin methods to the calculation of higher-order QCD radiative correc- 
tions. These new techniques can lead to substantial simplifications of radiative correction calculations. 

1. Introduction. With the completion of the high- 
energy accelerators TRISTAN, TEVATRON and 
SLC and the planned commissioning of LEP and 
HERA in the coming years one expects large data 
samples on jet production to become available in the 
next few years. The interpretation of these jet events 
and their polarization dependence within QCD 
requires the calculation of a large number of higher- 
order QCD corrections. Up to now the favoured 
method to calculate QCD radiative corrections is by 
means of dimensional regularization. Since the nec- 
essary calculations using dimensional regularization 
techniques are technically and algebraically quite 
involved [ 1-3 ] one would like to develop simpler 
methods to do the radiative corrections. 

In the last few years new techniques have been 
developed using four-dimensional spin techniques to 
dramatically simplify tree diagram calculations in 
massless QCD and QED. Among these are the use of 
helicity methods [4], use of the two-component Weyl 
formalism [ 5] and the exploitation of supersym- 
metry relations [ 6]. It would be highly desirable to 
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use these simple and compact tree level expressions 
along with their one-loop counterparts as input inte- 
grands in radiative correction calculations. Not only 
are the ensuing integrands shorter and easier to cal- 
culate, but also the structure of the integrands can be 
analysed and interpreted more easily in terms of their 
four-dimensional spin and helicity content. Also, 
when using helicity techniques, one can organize the 
singularity structure of cross section expressions quite 
efficiently. Once the radiative corrections have been 
done for the spin-averaged cross sections the radia- 
tive corrections to polarization type observables can 
be performed without much additional effort. Also 
the inclusion of parity-violating and polarization 
effects involving ~ 5 or the antisymmetric tensor e-By~ 
is quite straightforward if one uses four-dimensional 
spin and helicity techniques. 

Such a program can be realized within the dimen- 
sional reduction scheme proposed by Siegel [ 7 ]: Spin 
degrees of freedom are kept fixed in four dimensions 
whereas the momenta (and derivatives) are contin- 
ued from four to n dimensions. This allows one to 
use the usual dimensional regularization techniques 
to regularize ultraviolet (UV) and infrared/mass 
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(IR/M) divergencies in scalar integrals after the spin 
algebra has been done in four dimensions. 

Although dimensional reduction has some formal 
inconsistencies [8,9], the scheme can be used as a 
working prescription to calculate Feynman diagrams 
when proper care is taken to circumvent the formal 
inconsistencies. This is not difficult in practise. In 
fact, the dimensional reduction scheme has been 
succesfully applied to the two-loop calculation of 
Ward identities [10], the axial anomaly [l  1 ], and 
anomalous dimensions [ 12,13 ]. 

In this paper we show how to apply dimensional 
reduction to the calculation of one-loop level radia- 
tive QCD (and QED) corrections to physical cross 
sections. To our knowledge this has not been dis- 
cussed in the literature before. This requires the 
knowledge of the appropriate counterterms that result 
from the UV divergent wave function and vertex 
renormalization graphs. These global counter terms 
are identified and calculated. After addition of these 
counterterms the radiatively corrected cross sections 
calculated in dimensional reduction agree with the 
dimensional regularization result. 

As an illustration we have recalculated the 
O(a~)  radiative QCD corrections to e+e-~qClG 
within the dimensional reduction scheme including 
the appropriate counter terms. We have explicitly 
verified that the result agrees with the dimensional 
regularization result calculated in ref. [ 1 ]. We briefly 
comment on characteristic differences of the two 
schemes at intermediate steps of the calculation. 

2. Regularization by dimensional reduction. The 
idea of dimensional reduction is to only continue to 
n # 4  dimensions coordinates x u and momenta  Pu, 
while leaving all other tensors and spinors in four 
dimensions. In particular, the gluon field G u and the 
Dirac spinors are left with four components and the 
algebra of y-matrices is unaltered. Dimensional 
reduction is defined by decomposing four-dimen- 
sional space into the direct sum of n- and ( 4 - n ) -  
dimensional subspaces ~: 

4 = n ~ ( 4 - n ) .  (1) 

This is realized by correspondingly splitting the n- 

"~ This decoposition is based on the requirement that ?.py.p=p2, 
where p~, (7,) is n-dimensional (four-dimensional). 

dimensional metric tensor according to (n-= 4 -  ~): 

g(4)  _ - ( n )  +g~) ,  

g(a)uu_=4, g(n)u~'=n, g")uu=e.  (2) 

The orthogonality eq. (1) then reads 

g ( ~ ) ~ g ~ )  av =0. (3) 

Corresponding covariants as  ptu4),,.~,~(n), "~,n") or 
y)4), y)n), yu,) are introduced according to 

/),) : =g~)  y(4)~, etc. (4) 

Dimensional reduction is then arrived at by postu- 
lating that the yu (p~) of  the lagrangian density and 
thereby of the Feynman rules obey 

ya ~ y(4) ,  

"(") i.e., pu ") =0.  (5) 

Thus, the Dirac algebra remains in four dimensions 
yielding Feynman rules which are formally the same 
as in four dimensions. In particular, the gauge field 
propagator is -ig~u4)/k 2. On the other hand, all 
momenta become n-dimensional allowing for (loop 
and phase-space) integrations in n dimensions. For 
example, symmetric integration transforms kj, k~ 
momentum integrals into gu~ ) . One must, of  course, 
carefully distinguish between the different metric 
tensors. 

"It is well known that dimensional reduction 
becomes inconsistent as soon as Y5 comes into play. 
However, we will never have to calculate any parity 
odd trace. Instead we calculate p.v. cross sections via 
helicity amplitudes [14] ~2. 

Corresponding to the decomposition eq. (1) we 
split the four-dimensional lagrangian density ~¢ into 

LP=5 °~) +Y~"), (6) 

~2 It is also known that dimensional reduction can lead to com- 
putational ambiguities even without the presence of Ys- It is 
the calculational algorithms used by algebraic computer pro- 
grams that can originate these ambiguities [ 15,9]. However, 
when performing the Dirac algebra before doing the integra- 
tions, every manipulat ion is perfectly unique. In other cases 
one can easily modify the computer algorithms to prevent 
amgibuities. In addition the latter can show up first in two loops 
including 10 or more ?-matrices. 
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where ~(") is the lagrangian density of  ordinary 
dimensional regularization. Remembering O~ ') = 0 we 
find that ~a (') contains e-dimensional gluon fields 
G('~ besides the n-dimensional gluon fields 

G(") tG =G (") +G)~)), the n-dimensional deriva- 

tives and the four-dimensional quark fields q. The E- 
pans Eu - G~ ') of the (four-dimensional) gluon field 
G u are called e-scalars (under the Lorentz group in 
n dimensions). LP (') contains the e-propagator and 
its couplings G~")G(")EE, 4E, G¢")~E and qqE. Thus Lf (') 
describes the interactions of e-scalars, which are not 
present in the usual procedure, and originates all dif- 
ferences between the ordinary dimensional regular- 
ization and dimensional reduction. Separating the E- 
scalar contribution from L~ is only of "academic" 
interest as a comparison of the two methods, namely 
to determine minimal subtraction (MS) within 
dimensional reduction (see below). In practical 
computations with dimensional reduction we oper- 
ate of  course totally with ~ since otherwise the tech- 
nical advantages of  dimensional reduction would be 
lost. 

We now adjust the dimensional reduction MS 
scheme in such a way that the UV poles and the finite 
terms they induce are the same as in usual dimen- 
sional regularization. Supposing that we only have 
an UV divergent amplitude we clearly get the same 
(finite) result in both methods. Once the dimen- 
sional reduction renormalization contributions are 
established up to one-loop, dimensional reduction 
can be used with great advantages for all one-loop 
calculations. In the case where UV and IR/M sin- 
gularities are simultaneously present we handle the 
UV realm as mentioned above. Sinc ethe IR/M poles 
cancel between virtual and real diagrams all remain- 
ing differences between dimensional reduction and 
dimensional regularization drop out at the end ,3 

In order to determine the difference between 
dimensional regularization and dimensional reduc- 
tion in the UV realm we calculate the UV divergen- 
cies that arise at one-loop order. The corresponding 
Feynman diagrams (including their correct weights) 
are shown in figs. l a - l e ,  called qqG, 3G, Zq, Nc-part 

,3 Up to coilinear initial state singularities which, however, can 
be absorbed into the initial state pal'ton distribution. 

y.y 
qqO 3G Zq Zs(Nc) Zs(Nt) 
(a) (b] (c) (d) (e) 

Fig. 1. One-loop diagrams for coupling constant renormalization. 

and Nf-part of ZG, respectively: Here Nc (Nr) denotes 
the number of colours (flavours) and C F - - ( N ~ -  
1)/(2Nc). To allow for a comparison with usual 
dimensional regularization we also need the finite 
contributions coing from the UV part of  the n- 
dimensional integrals. The results are given in table 
1 ~4. In this table we have left out a common factor 
-igt~aJ4nE where t A are the SU(3) colour matri- 
ces ~5. The column denoted by "reduction" gives the 
respective UV poles and the finite parts which they 
induce within dimensional reduction. The third col- 
umn gives the UV content of  standard dimensional 
regularization. The last two columns originate from 

The entries of the "reduction" column can be seen 
to equal the sum of the last three columns (row by 
row). Therefore the last two columns account for the 
difference of dimensional reduction and dimen- 
sional regularization. Of  course, this is nothing but 
the realization of eq. (1) to one-loop order. For rea- 
sons that will become clear below we have separated 
off the La(,) contributions and refer to 7u (`)-terms as 
e-operator contributions. 

In standard dimensional regularization the MS 
renormalized amplitude is arrived at by subtracting 
the UV poles. They are given by the (true) UV poles 
of  the "regularization" column. In order to match 
the results of dimensional reduction with those of  
usual dimensional regularization we have to subtract 
both the ( t rue)  UV poles of column three and the 
(total) contributions of the last two columns. Note 
that the contribution of this dimensional reduction 
counterterm (by counterterm we denote the negative 

,4 To complete the prescriptions eqs. (2) - (  5 ) for computing with 
dimensional reduction we mention that Lorentz invariance only 
applies to the n-dimensional parts. We thus get additional 
quantities in a covariant expansion. E.g. besides y~,---7~, 4) we 
also get 7 9  or ),u (~) , respectively. This is technically clear since 
symmetric integration on kuk  ~ also produces gu(~ ) terms which 
in turn transforms Yu into yu t") via eq. (2). 

,5 We have also left out terms of  order ~2 since they can be 
neglected up to one-loop accuracy. 

127 



Volume 194, number  1 

Table 1 
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Colour/ Reduction Regularization ~-operator ~-scalar 
flavour 

2CF-Nc qqG qqG (') qqe qqG T M  

l ~ (4) (O I ~ (n) ( 1 -  2~)~'. + 7 .  (1 -~)7(~ ") 27~ ') ~ 7 .  

Nc 3G 3G (") G ~  3G (") 

2 Cv Z.  Zq Zq Zq 
) (.) _~(,> _ y~4) ( - 1 + ~ E ) ~ .  - ½ ~,,(.'> 

Nc Zo ZG .... Z, Z~,,,) 

( ~ _ ~ O / 2 )  , ,) +~7,~ (') + h ~ ) 7 ~  ~) 27~ *) - ~;~7(- ") 

Nr Zo ZG,,,) Z~ ZG .... 
( -  i + ~ 0 / . ' ) -  ~?g , ( - ~ + ~ 0 7 .  ") -? . ' )  0 

of  the UV-terms which have to be subtracted in MS; 
thus counterterms are added) is most  easily calcu- 
lated by first peforming all contractions within the 
trace and then .doing the trace. 

Let us collect the results for the dimensional 
reduction counterterms as they can be used for prac- 
tical calculations. It is most convenient to write them 
as shown in table 2 (again suppressing a factor 
-igtAaJ4n~). We also quote the sum T~ of  the 
counterterms: 

MS 
O~ s,reg T~ = - ig t  A ~ {--2CF7~ ') 

- N c [ (  ~ - ~(~) ~(4) - -  ]~((~> ] 

+ N f (  av(4)3za -t- - ~ ( 0 ) } .  (7) 

We stress again that, when using the counterterm eq. 
(7),  calculations within dimensional reduction and 
usual dimensional regularization give the same results 
in the UV realm. Therefore the coupling constant 
O~s,regMS of  standard dimensional regularization has to 
be used in eq. (7).  In the next section we present an 

explicit example how these counterterms are used 
within dimensional reduction. 

Up to now we have presented a direct construction 
of  the UV counterterms of  dimensional reduction. 
To give an interpretation of  these counterterms we 
derive them again in a more formal way. To this end 
we set up the minimal subtraction scheme (MS) for 
dimensional reduction. We first note that local gauge 
invariance is valid only for the n-dimensional gauge 
field _,,C;(~)(Gu-G~,')+¢,) since O~')=0. Thus 
G¢~) are the true gauge particles. Consequently, the p 

Ward identities of  gauge invariance only lead to the 
equality of  the coupling constants for G~ ~) #6. The e- 
scalar couplings are renormalized independently 
(coupling: q q ~ # q q G  (~), 3G(~)#G( ' )G( ' )~  but 
3 G (~) = qqG (~) ). Since our goal is only one-loop, we 
are not concerned with the renormalization of  G (')e~- 
couplings or any four-point coupling. We will there- 
fore only consider the qqG ~) and qqe couplings. 

Since Gu ~) are the true gauge particles we split the 

,6 I.e. for G~ 0) there exists a universal coupling constant in all 
orders of  perturbation theory which we denote by gr~o. 

Table 2 

qqG 3G Zq Zc ZG 

N c -  2CF - N c  - 2C~ - N c  -Nr  
(1 + ½e)y(." +y(. ' '  (3+ ½e)y(~4' -?<~ ' '  ( -  1 - ~e)7~" (~-  ~e)y~4) + ]7(." _ ]yt,) _ ~y~,) 
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(four-dimensional) lagrangian ~ into three pieces ~7. 
~___ 5o~ed + £,oop + ~ .  £p~,d describes the interactions 
containing n-dimensional external fields a t " )  5 °°p ~ ] ~  , 

describes the coupling of  (external)  e-scalars and 5~ 
contains the rest. We define the coupling constant of  
dimensional  reduction as g~ed, the coupling constant 
at e.g. the qqG ~") vertex. We also define g~ to be the 
coupling constant of  the qqe vertex. Clearly, in low- 
est order, the two coupling constants are equal and 
there is no contr ibution coming f rom 5¢ ~. 

However, at the one-loop level, the qqG ~") and qqE 
vertices are renormalized differently. They receive 
contributions coming f rom insertion of  loops con- 
taining the full  ( four-dimensional) gauge field prop- 
agator (and the fermion propagator) .  Defining MS 
renormalizat ion as the scheme where just the UV- 
poles are subtracted, the contributions to g~d and g~ 
correspond to the sum of  the ( true)  UV poles of  
(column 3 + column 5) and to the sum of  column 4 
of  table 1, respectively. Here we see explicitly that  
the e-scalar coupling is renormalized differently from 
the gauge particle coupling. We find (see also ref. 
[11]):  

oLMS , ~ - - ' E 7  r o B  

MS - ~ 7  a 

with 

Z .  = 1 + bo~.~J2zte, 

(8) 

Z~ = 1 + b,a~,,/2rt~, 

b = ~ Nc - Z3 Nf , 

b , = 2 C v  + 2 N c - N f .  (9) 

We now postulate that  the two renormalized cou- 
plings are equal: 

Ms a M s  (10) 
O/s. red s.~ • 

We then arrive at the MS counter term T~ed of  
dimensional  reduction 

M S  
Of s , red  T~g d = - i g &  ~ ( - by~ ") - b~,~°). (1 1 ) 

We observe that subtracting the UV poles [i.e., add- 

,7 In contrast to eq. (6). 

ing eq. (1 1 ) ], no e-operator contribution survives and 
in addit ion we subtract the same (true) UV poles as 
in standard dimensional  regularization. However,  in 
eq. (1 1 ) we use as, red whereas in eq. (7) there is a~xeg. 
The difference in the MS renormalizat ion contri- 
butions to gred and to the usual dimensional  regu- 
larization coupling g~g is just the last column of  table 
1. These are contributions containing internal e-sca- 
lar lines. Their  (finite) sum accounts for the differ- 
ence between the two couplings g~ed and gr~ tO one- 
loop. Writing 

O~s,re d = as,reg (1 + ka~,~¢g), (12) 

we find 

k = N c / 6 . 2 n .  (13) 

Adding this term to eq. (11 ), i.e., to the ( true) UV 
poles of  dimensional  reduction, we again find the 
counter  term eq. (7):  

ig~edtATta4) + Tred " g t ~ , ( 4 )  ct -- --a = - - l g r eg~ ,  a +T,~.  (14) 

3. An explicit example. Let us now, for purposes of  
illustration, turn to a specific example, namely the 
calculation of  the O ( a  2) corrections to e+e - --,q£1G 
within dimensional  reduction. This example is suf- 
ficiently complex to exhibit all the features that are 
necessary to calculate radiative corrections at the one- 
loop level in dimensional  reduction. 

We begin by determining the counter term accord- 
ing to the contributions of  table 1 ~8. In terms of  the 
Born term ampli tude M~,~ (pq =Pl ,  P~ =P2, PG = P 3 )  

defined by [s~j = (p~ + p j) 2; it = photon index, a = gluon 
index] 

( s7 M~,,~ = -4gtAa(p~) ?~ 131 3 7u 

P2 +,03 ) 
- - ~ u - - T a  v(p2), (15) 

$23  

one finds for the counter term 

M ~  = M  Bu'~' { (A + B)gtu~) g~ 4), 

+ Cgu(4,) g ~ ,  + Dg(u~,! g~ ,  }, (16) 

,s As usual the MS renormalized loop contributions are given by 
the sum of the MS counterterms and the loop calculation where 
the UV and IR/M-poles are identified. 
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where 

A = (aff4x)( ~mf-  *gtmc) 2/e, 

B = (oq/47r)(};Nc), 

C = (a~/47t)( ~Nf-  ~Nc +Nc  - Cv) 2/e, 

O = (oq/47t)( - Cv)2/e. (17) 

A represents the counterterm originating from 
7~ 4) , B the e-scalar and Cthe e-operator contribution 
at the gluon vertex, and D is the e-operator contri- 
bution at the photon vertex. Note that one has a 
counterterm for the electromagnetic (EM) vertex 
within dimensional reduction even though the Ward 
identities guarantee that he EM vertex is UV finite 
in dimensional regularization. 

We then fold the counterterm amplitude M ~  with 
the Born term amplitude in order to obtain the coun- 
terterm that has to be added to the hadron tensor. 
We obtain for the trace of the hadron tensor 
(xi=2pi'q/q 2, q=Pl + P Z + P 3 )  

H~,t" = 64n 2 (as/2n) 2 Nc CF 

× I ( ~Nf - ~Nc)(2/()B 4 + ( ~Nc)B 4 

2(1 --X3) 
+ ( ~ N r - ~ N c + N c - C v )  B 4 -  ( 1 - x , ) ( l - x : ) J  

+(-Cv)Ba I , (18) 

where B4= (x 2 +x2) / ( l  -x~ )(1 -x2). 
In order to display our normalization we write 

down the differential cross section for e+e--~q~lG 
for a quark with charge eq: 

d2a 1 4no~ 2 
2 IL 

dxj dx2 - 647r 2 3q 2 e q H . .  (19) 

Let us now turn to the tree diagram contributions. 
For the dimensional regularization and dimensional 
reduction cases we obtain to O(y °) accuracy [where 
y denotes the invariant mass cutoff sa<~yq 2, and 

BS=x~/(l-x,)(1-x2)] 

Hreguv(tree ) =64rcZ(cq/2~)2NcCv 

× (I - l e ) ( B  4 - ½~BS)(a/e 2 +b/e+c), 

H r e d u U ( t r e e  ) =64g2(as/2~)2NcCF 

X (B4(a/~ 2 +b/~+c+d) 

--2(1--X3) "] 
+e  (1 ----~j)O ---~2) J " (20) 

For the present discussion we are not interested in 
the explicit form of the contribution of the term 
(a/e2+b/e+c) that multiplies the respective n- 
dimensional and four-dimensional Born terms. They 
can be read off from the corresponding expressions 
in ref. [ 1 ] if needed. Let us rather concentrate on the 
difference terms proportional to d and e. They sur- 
vive after the singular terms in eq. (20) have been 
cancelled against the respective singular loop con- 
tributions. One finds 

d= -CF-~Nf ,  (21) 

e=  - ~Nr+ ~Nc. (22) 

The difference term proportional to d that multiplies 
the Born term B 4 is determined by the difference of 
n-dimensional and four-dimensional Altarelli-Parisi 
(AP) kernels. There is no difference in the AP ker- 
nels proportional to Nc which explains the absence 
of a Nc term in eq. (21). 

The difference term proportional to e does not have 
the Born term structure as eq. (20) shows. This con- 
tribution arisese from the azimuthal dependence of 
the splitting functions G-+GG and G--*q~l. The azi- 
muthal dependence averages out for the n-dimen- 
sional (four-dimensional) contribution after n- 
dimensional (four-dimensional) azimuthal averag- 
ing. However, dimensional reduction prescribes n- 
dimensional azimuthal averaging of a four-dimen- 
sional matrix element which leads to the contribu- 
tion involving e in eq. (20). This non-Born-term-like 
contribution can, however, be seen to exactly cancel 
the corresponding non-Born-term-like e-operator 
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c o n t r i b u t i o n  f rom the g luon  self-energy con t r ibu-  

t ions  in  eq. (18).  
As a f inal  step we have calcula ted the loop con-  

t r i bu t ions  wi th in  d i m e n s i o n a l  r educ t ion  (us ing  four- 

d i m e n s i o n a l  mat r ix  e l emen t s ) .  Let us stress that  one  
need  no t  keep t rack of  the n - d i m e n s i o n a l  met r ic  ten-  
sor g ~ )  resul t ing f rom symmet r i c  in tegra t ion  i f  all 
m a n i p u l a t i o n s  related to the spin algebra (traces, 

cont rac t ions ,  etc.) are done  before the n - d i m e n s i o n a l  
in tegrat ions .  Then ,  after  add ing  up  the coun te r t e rms  
eq. (18), the tree con t r ibu t ions  eq. (20) ,  and  the loop 
con t r i bu t ions  we o b t a i n e d  a f in i te  result  which  is in 

comple te  ag reement  wi th  the d i m e n s i o n a l  regulari-  
za t ion  result  in  ref. [ 1 ]. 
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