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ABSENCE OF ANOMALIES 
IN TWO-DIMENSIONAL NONABELIAN CHIRAL GAUGE THEORIES 
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Using the appropriate quantlzatlon procedure for the gauge fields, we exphcltly show that two-dimensional nonabehan gauge 
theories w~th choral coupling to massless fermmns are free ofanomahes 

I Introductton 
In the last year there arose a new development concerning anomalous gauge theories [ 1-4] It has been 

observed that integration over all gauge field configurations (also those which are related by gauge transfor- 
mations) in the path integral automatically leads to a gauge-lnvarlant, anomaly-free quantum theory [ 2-4] 
This prescription is justified by the fact that gauge fixing does not make sense in a theory without gauge lnvar- 
iance The procedure results in a theory which contains, compared to the old inconsistent treatment, addmonal 
bosonlc degrees of freedom besides fermlons and "transverse" gauge fields These boson fields cancel the anom- 
ahes of the fermlonlc sector Th~s opens up the possiblhty to investigate a gauge theory with chiral coupling 
to fermions w~thout encountering mortal defects from the very beginning 

There is a formal proof of gauge lnvarlance for the general case [4] Up to now, however, there is not much 
progress m showing this feature for specific models expllotly Only the chlral Schwmger model has been inves- 
tigated m detail [4-13 ] In the present work we want to extend this to the case of a nonabehan theory where 
the absence of anomahes ~s not as simple as m the abehan case [7,8] However, we stick to two dimensions 
where the fermions can be integrated out expllc~tly In this way we hope to gain some experience with the mech- 
anism of anomaly cancellation without being forced to enter perturbation theory (This would be necessary in 
four dlmenslons where also renormahzatlon problems have to be faced ) The nonabehan chiral gauge theory 
in two dimensions has also been treated in refs [7,14], however, in ref [7] the analysis was not completed, 
and ref [14], which has also been cnticised in ref [7], used the so-called "anomalous" formulation [8] 

2 Nonabehan chtral gauge theory in two dzmenstons 
2 1 Effecttve actton We consider an SU(N) gauge theory with chlral coupling to massless fermions, 

s= jd2x { -  k tr F . . F "  + ~yu[lO u + lgA. (1 + lys)] g},  (1) 

where A/,=A~z a with "r a being the generators of the gauge group, normalized according to tr zarb= ½jab Our 
notation IS y5=iy°y l, t/oo=-t/ll  = 1, e r a = - e  m= - 1  In the following we shall often use the light-cone rep- 
resentation x+_ =Xo+Xl, r/+- = r / - + =  ½, e + - = - e - + = -  ½ In this representation the interaction reads (due 
tO lyUy5 = e ~ y . )  

S, = ( d2x ½g(/7 +A_ ~' , (2)  
J 
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e ,  only A_ couples to the fermlon fields In two damens~ons the fermlons can be integrated out exphcltly, the 
result for QCD2 (pure vector couphng) reads [ 15,16 ] (we ignore topologacally nontnvlal gauge configurations 
[17]) 

g 2 f  
I~ocD[AI=I[T+I+I[T_I+~n d 2 x t r A + A _ ,  (3) 

where ff/ocD[A] as defined according to 

exp( l f f 'ocD[A])= j d~ d~ exp (1  d2x~,~'(lO~,+gA~,)~ ,) (4) 

The gauge field as represented as 

A± =- a (O+ T~_)T~ 1 
g 

and I as defined by ( T r =  f d2x tr 
I 

I [ r l= Tr[(O+r)r-'(O r ) r  ] ( x ) + ~ - r r  dt[(o,r)T-'(o~r)r-'(o.r)r-'l(x,t) 
0 

(5) 

(6) 

T+_(x, t) as an lnterpolataon between ~ and T+(x) T+(x, 0)=4 ,  T+(x, 1 ) = T + ( x )  In eq (3), the regular- 
azatlon ambaguaty has been resolved by requxrlng gauge lnvanance wath respect to 

A+--*A~=SA+S-'-(1/g)(O+_S)S ~ , T~--,T~=-STT. (7) 

In the case of the charal couphng as an eqs (1) and (2), only T+ couples such that I[ T ] does not occur Due 
to the regularlzatlon, however, the mass term has to be kept even though it contaans also T [ 18 ] In addat~on, 
sance there as no symmetry prmcaple to fix the relative strength of the local polynomial, there as an arbatrary 
parameter associated with the mass term Thas leads for the chlral case to the effect:ve action 

ff/[A] = I [ T + ]  +(agZ/8n) TrA+A (8) 

Thas result, whach is already lnd:cated an ref [ 19], can also be achaeved by simply adding an arbitrary mass 
term to the hght-cone gauge result of  QCD2 [ 20] Another approach to derave the effective action as the direct 
evaluataon of the fermaon determinant using an appropraate regulanzataon prescription [21] 

Followang now the procedure for quantazmg choral gauge theories as outhned m refs [2-4] ,  at has to be rec- 
ognazed that the relevant action ~s I~[A 6- , ]  rather than if'[A] sance the generating functional has the form 

Z = j d A  dG c~(f(A))At[A] exp(iW[A c" ']) , (9) 

where 

W[A] = - ½ Tr Fu.FU" + I~[A] (10) 

In eq (9), fi(f(A)) is the gauge fixing fi-functaon, zlc[A ] the associated Faddeev-Popov determanant and dG 
the lnvaraant group measure In passang, we note that W[A c. ,] as gauge anvarlant with respect to A-~A s, G--.SG, 
hence we have a gauge-anvanant theory an spate of choral ferm~ons [4,7,8] This gauge mvaraance as a formal 
hint for the absence of genuine anomahes, because the anomaly, which is defined as the covanant divergence 
of the current, is nothang else but the gauge variation of the effective action Now we have to calculate 

, ag 2 TrAG+ 'A 6 , 17¢[AC" ' ] = I [ G  ' r ] + - - ~ -  n _ (11) 

258 



Volume 193, number 2,3 PHYSICS LETTERS B 

The mass term gives 

ag 2 
TrA~_-'A~ '=----~aTr{(O+ T_)T-~(O_ T+)T+' +G(O+ G-')G(O_ G-') 8~ 8n 

+G(O+G-')(O_T+)T+ I + G ( O _ G - ' ) ( O + T  )T- ' } ,  (12) 

and the Wess-Zumlno action I changes according to 

I[G-' T+] =I[G-']+I[T+] + 1  Tr G(O+ G-')(O_ T+)T+' (13) 

Altogether we find 

a 
ff'[A c'-' ] =I [  T+ ] -~ -~Tr  (O+ T_ )T-_'(O_ T+)T+' 

+~--~Tr(½(1-alG(O+G-')G(O G-')+(1-½a)G(O+G-')(O_T+)T¥'-IaG(O_G-')(O+T )T-_' 

l 

+ (14) 

16 July 1987 

f dte"'G(O,G-I)G(O.G-')G(O~G-')) 
0 

2 2 Currents and two-pomtfuncttons In order to study possible anomalies, we have to construct currents 
We are only interested in those currents which couple to the gauge field, these are defined as 

1 
( J + )  " ' (x)  = - -  exp(ll~'[A6-']) (15) gfiA~'(x) 

where ( ) denotes an "average" over fermlon fields only, the indices u and v specify elements of the SU(N) 
matrices In order to perform the functional derivative, we replace (0~ T+ ) ~ ~ everywhere but in I[ T+ ] byA+ 
The ( J )  can be calculated directly with the result 

( j _ )  = a  1 - l a  8n (gA_ -1GO_G- ) exp(l I~[A6- ' ] )  =-~--  n [0_ T+)T¥' +GO_G-'] exp(xI, V[Aa-~]) (16) 

For ( j + )  we need the derivative of I [T+]  with respect to A_ To this aim we use the formula 

T~)=T(+O).T+[T(+O)-'(A(,)_- _A(°))T(°)+ ] ,  T (~)=T+- - (o  , [ A  ] (17) 

which IS Lemma 4 2 of ref [ 16 ] The differential equation (5) for T+ can be converted to an integral equation 

T+ (x) = 1 + lgJd2y D+ (x-y)A_ (y) T+ (y), (18) 

where 

--1 1 D+(x)- ~ O_D+(x)=J2(x) 
4z~ x + - l e  s g n x -  

Applying J_ t o e q  (18) thus leads t o e q  (5) Eqs 
variation of T+ with respect to A _  

(19) 

(17) and (18) can be combined to give the first-order 
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T+[A +SA ](x)=T+[A ](x)( l+lgfd2yD+(x-y)(T+l[A ]SA T+[A ] ) ( y ) )  (20) 

This means for the variation of I[ T+] 

I[T+[A +SA ]]=I[T+[A ]] {l+O(SA )} 

=I[T+[A ] ] + I [ l + O ( S A ) ]  lg +~nnTr (0+ T+)T+'SA (21) 

Since I[1 +O(SA)] =O((08A) 2) this can be neglected and we find 

81[ T+ ] lg 
8A'"(x) -~n  [ (0+ T+ ) T+']'" (x) (22) 

W~th th~s the + component of the current ~s calulated to be 

) - ±  , _ ,  (J+ -4n  [(O+T+)T+'-½a(O+T )TT_ +(1-½a)GO+G ]exp(xl, V[A G ']) (23) 

Note that this coincides, as expected, with the result for the pure vector case [ 16], if we set a=  2 Finally, we 
state the results for the time-ordered two-point functmns of currents, which are the second derlvaUves of 
exp(1 Ig'[ c,-,]) wxth respect to the gauge fields without exphclt derivation 

(T* ja(x ) f ' ( y )  ) = ( f_ (x ) )  (J~(y)) exp( - 11&'[A 6 ']) , (24) 

(T*J~+(x)Jb_(y) ) = (J~+(x)) (jb ( y ) )  exp( - l i fT[A°- '  1~ _ l a  j a b j 2 ( x _ y  ) exp0  lge[A o_, ]) (25) 
J* 4/r 

( T*J"+(x)Jt~ (y) )=(Ja+(x) ) (jb (y) ) e x p ( - l I ~ [ A a - ' ] )  

+ l-2-tr{[T+'2OT+](x)D+(x-y)[T+12bT+](y)} exp(lW[AC'-']) (26) 
4 ~  

where 2~=2z ~ are generahzed Gell-Mann matrices and D+ =0+D+ Formally, eqs (25) and (26) have to coin- 
rode with the result of ref [ 16], if we set a=2 ,  since the A-dependence of j+ is the same as m thxs reference 

2 3 Absence ofanomahes The currents transform under gauge transformations according to  (j)s=S(j) 
×S-~,  hence the covanant derivative o f j  reads 

~,, ( j~) =0,, (j~) +]g[ (j~), A,,] (27) 

For a consistent dynammal theory of gauge fields it ~s necessary that the current whxch couples to the gauge 
field is covanantly conserved, x e ,  

~, ,( jv ) =½(~+ <j_ ) + ~ _  ( j + ) )  =0  (28) 

The left-hand side can be calculated to give 

~ u ( f ' ) =  ~-2-{O+[(1--~T(O T+)T+ '-½aGO_ G-']+O_[-½a(O+T_)TS_I +(1-½a)GO+G -~] 
8n 

+(1-½a)[G(O+G-') , (O T + ) T + ' ] - ½ a [ G ( 0  G -I) , (O+T )T_-']}exp(lffe[A a ' ] ) ,  (29) 
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where we used 

[(O+T+)T+ I , (O_T+)T+~]=o+( (O  T + ) T + I ) - O _ ( ( O + T + ) T +  ~) (30) 

Experience with the abehan case where the additional boson field enforces current conservanon [ 8 ]  suggests 
to try whether the equation o f  moUon for G has consequences for Du<j~ ) To this aim we wnte the effecnve 
action as 

IYc'[A 6-'  ] = I [ G - '  ] 

+ I  Tr{-½aG(O+ G - ' ) G ( O _ G - ~ ) + ( 1 - ½ a ) G ( O +  G- ' ) (O T+ ) T + ' - ½ a G ( O _  G-~)(O+ T _ ) T  - ' }  
4n - - 

+ terms independent of  G ( 3 1  ) 

F o r  the  v a r a a n o n  o f  I [  G - ~ ] w e  w r i t e  ( G + 5 G )  - ~ = G - ~ (~  - 6 G .  G - ~ ) a n d  u s e  t h e  s a m e  p r o c e d u r e  as t h a t  l e a d -  

ing  to eq (22),  this yields 

8 I [ G - t ] _  1 [G_,O_(GO+G_,)]~.(x)  (32) 
8G"V(x) 47r 

Furthermore we need 

8 Yr G(O~,G-I)X 
--( G-  I)"(x){O,,X+ [ G( O,,G-') , X] }'"(x) , (33) 

aG"'(x) 

vahd for any X With these results we can derive the equanon of  morion for G 

0=a ff[A c'-' ] 
fiG"" 

1 
- ( G - ' ) " { O + [ ( 1 - ½ a ) ( O _ T + ) T + ' - ½ a G O _ G - ' ] + O _ [ - ½ a ( O + T  ) T - ' + ( I - ½ a ) G O + G - ' ]  

4z~ 

+(1-½a)[G(O+G-'),(O_T+)T¥']-½a[G(O G- ' ) , (O+T )T=']} r" 

= -  2 1 ( G - ' )  ~'(~u ~'z~-) " e x p ( - a f f ' [ A ° - ' ] )  (34) 

Hence we learn that xt is the dynamics of  the G field which enforces current conservation and thus makes the 
theory consistent Th~s also ensures a canomcal [jo, 10] equal-time commutator ,  1 e ,  the absence of  Schwlnger 
terms The proof  for this, being valid for arbitrary &menslon n, goes as follows Let M a be the anomaly, 1 e ,  
the covarlant dxvergence o f  the current and define 

8 1 ~ ~¢a(x) =l/Iv abou~n(X--y ) + I  v ab(~n(x--y) (35 
6Av(y) 

Then the 0-0  component  of  the equal-rime current-current  commutator  can he expressed m terms of  p,o ~ and 
/°ab[22] 

[ <s°°(x) >, <s°b(y) > ]~TC 

= lfa~'y °' d"-  ~ ( x - y )  + (I  ° ,~l, _f.,~aA~,p,o a~,) d"-  1 ( x - - y )  ~ (I  t° ab --  lOt ab) 01 d ~n- 1 ( J l ~ - - y )  ( 36 ) 

This means that there are no Schwmger terms m [3 o, j o] ETC If the current j is conserved, since m this case I u° ~' 
a n d / o  ~b vamsh 
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3 Concluston 
In the  p resen t  work  we h a v e  exphc l t ly  shown tha t  the  chxral n o n a b e h a n  gauge theory  xn two  d i m e n s i o n s  is 

gauge m v a r m n t ,  free o f  a n o m a h e s  and  tha t  there  are  no Schwxnger t e rms  in the jo_jo c o m m u t a t o r  T h e  con-  

s ls tency o f  the  m o d e l  (a t  least  up to this l eve l )  is dynamxcal ly  ensu red  by the  boson  fields which  s tem f r o m  

the  app rop r i a t e  quantxza t lon  p r o c e d u r e  for  the  gauge f ie ld  In  this way the theory  seems to rescue xtself as soon 

as there  arise a n o m a h e s  m the  f e r m l o n  sector,  these  boson  fields b e c o m e  n o n t n w a l l y  coup led  and  cancel  the 

fe rm~omc anomal ies ,  l eav ing  b e h i n d  a theory  which  appears  to be cons i s ten t  
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