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Within the context of a class of higher dimensional models of gravity, we investigate the 
heating of the universe following an inflationary phase. High temperatures, typically on the order 
of 1017 GeV can be achieved. This allows for a subsequent production of baryon asymmetry and, 
if existing, superheavy cosmic strings. 

1. Introduction 

In higher dimensional models of inflation [1], the time evolution of the internal 
space can play the role of an inflaton scalar field cp in the reduced effective 
four-dimensional theory. Due to its gravitational origin, the potential for cp becomes 
exponentially flat for large % Sufficient inflation is obtained without extreme fine 
tuning of parameters. High dimensional gravity leads to a violation of the four- 
dimensional equivalence principle due to the presence of additional couplings of q~ 
to gravity. As a consequence [1], the potential W(ep) which determines the time 
evolution of the inflaton is different from the potential V(ep) which determines the 
Hubble  parameter  H during the inflationary phase. One finds that V(qo) vanishes 
exponentially for large % During inflation H is several orders of magnitude smaller 
than the inverse characteristic length scale of the internal space L-1.  This leads to 
acceptable values for the density fluctuations Ap/O.  Typically, Zlp/p  ~ 10-4-10  5 
on galactic scales can be obtained. The fluctuations decrease for larger length scales 
(they are about  a factor 10 smaller on the present horizon scale). This picture for 
density fluctuations has been confirmed by independent calculations of Pollock [2]. 

In this paper  we concentrate on the question of entropy production after the 
inflationary period. We calculate the interactions of the inflaton field with other 
(gauge nonsinglet) particles. We arrive at the remarkable conclusion that the 
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temperature of the universe following inflation and subsequent ~ decay is unusually 
large, typically on the order of 1017 GeV. We expect this result to be valid for a wide 

class of higher dimensional models. This confirms an earlier rough estimate [1] 
based on the large mass term of the q~ field in the ground state. Pollock has reached 
at a similar conclusion using constraints from A0/0  as an input [3]. 

Heating of the universe is due to the decay of the coherent field q~ when it 
approaches its ground state value. This is best described in a four-dimensional 
language. We therefore perform in sect. 2 the dimensional reduction of the higher 
dimensional action, including the most general gravitational invariants with up to 
four derivatives. The effective four-dimensional Newton constant depends on the 
volume of the internal space and therefore on % This is not a very convenient 
formulation since the relevant physics depends on ratios of length scales such as 
H / M  e, L X/Mp etc, A formulation with a constant value of Me is obtained by an 

appropriate  Weyl scaling of the four-dimensional metric. This is described in sect. 3, 
For the discussion of both sects. 2 and 3 the detailed geometry of the internal space 
is not used explicitly. We present not only the terms needed for a discussion of 
heating, but  also those relevant for the inflationary period and the calculation of 
A p / p  [1]. 

In sects. 4 and 5 we proceed to a detailed calculation of the post-inflation heating 
temperature for the model of ref. [1] with the ground state ~ ,4  × S D. An explicit 
calculation of cubic and quartic interactions of the inflaton with nonsinglet scalars 
can be found in the appendix. We find a maximal heating efficiency, so that almost 
all of the potential energy stored in the inflaton (geometry of internal space) is 
converted into heat after the inflationary period. In the conclusion we compare our 
results with those obtained from the more standard four-dimensional inflationary 
scenarios. In higher dimensional theories a high heating temperature is compatible 
with very small interactions during the inflationary phase, due to the predicted 
exponential behaviour of the coupling strength. We also argue that the existence of 
an inflationary solution is a crucial criterion for the selection of the " t rue"  ground 
state of a higher dimensional theory. 

2. Dimensional reduction: The coupled system of a scalar singlet and gravitation 

In the next three sections we perform the dimensional reduction for the model of 
ref. [1], expanding on a "ground state" ./~4 × S D. We start with the action* 

fiR;,~R + yR~,~g,~R ~'6 + 

This is the most general form of an approximation including up to four derivatives 

* Our conventions are specified in ref. [1]. 
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for the effective action of d-dimensional gravity. The isometry group SO(D + 1) of 
the sphere S D will appear as a gauge symmetry in the reduced four-dimensional 
action. We only keep the singlets under SO(D + 1) for the purpose of this section*. 
Since non-singlets appear at least quadratic in the effective action, we are guaran- 
teed that every solution of the field equations for singlets in the reduced four-dimen- 
sional theory corresponds exactly to a solution of the higher dimensional field 
equations. (The truncation to SO(D + 1) singlets is "consistent" in the sense of ref. 
[5]). There is a one to one correspondence between cosmologies based on the 
reduced four-dimensional action and the solutions of the higher dimensional field 
equations discussed in ref. [1]. 

^rh The most general ansatz for the vielbein e~ (x, y)  consistent with SO(D + 1) 
symmetry is 

eâ m = O~ 

~=0, 

~ = ~ ( y ) l ( x ) .  (2) 

Here ~ ( y )  is the internal vielbein corresponding to the ground state manifold. For 
a sphere S D the function l ( x )  can be interpreted as an x dependent ratio of the 
radius L ( x )  over the constant ground state radius L 0. The volume of the internal 
space is proportional to  l ( x )  D. A variation of l ( x )  only changes the volume, but not 
the shape of the internal space and is therefore a singlet with respect to the isometry 
group SO(D + 1).The only other singlet excitation is the four-dimensional gravita- 
tional field described by the vielbein Y~'(x). 

Actually, the ansatz (2) holds for the volume degree of freedom plus gravitation 
for arbitrary internal space (there may, however, be additional scalar singlets). We 
perform dimensional reduction for this system for general ground states and use the 
special properties of S D only at a late stage in sect. 4. This permits an easy use of 
parts of our results for more realistic theories. To obtain the effective four-dimen- 
sional action we insert the ansatz (2) into the action (1) and integrate over the 
internal coordinates. The curvature tensor corresponding to the ansatz (2) is 
calculated easily: 

Rmnpq  = Rrnnpq , 

. . . .  h =  -°  ( t  (3)  

k,,h,.d = k ohcd l -  : -- ( ,~cTlhd -- , ,d~lb,) (,~"l- : l J : , .  (4) 

* Dimensional  reduction for the full theory, including all infinitely many nonsinglet excitations, has 
been carried out at the linearized level in ref. [4]. 
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Here /} . . . .  pq(X) and k~bca(y ) are the four dimensional and internal curvature 
tensors respectively, calculated from the vielbeins g~(x) and f.~(y). The semicolon 
denotes four dimensional covariant derivatives. All other components of /}~,~4 
vanish (except index permutations in eq. (3)). We notice that all derivative terms of 
l (x)  appear in the combination 1-11:. and introduce the variable 

s (x )  = In l ( x ) .  (5) 

The effective d-dimensional action (1) for these singlet degrees of freedom yields for 
an arbitrary internal space 

1 
s= f d'x £,)dDyO(y) E~, (6) 

~c'°=-L*°6 +5°ran - el~ + ~R2 + ~9?KR + ~ K 4  , (7) 

.~o = - ~ e x p ( D s ) ( 8  + 2a/} exp - 2s ) /} ,  (8) 

~Ki.  = Y e x p ( D s ) { [ D ( D  + 1)6 + 2 ( D ( D  + 1)a + Dfl + 2 . / ) . / } e x p ( - 2 s ) ] s ; . s ~  

+ [ 2 D 6 + ( 4 D a +  2 f l )Rexp ( -Zs ) ] s ; " . } ,  

(9) 
I?= exp(Ds)  {(aR 2 + BR~t,k "b + vR~bcak~h"a)exp(-as) + 61} e x p ( -  2s) + e},  

(10) 

c~R2 = - Y e x p (  Ds)(aR 2 + f l /} . , .R '"  + Vkmnpqkrnnpq), (11) 

~KR = Y exp ( Ds ) ( 2 D ( D + 1)aks;.s:~ + 2 Dfi k "~ s ;.s ;. + 4 Daks  ;". + 2 Dfi k "" s ;.~ } , 

(12) 

~.~K4 = - Y e x p ( D s ) { [ D Z ( D +  1)2a+  D 2 ( D +  1) f i+  2 D ( D +  1)y]s:~s~s;~sy 

+ [4D2(D + 1)a + 2DZfi]s;~s~s;~. + [4D2a + D2fi]s;~s;~ 

+ [ 2 D 2 e + a D ~ l s : , s j ~ + [ D 2 f i + 4 D ' f l s ; ~ s ~ " } .  (13) 

Here all four-dimensional index manipulations are carried out by multiplication 
wi th  Y~(x) or its inverse Y~(x), e.g. /~,,, = ~PqRmpnq, ~p.v= ~mtsffnv~ . . . .  R = 
'OnmRmn, s"=#tZOS =at~;moe g = d e t e ~  etc. (We also have defined /},h = 
~cd/} ~, o o;p ~ m  ~ ~ ;p '  

c~db, R = ~l~bRab, ~ = det ~ ,  1) D = fdOy~, ~1/2 = ~yiO(x).) If /}~h~d does not 
depend on the internal coordinates, the integration over K ° is trivial and ~ is the 
effective four-dimensional Lagrange density for the coupled system s(x), ~ ( x ) * .  

* F o r  /},,/,,d d e p e n d i n g  on y one  ha s  to t ake  " m e a n  v a l u e s "  o v e r  i n t e r n a l  space  for  q u a n t i t i e s  l ike 
R,,t,R "/' a p p c a r i n g  in £0. 
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3. Weyl sealing 

The field equations derived from (6) involve up to four derivatives. The degrees of 
freedom s ( x )  and Y2'(x) are coupled in a complicated way. Essentially, this theory 
describes some kind of generalized Brans-Dicke theory with Brans-Dicke scalar 

s ( x ) .  In particular, we note that the terms involving only two derivatives of Y~ 
are s-dependent and that the s:~s :~ terms depend on the four-dimensional curvature. 
The appearance of an s-dependent Newton "constant" makes comparison with 
standard cosmology somewhat cumbersome. We rather want to decouple the kinetic 
terms for the graviton and for s at least for those terms which involve only two 
derivatives. This is done by an appropriate Weyl scaling of the vielbein, resulting in 
a constant coefficient of the curvature scalar in the Einstein-Hilbert piece £PG of the 
action. This is always possible for a region of s where the coefficient of R in (8) 
does not change sign. We note that for aR < 0, 8 > 0 the effective Newton constant 
is positive only in the range 

S > S  c , 

exp( - 2s c) = - 8 / 2 ~ k .  (14) 

Within this range* of s we rescale the vielbein 

e~m( x ) = w(  x ) e2'( x ) (15) 

with w ( x )  chosen so that the coefficient of the curvature scalar R built from e~ ' (x )  
is constant. (Since the Weyl scaling (15) becomes singular at s --+ s c, we expect the 
four-dimensional action to have singularities for s --* so, corresponding to a "coordi- 
nate singularity" in field space.) The quantities appearing in (8)-(13) are to be 
replaced as follows: 

~ W 4C  , 

,~/~v = W 2~,a v , 

g u y  = w - 2 g t ~ ,  

..... pu = w 2{ R.,,,p e _ (~.,pn,,q - n.,q~.e)(ln w); .( ln w)~' 

v /1 v 
_ # v _ p. v 4- C n e p ~ m q  ) +(e~,eq~, ,p e . , ep~ .q  e,, eq~.,p 

/} .... = w 2{ R .... - ~ .... (In w)/*~,- 2~m,(ln w):,,(ln w): ~ 

+ 2e,  ~, e,~ [(ln w): ,( ln w):~,- (ln w): , , ]  }, 

/~ = w-2{ R - 6 ( l n  w)/ '~,-  6(ln w);~,(ln w):"}. (16) 

* F o r  a /}  > 0 this r ange  ex tends  to all values of  s. 
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In eq. (16) and the following, covariant derivatives are formed with the rescaled 
metric g.~. We therefore have to replace in (9), (12) and (13) 

S;~ - +  S;/1 , 

s;~. ~ s;.~ - (ln w);~s;~ - (ln w);.s;~ + g~.(ln w);os?, 

s;~ ~ w-2(s;~ + 2(ln w);.s;~). (17) 

Choosing the scale factor 

w(x)=exp(_~Ds)( 8+ 2c~exp(_2s) ) 1/2 
8 + 2al~ ' (18) 

one obtains in the rescaled variables: 

5% + 5°Kin = --e(8 + 2c~/~)R + ~2ef2(s)s.s~ + total divergence. (19) 

The Planck mass Me can be identified 

Ma 
- -  = 8 + 2cH~ (20) 
16~r 

and fZ(s) is given by 

f 2 ( s ) = ~  l + - ~ - e x p ( - 2 s )  g2(s), (21) 

k 
g2(s) = D 2 + 2D + 4(D2~ + 2B + 2~)~-exp(-2s)  

k2 
+4c~[(D2-2D+12)~+4fl+4y]~-2exp(-4s). (22) 

After Weyl scaling, the scalar potential reads (gI ?-- eV) 

V(s ) = ~( Mp216w ) 2(8 + 2~/} exp(-  2s)) 2exp(- Ds) 

x {(cH~ 2 + BR.~R "~ + "¢R.bcaR"hCa)exp(-4s) + 8i~ exp(-  2s) + ~}. 

(23) 
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This potential vanishes exponentially for large positive s. The exponential behaviour 
is very general and reflects the gravitational origin of the scalar: Typically, the 
potential is a rational function of l, but the kinetic terms, as usual in gravitation, 
involve l - l l ; , ,  suggesting the choice of the new variable s. The factor exp ( -Ds )  
corresponds to the inverse of the volume of internal space. Of course, we still need 
to perform an appropriate rescaling of the scalar field in order to obtain the usual 
normalization of the part of the kinetic term which involves only two derivatives. In 
general this will not change the exponential behaviour of the scalar potential. 

For the higher derivative terms, we obtain after Weyl scaling 

5aa2 +ffKR + °~aK4 =50R2 +50KR +0~2 +50s3 +5°.,4 + total divergence; 

~'R2 = - e  exp( Ds )( c~R 2 + fiR .... R .... + TR,.,,,pqRm"pq) ; 

50Ka = e exp(Ds)(8 + 2aR e x p ( - 2 s ) )  ?[al(s)Rs:us ~ + a2(s)R"Vs;~s;~] 

+ e exp(Ds)(6 + 2a/~ exp( - 2 s ) ) -  l [b l ( s ) s~R: .  + b2(s)s:~RF*~:t.] ; 

(24) 

(25) 

(26) 

a l ( s  ) = [ ( 3 D 2 + 2 D ) e ~ + D 2 ~ + D 2 y ] a  2 

+ [ 1 2 D ( D -  2)~ + 2(2D 2 -  3D + 2)/9 + 4 D ( D -  2)718~/~exp( -2s )  

+ [4(3D 2 - 14D + 12)c~ + 4(D 2 - 3D + 6)fl + 4(D - 2)2"~] a2i~Zexp(-4s) 

a2(s  ) = [ D ( D  + 2)fl + 2D2v] 6 2 + [4DZfl + 8DZv] 8a/~ e x p ( - 2 s )  

+ [4( D 2 - 2D - 4)/3 + 8(D 2 - 4),/] c~2k 2exp( -a s ) .  

b a ( s ) = (2 Da + Dfl) 8 + [4( D - 6) c~ + 2( D - 2)fl] cH} exp( - 2s) 

b 2 (s)  = 4D~,8 + [8(D - 2) ~, - 8fl] a/} exp( - 2s) ; (27) 

~.~2 = - e exp( Ds )( ca( s )sa,~s:~ + c2( s )s:u~s~ ) . (28) 

ca(s ) = D 2 ( a  + 2/3 + V) - 2D(6a + 3fl + 2 y ) x  s + 4(9a + 2fi + y ) x  2, 

X 2 c2(s ) -- 2 D ( D  + 2 ) 7 -  8DVXs + 4(fl + 2 " / ) . ,  

2~k  exp( - 2s) 
Xs = 8 + 2a/} e x p ( - 2 s )  " (29) 
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The t e r m s  ~°s3(4 ) contain cubic or quartic products of derivative terms of s like 
s:~,s.",s~ or s:~s~s;~s~. Their explicit form will not be needed for our purpose. Indeed, 
after rescaling of s to a scalar field cp with dimension of mass, the terms A°s3 and 
~s4 correspond to dimension seven or eight operators. If all typical energies E are 
much smaller than Mp, their contribution is suppressed by three or four powers of 
E / M  e. Even for energy scales in the vicinity of the Planck mass, the contributions 
of L~°s3 and ~°s4 can be neglected whenever s is evolving slowly. This is the case for 
the inflationary solutions of ref. [1] for which an approximation for the action 
quadratic in the time derivatives of s is appropriate. Neglecting &Os3 and &°s4, we 
collect the various terms of the effective four-dimensional action: 

m 2 
S(4) = _ f d4x gl/2, "~P R dr exp(Ds) (c tR 2 + fiRmeR ~ + YRt~.ooR~°a ) 

16~r 

2 exp Ds 
+ V(s) - ½ fZ(s)g~"+ (6 + 2 a / ~ e x p ( - 2 s ) )  2 

x (al(s)Rg~'+ a2(s)R"")}s;.s;~ 

exp(Ds) 
(8 + 2aR e x p ( -  2s)) [bl(s)R"., + b2(s)R"";.] s;. 

+exp(Ds) [q(s ) s ;~s ;~  + c2(s)s;.~s~ ~ ] (30) 

The functions V(s), f2(s) ,  ai(s ), bi(s ) and Ci(S ) are  given in (23), (21), (27) and 
(29). We observe that even after Weyl scaling the kinetic term for s is still rather 
complicated. We do not expect to achieve much more decoupling by a simple 
rescaling of s. Fortunately, the effective four-dimensional action simplifies consider- 
ably for some of the situations of interest. 

4. The Friedmann universe 

For our present universe and for most of its evolution since the big bang all 
relevant length scales are much larger than the Planck length M~ z. We therefore 
can neglect all higher derivative terms and the action (30) is well approximated by 

Sd4xglJ2(M  R- v(s') •  31, 
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Stability of Minkowski spacetime (and of the Friedmann universe) requires positive 
kinetic energy for the scalar field 

f 2 ( s )  > 0 .  (32) 

This allows to normalize the kinetic term in the standard way be introducing a 
rescaled scalar field q0 

U2(S)S;~S~ = qO:uqO~, 

= ( ' d s ' f ( s ' ) .  (33) q~ 
Jo 

By definition we have 

OV OV 
O--~ (rp = 0) = -~-s (s = 0) = 0. (34) 

The second requirement of stability is a positive (or zero) mass term for cp 

O2V 3aV 
t ~ =  c%p2 ( q ) = O ) = f  2(0) as z ( s=O) >lO. (35) 

Finally, a vanishing cosmological constant needs 

V(op = O) = V(s = 0) = 0. (36) 

If the requirements (32), (35) and (36) are fulfilled the scalar field will settle at its 
minimum at a very early stage of cosmology. If enough entropy is created to heat 
the universe (this will be discussed in the next section) the subsequent evolution of 
the universe is given by the standard hot big bang model. To a very good 

2 is  approximation we can completely neglect the scalar field when its mass term tz~ 
large. (Corrections to the Friedmann universe are suppressed by powers of T/#~.) 

To be more quantitative we turn now to a specific model [1, 6] with internal space 
forming a D-dimensional sphere S °. Condition (36) needs a fine tuning of the 
higher dimensional cosmological constant 

e = ¼ D ( D -  1)a2/~ ", 

= D ( D  - 1 )a  + (D  - 1)/3 + 2 r .  (37) 

The ground state radius and M p  a r e  

2~ 
co= T '  

M 2 x 

16w 

~ ' > 0 ,  

x = ( D -  1 ) f i + 2 V > 0  (38) 
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8 

= -D(D - 1)8/2~. (39) 

One finds for the scalar potential (23) 

( M ~  12 D ( D -  1 ) e x p ( - D s ) ( 1 -  exp( -  2s))2(1 + o exp(-2S))  - 2  
V(s) = ~ 16~r ] 4~" 

D ( D - 1 ) a  
o (40) 

For the kinetic term one obtains 

M 2 
P 

ix(0) = I~TF0,  

F0=X 2{12~ 2 + 4 ( D - 6 ) ~  X + ( D  2 - 6 D + l z ) X  2 - 4 D ( D - 3 ) X Y } .  (41) 

For D > 3, the kinetic energy is positive provided 

12~ 2+ 4 ( D -  6)~X+ (D 2 -  6D + 12)X 2 
y < (42) 

4D(D-3)X 

(the upper bound is positive). We may expand the scalar potential in powers of cp 

v ( ~ ) = ~  2 2 - ~  3 ~ X m 4  2/%qo ~- g%q~ + ~ ,p + O ( @ / M p )  (43) 

and one finds 

D ( D -  1) My 2 

~~ = (1 + o ) ~ F o  8~ ' 

D( D - 1) Mp 
",o= (i7   J2 4- +,,)-2}. (44) 

(et is defined in the appendix (A.14).) The ratio / ,2/% ~ F~/2Mp/12Dv~ gives 
roughly the range of ~ for which the polynomial expansion is a valid approxima- 
tion. We note that t, 2 is positive (F  0 > 0) and is very roughly of the order Me 2. There 
is no reflection symmetry cp ---, - %  
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Conditions (32) and (35) assure stability only for the coupled system of singlet 
and gravitation in the low momentum range. The complete stability discussion for 
the model under consideration has been carried out in ref. [4]. In our context, where 
we use this model only as a prototype imitating cosmology for more realistic 
models, we only require stability for the singlet (42) together with f > 0, X > 0 (38). 
This assures a realistic cosmology for late times if nonsinglet modes are not excited. 

5. Heating of the universe 

We have seen that the effective action reduces to the Einstein-Hilbert action at 
low momenta. In addition there are the massless gauge fields of SO(D + 1). In a 
more realistic model there would also be fermions with mass much smaller than M e. 
If early cosmology provides the required initial conditions one will end with the 
standard hot big bang cosmology. Assume that an inflationary p e r i o d -  which 
occurs for a reasonable choice of parameters in our model - ends at t 1 with a scale 
factor a exponentially big compared to the inverse Hubble parameter so that the 
a -2  term in the cosmological equations can be neglected compared to H 2= d 2/a 2 

until today (k = 0 cosmology). This solves the horizon and flatness problem [7]. We 
also assume that inflation is responsible for homogeneity and isotropy up to effects 
of small density perturbations A p / p  whose spectrum is calculable in our model 
[1, 3]. The transition from the inflationary phase to the Friedmann universe must be 
such as to produce enough entropy and furthermore, the universe must be heated to 
a sufficiently high temperature T o in order to subsequently create the observed 
baryon asymmetry [8]. If cosmic strings [9] are responsible for galaxy formation, 
they should be produced after inflation (or near the end of the inflationary phase). 
In grand unified models with symmetries like SU(5) monopoles are produced [10] 
by the breaking to SU(3)x  SU(2)x  U(1). This symmetry breaking should occur 
before or during the inflationary phase so that monopoles are sufficiently diluted. 
Also, the heating of the universe should not produce strong density fluctuations. 

We define T O to be the temperature to which the universe is heated after inflation, 
T~ the temperature at which baryons are produced, T s the temperature characteriz- 
ing the phase transition producing strings and T~ the temperature at which a grand 
unified symmetry like SU(5) (or another symmetry whose breaking leads to mono- 
poles) would be restored. Realistic cosmology requires 

T o > T~, (45) 

T o > Ts, (46) 

T o < T~. (47) 

If the last condition is violated, the grand unified symmetry will (again) be broken 
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after inflation thus producing an unacceptable monopole abundance. We note, 
however, that in higher dimensional models the topology of the internal space may 
not be consistent with SU(5) symmetry even if the higher dimensional symmetry is 
of the grand unified type. In this case there is no danger of restoration of SU(5) and 
condition (47) can be dropped. Consistency of the four dimensional description 
allows T o to be on the order of the compactification scale M~, but it should not be 
much higher. (Only a finite number of low mass modes from the infinite tower of 
four-dimensional fields should be in thermodynamic equilibrium.) 

Estimates of T B, T s and T 6 depend on details of the model and its symmetry 
breaking. If cosmic strings associated with the breaking of a local symmetry are to 
play a role in galaxy formation, T s should be = 4-1016 GeV. Sufficient baryon 

asymmetry is produced in many models if the universe cools down from such high 
temperatures.  On the other hand, To, should be safely above T s so as to avoid 
monopole production after inflation. 

A possible scenario could have a compactification scale M~ = 1 0 1 7  - 1 0 1 8  GeV at 

which the higher dimensional symmetry breaks to a four dimensional SU(3)o x 
SU(2) n × U(1)v X U(1)~ symmetry. The topology of the internal space may not be 
compatible with SU(5) symmetry so that there is no restriction from T c even if the 
universe is heated to a temperature T o of the order of M~. The abelian symmetry 
U(1)~ could play the role of a generation group, in which case the scale M~ of its 
spontaneous breaking should be a factor 10-20 smaller than M~ in order to produce 
a realistic fermion mass spectrum [11]. Spontaneous breaking of a U(1) group 
produces strings and the string tension would be of the right order of magnitude for 
the strings to be relevant for galaxy formation (T  s ~ M 1 = ~0- ~M~). Finally, the 
baryon asymmetry may be produced at T B ~< T s. The crucial point for this type of 
scenario is a heating temperature T o around or somewhat smaller than the com- 
pactification scale M~. 

Our present model with SO(D + 1) symmetry is not a realistic one (it has no 
chiral fermions) and we therefore did not attempt to calculate explicitly the scales of 
symmetry breaking. (Although in the present model for D = 9 the grand unified 
symmetry SO(10) would indeed be broken for a large range in parameter space.) We 
believe, however, that high heating temperatures T o around or somewhat smaller 
than the compactification scale are possible for a wide class of higher dimensional 
inflationary scenarios [1,3] - in sharp contrast with most inflationary models dis- 
cussed so far. The reason is simply that the scalar potential does not have a 
polynomial  form - the flat exponential tail responsible for inflation does not imply 
a small mass term at the origin of % We found indeed a scalar mass on the order of 
the compactification scale (44). Also, the cubic and quartic couplings at the origin 
are not very small. In the remainder of this section we wish to demonstrate, using 
the (calculable) couplings of q~ to nonsinglet fields, that T o is not very different from 
M~ for the scalar potential (40) of our model. We will neglect for this discussion all 
higher derivative terms and use (31). We do not expect that the inclusion of higher 
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derivative terms will significantly change the qualitative results. We have the 
following picture for heating after the inflationary phase [12]: Once the scalar field 
has moved outside the flat tail of the potential it follows a damped oscillation 
around the minimum at 99 = 0. (The motion towards 99 = 0 could even be over- 
damped.)  Its total energy density E, composed from potential and kinetic energy, 
determines the Hubble constant 

857 
H 2= E ,  

3M~ 

E = V(99) n t- if/)2. (48)  

As long as interactions with other particles can be neglected, gravitational damping 
leads to a decrease in energy and this in turn lowers H 

= - 3Hop 2 . (49) 

Assume now that 99 has cubic couplings to particles whose mass is smaller than its 
own mass ~0- Suppose that it decays into these particles with a decay rate F. As 
long as the lifetime ~- = F-~ of 99 is longer than the Hubble time H - 1  this effect can 
be neglected for the motion of 99. However, once / "  and H become comparable the 
decay of 99 induces a damping force comparable to the gravitational damping (49). 
The energy of the coherent motion of 99 is converted into kinetic energy of its decay 
products and the entropy therefore increases. The scalar singlet 99 itself has no 
renormalizable couplings to the "massless" gauge bosons and chiral fermions. 
(Unrenormalizable terms - 99F~F ~ etc., however, are possible.) Cubic couplings to 
non-singlet heavy scalar fields X or heavy non-singlet fermions Xv are expected. If 
99 decays into x-particles these in turn will decay into the massless gauge bosons, 
quarks and leptons thereby establishing thermodynamic equilibrium. Once E is 
essentially converted into radiation energy the motion of 99 becomes irrelevant and 
further evolution of the universe corresponds to a radiation dominated Friedmann 
universe. 

We note that higher dimensional models lead to an infinite variety of X particles. 
They have cubic (and higher order) couplings to 99. The requirement that there be 
some X particles with masses smaller than /% is fulfilled in our model for a wide 
range of parameters  [4]. There is, in fact, no reason why 99 should be the lightest one 
amongst  the particles with masses of the order Me*. 

The temperature T O may be roughly estimated by assuming that all the 99 field 
energy E(t2) is converted into radiation energy once F and H(t2) become equal at 

* Even if ~0 would be the lightest among the heavy particles, entropy may still be created through 
quartic interactions - if the mass gap between X particles and q~ is not too large - or by interactions 
of cp with massless particles involving intermediate (virtual) X particles or other nonrenormalizable 
interactions. 
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time t 2. 
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N * T 4 =  E (  t2) =- 
3H2(,2) Mt~ 3 r 2 M  2 

8~r 8r; 

90 ] 1/4 
T O = ~ )  M~/2F1/2 = ¼M1/2F1/2" (50) 

(Here N* --- ~ r 2 N ,  where N denotes the number of effective degrees of freedom in 
equilibrium at T o. N is of the order 10 2 for very early cosmology.) The partial width 
for ep decaying into two scalars Xi (neglecting the mass of Xi) is 

2 
1 Vx, (51) rx= 16~r /~ 

Here ~0 is given by (44) and we have calculated a typical cubic coupling u x (as well 
as the quartic coupling Xx) in the appendix. We note that Xi may belong to a 
representation of fairly high dimension (54 for the example in the appendix) which 
multiplies the previous decay rate formula. Also, ep may couple to several boson and 
fermion representations (for which the decay rates are similar since the typical 
Yukawa couplings of q0 to heavy fermions are of the order of the gauge coupling). A 
rough estimate of F (also accounting for the mass of X particles) is 

2 

F =  v--x or h2/t~ (52) 

with v x a typical cubic scalar coupling and h a typical Yukawa coupling. In 
principle, both v x and /% depend on the expectation value of % For our scenario 
however, this effect is not very strong and we evaluate the quantities at the 
minimum at q~ = 0. (Correction terms to/~2 are of the order %r o and for v x of the 

order Xx% ) 
We present in table 1 the relevant mass scales for the case D = 9 with two sets of 

values of the parameters. The first set ~, = -0.9/8, e~ =/3 > 0 leads to an inflationary 
scenario [1]. For these values the "ground state" jg4  x S 9 is classically unstable [4] 
(only the singlet sector is stable as required for realistic cosmological equations once 
non-singlet excitations are neglected). In particular the field S 1 discussed in the 

2 and negative kinetic term. (Also the absolute value appendix has both negative i~x 
of/~x is larger than /%.) We have nevertheless calculated the cubic coupling u x to 
get a feeling about the orders of magnitude involved. More generally, we find that 
there is a conflict between parameter values required for sufficient inflation and 
those that are needed for low momentum stability of the ground state. We may 
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TABLE 1 
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D = 9  

= -0.93 ~ = 5'8 
a='8 ,~=0 
'8>0 '8>0 

1. ° I 4'8 1/2 . 1017 GeV 2'8 1/2 . 1 0 1 7  GeV 
I~q,I 1.2 L ol 10 L ol  
[~x[ 3.2 Lo 1 3 Lo l 
v~ 3.9,8 1 Lo 2 10'8 1 Lo 2 
I '  3.2'8 I Lol (.) '8-1 Lo l 
T() 1.3fl 3/4.10Is GeV (*) 3.6'8 3 / ' 4  . 1017 GeV 
T~ 2.8'8 1/4 . 1017 GeV 2.2fl 1/4. 1017 GeV 

*For realistic cases with #q, > 2kt x we would expect this value to be lowered by a factor/%/2/~ x ~ 1/6. 

interpret this to mean that for the "inflationary parameters" the SO(10) symmetry 
must be spontaneously broken, but we will not pursue the question of the true 
ground state for these parameters in our toy model. A second set of parameters 
a = 0, 3' = 5/3 > 0 was chosen so that /~x < ½/%" For these values all modes consid- 
ered in ref. [4] are stable at low momenta.  Both parameter  sets give similar values 
for F and T °. We conclude that typical values of F are of order L£ 1 ~ a few 10 iv 
GeV and typical heating temperatures are also a few times 1017 GeV. 

We are confident that these results hold qualitatively for a wide range of 
parameters  in our toy model. They may be characteristic for many other higher 
dimensional models. If the cubic and quartic couplings are not small the typical 

value of T 0 is of order Lo 1. On the other hand the overall coupling strength of 
dimensionless cubic couplings is of the order of the gauge coupling g, dimensionless 
quartic couplings are - g 2  and cubic scalar couplings -gLo 1. (In our model 
g2  ~ /3 1.) For realistic models g2  c a n n o t  be too small (g2 ~ ¼) and both L o  I a n d  

T 0 are therefore in a typical range 1017-1018 GeV. 

One may obtain an independent upper bound on the heating temperature if one 
assumes that after the end of the inflationary period the Hubble parameter  
monotonically decreases. In this case the radiation energy density cannot exceed 
(3/8~)H2(t1)M~ where H(tl) is the Hubble parameter at the end of the infla- 
t ionary period. This gives the bound 

r0=nTM, 

! A / f l / 2 L I [  t ]1/2 
T M ~  4,,2p 1 1 \ , 1 i  , 

~/~< 1 (53) 

(the parameter  ~ may be called heating efficiency). During the inflationary period 
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H is given [1] by the potential V(s) (eq. (40)) 

and one has 

8~r V 
H 2 = - -  - -  (54) 

3 M~ 

T M ~ (N*)-1/4V~vl/4 = T~l (55) 

with V M the maximum of V in the region relevant for inflation. This maximum is at 
z M with 

Doz~ + zr~( D + 4 -  Do + 4 o ) -  D = 0, 

z = e x p ( - 2 s ) .  (56) 

The maximum temperature does not depend strongly on the specific form of V 

T ~  ~ 6/3-1/41~i/4 . 1017 GeV, 

VM= 16~r ] /3 q~M" (57) 

For the two sets of parameter values discussed above we find T~ = 2.8/3-1/'4. 1017 
GeV and Tr~ = 2.2/3 -1/4. 1017 GeV respectively. Comparison with T O (table 1) 
shows that the heating efficiency ~ is near its maximal value ~/= 1. The maximum 
temperature T M (53) was also estimated for this model by Pollock [3], who 
estimated H(tl) from the requirement that density fluctuations Ap/p are in an 
acceptable range. He finds typical values T M ~-a few times 1017 GeV. A rather 
consistent overall picture arises: The heating temperature is a few times 1017 GeV. 
The heating efficiency is maximal and heating takes place very fast (I" > H(tl) ). The 
temperature is high enough so that a subsequent phase transition at T s = 4.1016 GeV 
could produce superheavy cosmic strings. 

Since T 0 = Lo 1 no unacceptable monopole number needs to be produced. There 
seem to be no particular difficulties to produce a baryon asymmetry. We expect that 
a similar picture can be realized in a more general class of higher dimensional 
models. 

6. Conclusions 

Let us compare our picture for heating after inflation in higher dimensional 
theories with the standard four-dimensional inflationary scenarios. We note, first of 
all, that the characteristic scale in the transition is the compactification scale L o 1 
typically on the order of a few times 1017 GeV. This is two orders of magnitude 

higher than a standard grand unification scale. Presumably, this still is sufficiently 
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below the Planck mass so that a classical description in terms of a few invariants of 
the effective action can be trusted. The mass term of the inflaton, which determines 
the frequency of its oscillations around the ground state value, is of the order of the 
compactification scale. 

After inflation is over, the heating of the universe critically depends on the 
couplings of the inflaton field to other matter fields. In the standard four-dimen- 
sional inflationary scenarios these couplings can be freely chosen and the discussion 
is restricted, in general, to renormalizable polynomial interactions. For polynomial 
interactions the strength of these couplings essentially is the same during the periods 
of inflation and subsequent heating. This usually leads to the following dilemma: 
The couplings must be very small during inflation so as not to disturb the flatness of 
the inflaton potential and thereby ensure that inflation will last long enough. On the 
other hand, small couplings during the heating period lead to comparatively low 
heating temperatures, certainly much too low for the production of cosmic strings 
relevant for galaxy formation, and often problematic for a creation of baryon 
asymmetry. 

In higher dimensional models all these couplings are calculable. They turn out to 
be relatively large during the heating period. The mass term for the inflaton field 
typically is of the order Lo 2. A high heating temperature of the order of the 
compactification scale is predicted. Nevertheless, the dilemma noted above does not 
occur in higher dimensional inflation. Indeed, the strength of all interactions 
decreases strongly if the internal length scale becomes larger than the compactifica- 
tion length L 0 (which is relevant for the ground state and for the heating period). 
This is related to the fact that before Weyl scaling, the four-dimensional Newton 
constant is proportional to the inverse volume of the internal space (compare 
(A.10)). It is one of the characteristic features of our higher-dimensional inflationary 
scenario that the internal radius is significantly larger than L 0 during the infla- 
tionary phase. The couplings of the inflaton field to other fields are therefore 
predicted to be very small during inflation. This may be equivalently expressed by 
saying that higher dimensional models do not predict polynomial interactions, but 
rather a specific exponential behaviour for the strength of the interactions. 

There is another notable observation in our particular model which may have 
more general significance. We found that the parameter range (in c~,/~, y) required 
for sufficient inflation did not overlap with the range for classical stability of the 
ground state. Although the singlet sector is stable for a range of parameters 
compatible with inflation, so that the model is well suited for a study of cosmologi- 
cal solutions, the appearance of unstable non-singlet modes (besides other failures) 
excludes it from being considered as a fully realistic model. Taking into account the 
non-singlet modes the cosmology of the action (1) with a choice of parameters 
compatible with inflation would asymptotically not approach the state Jk '4 x S D but 
some other state with a different symmetry one which we do not know. 

This brings us to the question of selection criteria for the " t rue"  ground state of 
higher dimensional models. The field equations obtained from the effective action of 
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a d-dimensional field theory (or a string theory) may admit many solutions with 
(approximate*)  Poincar6 symmetry PE, E ~< d. They may be interpreted as "com- 
pactifications" with a flat E dimensional space-time embedded in a d dimensional 
space-time. Many of these solutions may be classically stable and possible quantum 
mechanical tunnelling rates to other solutions may vanish or be small compared to 
the inverse age of the universe. All such solutions can be considered as candidates 
for ground states. (It is even conceivable that there is a continuous spectrum of such 
solutions, depending on initial conditions for the relevant set of differential equa- 
tions - compare the discussion of non-compact internal spaces in refs. [13,11]. This 
would imitate the free continuous parameters a, ~, 7 in our model becoming 
dynamical quantities.) For every stable candidate ground state there would be an 
associated Friedmann universe approaching it asymptotically if the initial condi- 
tions for the matter density are appropriately set. (We discard here possible 
complications from stable massless scalar modes. The conditions for being an 
"a t t rac tor"  universe in the words of Maeda [14] are then essentially equivalent to 
classical stability of the asymptotic flat solution as required in ref. [1].) 

Will the universe evolve to one of these candidate ground states, and if so, to 
which one? It  is essentially a cosmological question if the required initial value for 
the matter  density being very near the critical density is generated. Early cosmology 
must  create on effective E dimensional universe where the curvature for the E -  1 
spacelike coordinates is very small compared to the Hubble parameter H 2 - other- 
wise this solution would recollapse in a time of the order H - 1  and never become 
flat. A large amount of entropy (with 0 = M 2 H 2 )  should also be created. This is 
exactly what inflation and subsequent heating of the universe are supposed to 
achieve. 

Inflation in the sense of a fast (exponential) expansion of some of the spacelike 
dimensions compared to the other (internal) ones may be a relatively frequent 
phenomenon - in the sense that the field equations admit many solutions of this 
type. Although a special choice of parameters (initial values) may be necessary, no 
extreme fine tuning is needed to obtain sufficient inflation. (In our example one 
needs 7 -~ - /~  to within a 10% range.) Our example suggests, however, that not 
every inflationary solution finally ends in an asymptotic approach to a stable 
ground state solution. If inflation does not last forever (this may anyhow be 
excluded by instabilities of de Sitter space) the Hubble parameter must finally end 
its almost constant behaviour. If there is no classically stable solution with H 
decreasing to zero, to which the universe can make a transition after inflation, it is 
plausible that the universe will recollapse and after a short time all characteristic 
scales will again be of order Mp. 

We can now formulate a criterion for the ground state: The ground state should 
be a stable solution with (approximate) Poincar6 symmetry PE for the field equa- 

* This includes the case of (anti)-de Sitter symmetry if the cosmological constant is sufficiently small. 
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tions derived from the effective action. In addition there must exist an associated 
inflationary solution ending through transition to a universe which approaches 
asymptotically this ground state. We may call this criterion "evolutionary selection". 
If there is no inflation, none of the space dimensions will ever grow big. If there is 
no transition to a stable asymptotic solution the large characteristic length scales 
created by inflation presumably recollapse. Combining the requirements of inflation 
and of a stable asymptotic state with approximate Poincar6 symmetry may be very 
restrictive - and perhaps a more or less unique universe can be singled out. 

There are of course many other solutions without asymptotic approximate 
Poincar6 symmetry. If all their characteristic length and time scales are near the 
Planck length we would hardly call them "ground state" because of the lack of 
static properties (approximate invariance under time translations) and spatially 
extended homogeneous structure, which are both required to give meaning to the 
distinction between a local excitation and the ground state itself. (Otherwise all 
excitations could equally well be called "ground states".) Imagine that the universe 
was originally characterized by such "random solutions" with length scales of order 
M p  1. (Classical description may not make sense at this stage and it may be more 
appropriate to speak of a soup of quantum bubbles.) If a region of the universe (by 
chance or, if preferred, by tunnelling from "nothing" [15]) fullfils the initial 
conditions of an inflationary solution, some space dimensions will expand exponen- 
tially. At the end of inflation they may recollapse into the quantum bubble 
soup no interesting (classical) structures would emerge with such a short lived 
"excursion" from the random state. As a possible alternative, the large space 
dimensions could survive (and even further expand) by the approach to one of the 
ground state candidates. This would create a long living universe capable to produce 
structure and eventually intelligence. For this picture it is not important if our 
universe evolved from a small region of the original soup (to the extent that the 
concept "small" makes sense at the beginning of the universe.. .  ) or if it covers the 
whole universe. Also, our universe could be an extended object in a higher 
dimensional world [16] (described by a non-compact internal space) or rather have 
the more traditional topological structure R E × compact internal space. 

Entropy production (heating) is a crucial ingredient in a possible transition to a 
Friedmann universe. We Conclude from our investigations that this is probably not 
a very severe additional restriction - at least not in four dimensions. 

Appendix 

MASS AND COUPLINGS OF NON-SINGLET SCALARS 

In addition to the scalar singlet ~ our model contains infinitely many scalars in 
nontrivial representations of the gauge symmetry SO(D + 1). The sign of their mass 
and kinetic term decides on classical stability of the ground state. Their couplings to 
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the scalar singlet cp are important for their possible production by decay (or fast 
oscillations) of ~p and therefore for the heating of the universe at the end of the 
inflationary phase. We denote such a non-singlet scalar field by X. All couplings 
must be at least quadratic in X due to SO(D + 1) symmetry. Possible couplings are 
~X 2, cp2X 2 e tc . . .  

For a ground state with given symmetry there is an elegant way of calculating 
simultaneously the masses of non-singlet fields X and all couplings to singlets of the 
form ~Nx2. We only need to compute the contributions to the effective action which 
are quadratic in X- We evaluate them for arbitrary configurations of fields which are 
singlets with respect to the symmetry of the ground state. Neglecting higher 
derivatives of X and assuming X to be a complex field, the effective action has the 
form 

(A.1) 

Here we have scaled X so that e x = _+1. For negative e x the kinetic energy is 
negative indicating classical instability. The "mass term" Mx 2 is a functional 
depending on arbitrary background values of the singlet fields % g,~ etc. It contains 
all information about interactions with singlets which are quadratic in X and do not 
involve derivatives of X. 

In order to extract the mass term for X and its cubic and quartic couplings to 
we evaluate Mx 2 for constant cp and vanishing (four dimensional) curvature (R , ,po  

= 0), thus reducing Mx 2 to a single function of % For the ground-state at q~ = 0 the 
mass term kt2[X]2 and the cubic and quartic couplings Vx~ [X2[, ~X×q92]Xl 2 are given 

by 

2 = Mx2(ep = 0),  (A.2) 

vx= d~ (~ = 0 ) '  (A.3) 

d2M 2 
X x - (q0 = 0). (A.4) dqv 2 

(This procedure can be generalized for the analysis of stability of the inflationary 
phase and a calculation of effective interactions during this phase. We would have 
to evaluate M 2 for a curved background and expand around nonzero %) 
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The sign of  e x and the field equations can be read off f rom the work of  ref. [4]. As 

an illustration we look at the scalar in the symmetric second rank tensor representa- 

tion of  S O ( D  + 1) corresponding to $1(1 = 2) in ref. [4]. Its field equations for flat 
four-dimensional  space and given constant  radius L of  the internal space are 

(e x = - sign( a 2)) 

a 3 ~." 0 ,  0 . x  - - - x  = o ,  ( A . 5 )  
a2 

8 
L - 2  = L o  2exp( _ 2s)  = ~ exp( - 2 s ) ,  (A.6) 

zS  

8 
a 2 = - ( c  4 + c, e x p ( -  2s ) )  ~-~, 

~2 
a 3 = (Q  + c 2 e x p ( - 2 s )  + c 3 e x p ( - 4 s ) )  4~.2 ; (A.7) 

C 1 =" - -  ½D(D - 1)~, 

c~ = ( D  ~ - D + 4 ) ; ,  

c3=(-½D4+ D3- 9D2 + 4D) a 2  

+ (-- ~D 3 + 3D 2 - ½D + 6)/3 + ( l l D  2 + 9D - 12)7 ,  

C4--~,  

c 5 = - D ( D -  1)a  + 2 ( D  + 1)/3 + 2(6D + 1 ) y ,  

( 9 )  
= 3 2 4(3D 2 2D 1 ) y ,  CI "}'- C2-I-  C 3 ~D + - D + 2  /3+  + - 

2 

c 4 + c 5 = (3D + 1)(/3 + 43') .  (A.8) 

In eq. (A.5) the metric is the higher dimensional metric ,~,~ and we have to correct 
this by the Weyl scaling (18). In terms of the dimensionless variable s one finds 

a3(,) 
M2(s) = -w2(s )  a2(s-~- ~ . (A .9 )  
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We note  that  M 2 ( s )  has the typical exponential  dependence  on s and vanishes for 
large s like 

lim M 2 ( s )  -~ - ½D(D - 1)(1 + o ) e x p ( - D s ) L o  2 . (A.IO) 

This  indicates that  all couplings of s to nonsinglet fields are exponential ly sup- 
pressed dur ing the inflat ionary phase of ref. [1]. Radiat ive corrections f rom loops 
involving nonsinglet  fields will therefore not  spoil the exponential  flatness of  the 
potent ia l  W( s ). 

For  vanishing four-dimensional  curvature we can use relation (33) for dcp/ds  = 

2 and the couplings Vx, f ( s )  and it is now straightforward to calculate the mass  /~x 

2 =  c 1 + c 2 + c 3  ~ 
c 4 + c 5 2~" ' (A.11) 

{( 2o )t 
b' X (C4-~-C5) -1 - D +  1 + o  = _ _  c 1 + c 2 + c 3) 

[ (C1"}-C2-~-C3)£5 ]} 1~ . , , ~  
+ 2  - c 2 -  2c 3 f -  (0)~-z., (A.12) 

C4 + C5 

X x = ( A -  D ) f - l ( O ) v x  

8 
+ f  2 ( 0 ) ~  

4o  ( q  + c 2 + c3) 

(1 + 0 )  2 (C4-1t-c5) 

+ 2  ( D  + 2 / ( 1  + o ) ) % +  (2D + 4(2 + o ) / ( 1  + o ) ) c  3 

c 4 + c 5 

8C5(C2+2C3) ( 2 )  c5(c1+c2+c3) 
(C4 -~- C5)2 -- 2 O "-~ 1 + o" (¢4 "1- c5) 2 

+ 8¢~(¢ 1 + C 2 + ¢ 3 )  
(c4 + c5)3 , (A.13) 
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A-= - 2 { 2 D ( D -  a ) ( D -  6)c~ 2+ D ( D -  1 ) ( D -  2)a,8 + 2Dc~3' 

+ 2 ( D  - 1),8 2 + 2 (D + 1),83' + 43' 2 } 

{12D(D - 1)c~ 2 + 4D(D - 1)a,8 - 2 D ( 2 D  - 7) c~3' X 

4 ( D -  4) } 1 
+( D - 1 ) (  D -  2),82 + 4,83' D - 1  1'2 " (1 .14)  

To get a feeling for typical orders of magnitude, we take D = 9 and c~--0. One 
obtains 

41,8 + 2603' 
/12 7(fl + 43') L ° 2 ,  (1.15) 

(553 - 8 2 ? ) , 8  + ( 3 3 7 6  - 520?)3' 
vx = - 7(13 + 43') f - l ( O ) L ° 2 '  (A.16) 

2t x = {(1784 - 1638~+ 328~2),8 + (13316 - 8864~+ 2080g'2) 3' 

+ 8[(553 - 82?),8 + (3376 - 5207)3'1 

120,82 + 18,83' - 7"]/2 ] f 2 ( 0 ) L o  2 

× 1 -~ - f2+  8-~Y--~-Y2- t 7 ( , 8 + 4 y )  
(A.17) 

with 

c s 5 2/3 + 113' 
- , (A.18) 

c 4 + c  5 14 ,8+43' 

f 2(0)Lo2 = (1392/3 - 843,)-1. (A.19) 

One finds for two characteristic cases the following order of magnitude for the 
quart ic coupling 

1 
13'1 << IBI  Xx--- 2/3'  

3 
13'1 > [,81: )t x ~ 4-~ (A.20) 
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