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ABSENCE OF ANOMALIES
IN TWO-DIMENSIONAL NONABELIAN CHIRAL GAUGE THEORIES
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Using the appropriate quantization procedure for the gauge fields, we explicitly show that two-dimensional nonabehan gauge
theories with chiral coupling to massless fermions are free of anomalies

1 Introduction

In the last year there arose a new development concerning anomalous gauge theories [1-4] It has been
observed that integration over all gauge field configurations (also those which are related by gauge transfor-
mations) 1n the path integral automatically leads to a gauge-invariant, anomaly-free quantum theory [2-4]
This prescription 1s justified by the fact that gauge fixing does not make sense 1n a theory without gauge invar-
1ance The procedure results in a theory which contains, compared to the old inconsistent treatment, additional
bosonic degrees of freedom besides fermions and “transverse” gauge fields These boson fields cancel the anom-
alies of the fermionic sector This opens up the possibility to investigate a gauge theory with chiral coupling
to fermions without encountering mortal defects from the very beginning

There 1s a formal proof of gauge invariance for the general case [4] Up to now, however, there 1s not much
progress 1n showing this feature for specific models explicitly Only the chiral Schwinger model has been 1nves-
tigated 1n detail [4-13] In the present work we want to extend this to the case of a nonabehan theory where
the absence of anomalies 1s not as simple as 1n the abelian case [7,8] However, we stick to two dimensions
where the fermions can be integrated out explicitly In this way we hope to gain some experience with the mech-
anism of anomaly cancellation without being forced to enter perturbation theory (This would be necessary in
four dimensions where also renormalization problems have to be faced ) The nonabelian chiral gauge theory
1n two dimensions has also been treated 1n refs [7,14], however, in ref [7] the analysis was not completed,
and ref [14], which has also been criticised 1n ref [7], used the so-called “anomalous” formulation [8]

2 Nonabelian chiral gauge theory in two dimensions
2 1 Effective action We consider an SU(N) gauge theory with chiral coupling to massless fermions,

§= @ (= y tr B + 06, + LeA, (1 +175) 1) (1)
where 4,=A71° with t* being the generators of the gauge group, normahzed according to tr 112 =146% Our
notation 1s ys=1", oo=—1m,=1, g, =—€%"=—1 In the following we shall often use the light-cone rep-
resentation x. =x,Tx, 7 "=n"t =% e~ =—¢~ " =—4 In this representation the interaction reads (due
to 1p#ys=¢"y,)

Si=| dxdgiyay, 2)
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1e, only A_ couples to the fermion fields In two dimensions the fermions can be integrated out explicitly, the
result for QCD, (pure vector coupling) reads [15,16] (we 1gnore topologically nontrivial gauge configurations

(17D
- g2
WQCD[A]=I[T+]+I[T_]+4—7;JdzxtrA+A_, (3)

where Wocp[A] 15 defined according to

exp(1WocenlA4]) =J dy dy exp<1 j d?x wy“(1d,, +gAu)l//) (4)

The gauge field 1s represented as

As=—2(8.T)T5", ()
g

and 7 1s defined by (Tr=/ d%xtr)

I[T]:8—17;Tr[(6+T)T*'(G,T)T”](x)-f-%TrJ dt [0, DT~ (3, T3, DT~ x, 1) (6)
0

T, (x, t) 1s an 1nterpolation between 1 and 7. (x) T+(x,0)=1, T+(x, 1)=T.(x) Ineq (3), the regular-
1zation ambiguity has been resolved by requiring gauge invariance with respect to

Ao AL =SA.S7 —(Ug)(8.5)S™", Ty—T%=ST, (7)

In the case of the chiral coupling as in eqs (1) and (2), only T, couples such that /[ T_] does not occur Due
to the regularization, however, the mass term has to be kept even though 1t contains also 7_ [18] In addition,
since there 1s no symmetry principle to fix the relative strength of the local polynomal, there 1s an arbitrary
parameter associated with the mass term This leads for the chiral case to the effective action

W[A)=I[T,)+(ag?/8n) Trd. 4 (8)

This resulit, which 1s already indicated 1n ref [19], can also be achieved by simply adding an arbitrary mass
term to the light-cone gauge result of QCD, [20] Another approach to derive the effective action 1s the direct
evaluation of the fermion determinant using an appropriate regularization prescription [21]

Following now the procedure for quantizing chiral gauge theories as outlined in refs [2-4], it has to be rec-
ognized that the relevant action 1s W[A4° '] rather than W{A] since the generating functional has the form

Z:jdA dG 6(fANA[A] exp(W]AC']) (9)
where
WA=~} TrE,F* + W[A4] (10)

Ineq (9), 6(f(A4)) 1s the gauge fixing d-function, 4{A] the associated Faddeev—-Popov determinant and dG
the invanant group measure In passing, we note that W[A4¢ '] 1s gauge invanant with respect to A— A5, G- SG,
hence we have a gauge-invariant theory in spite of chiral fermions [4,7,8] This gauge invariance 1s a formal
hint for the absence of genuine anomalies, because the anomaly, which 1s defined as the covariant divergence
of the current, 1s nothing else but the gauge vanation of the effective action Now we have to calculate

2
W[A“”]:I[G*‘T]+%TrA‘;"A?" (11)
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The mass term gives

2
%"n—TrAg"'A(r’ =—g7aTr{(6+T_)T:'(6_ TOT:' +G(9,.G-1)G(3_G~")
+G(,G ' WO_THT'+G(O_G~'W4,T_)T="'}, (12)

and the Wess—-Zumino action / changes according to
HG'T, 1=I[G'] +I[T+]+ZI; TrGo, G- '"Wo_T,)T3' (13)
Altogether we find

W[A('“']=I[T+]—§a;Tr(6+T_)T:‘(6_T+)T;‘

+;:;Tr<%(l —a)G(3,G)G_G ")+ (1-4a)G(3,. G )I_T)T7' —4aG(d_G~" W8, T_)T "
1

+J.dte‘“’G(a,G")G(G#G“)G(G,G")) (14)
0

2 2 Currents and two-point functions In order to study possible anomalies, we have to construct currents
We are only interested 1n those currents which couple to the gauge field, these are defined as

1
g8A4%(x)

e D" (x)=— exp(IW[A°']) (15)

where ( ) denotes an “average” over fermion fields only, the indices u and v specify elements of the SU(N)
matrices In order to perform the functional derivative, we replace (3 T.) 3! everywhere but in I[7T, ] by 4.
The (J_) can be calculated directly with the result

) =% (g4_ —1GI_G~") exp(lW[AG"])=;—7‘za [0_T T3 +Go_G~']exp(1W[4°7']) (16)

For ¢j, > we need the derivative of I[ 7. ] with respect to A_ To this aim we use the formula

TO=TQ T [TP (AL -A4O)TP], TY=T,[4V], (17)
which 1s Lemma 4 2 of ref [16] The differential equation (5) for 7', can be converted to an integral equation
T, (x)=1+1g[d% D (x=D)A- (T (). (18)
where

— 1
D.(x)== = 3_D.,(x)=8(x) (19)

4r x* —1esgnx~

Applying 6 _ to eq (18) thus leads to eq (5) Eqs (17) and (18) can be combined to give the first-order
vanation of T, with respect 10 4_
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T. (A +5A7](X)=T+[AA](X)(1 +1gjd2yD+(X—Y)(T1'[A7]5A7 T, [Afl)(y)> (20)
This means for the variation of /[ 7, ]
T [A_+38A_1]=I[T.[A_]] {1+0(84_)}

=1[T+[A,]]+1[1+0'(5A)]+%Tr(a+T+)T;'5A, (21)

Since I[1+0(84)] =0O((3d84)?) this can be neglected and we find

SIT.] 18

St =2l (G TOT3" ) (22)

With this the + component of the current is calulated to be
U+ >=Zl7—z [(0.THT3' —4a(8,T_)TZ'+(1-4a)Gd. G~'] exp(UW[4°']) (23)
Note that this coincides, as expected, with the result for the pure vector case [16], if we set a=2 Finally, we

state the results for the time-ordered two-point functions of currents, which are the second derivatives of
exp(1W[“']) with respect to the gauge fields without explicit derivation

(T (X)) (0)> = (X)) Y G () exp(—1W[A497']) (24)
(TP () > =% )> Ut ) exp(—lW[AG*'])—;—Z 382 (x—y) exp(W[A°']), (25)
(T4 (X)) > = G4(X)> UL (1)) exp(—1W[4°7'])

- ({73 2 T2 ()DL (x=)[T 2 AP T2 )(0) } exp (1WA ]) (26)

where A“=21“ are generalized Gell-Mann matrices and D =4, D, Formally, eqs (25) and (26) have to coin-
cide with the result of ref [16], if we set a=2, since the A-dependence of j. 1s the same as 1n this reference

2 3 Absence of anomalies The currents transform under gauge transformations according to (J>5=S¢>
X S~!, hence the covariant derivative of ; reads

gu<.]u>=au<.fu>+1g[<]v>3A/1] (27)

For a consistent dynamical theory of gauge fields 1t 15 necessary that the current which couples to the gauge
field 1s covariantly conserved, 1 e,

Gy >=D G >+2_{4+))=0 (28)

The left-hand side can be calculated to give

9u<1">=§1;{3+[(1—_%7i7(5-T+)TI' —4aGd_G~'1+d [—3a(d. T )T-'+(1-3a)Ga. G']
+(1-4a)[G(3,. G, (9_T)T3'1-4alG(6.G "), (8. T_)T =" 1} exp(GW[A°']) (29)
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where we used
[ THTZ' ,(0_THT']=0,.(3_T)T3)-0_((0.THT3") (30)

Experience with the abehan case where the additional boson field enforces current conservation [8] suggests
to try whether the equation of motion for G has consequences for D, {;#*> To this aim we write the effective
action as

WA '1=1[G™']
+$Tr{—%aG(0+G"')G(8_G—‘)+(1—%a)G(aJ,G“)(a_T+)T;' —3aG(3_G~')(3.T_)T ="}

+terms independent of G (31)

For the vanation of I[G~'] we write (G+8G) ~'=G~'(1-8G-G ') and use the same procedure as that lead-
ing to eq (22), this yelds

3IIG-'] 1

5G“(x) 4n [G~'6_(Gd.G~")]™(x) (32)

Furthermore we need

8 TrG(3,G~ "X

son (0 BXFGO,67, X (x) (33)
valid for any X With these results we can derive the equation of motion for G
0_8 W[A4°
To8Gw
1
=E(G“')”{3+[(l—%a)(5* T )T '—3aGd_G~'1+0_[-4a(d. T )T-'+(1-4a)Gd, G ']

+(1-4a)[G(8,. G~ "), (0_T)T3'1-4a[G(G_G~'), (3. T_)TZ']}™

==21(G~ )" (2, 7)™ exp(—1W[A°"']) (34)

Hence we learn that 1t 1s the dynamics of the G field which enforces current conservation and thus makes the
theory consistent This also ensures a canonical [/, 7°] equal-time commutator, 1 e, the absence of Schwinger
terms The proof for this, being valid for arbitrary dimension n, goes as follows Let </“ be the anomaly, 1 ¢,
the covariant divergence of the current and define

8
a — Jur ab n . vabsn _
ISAs(y)d(x)—] 8,6"(x—y) +I" 6" (x—y) (35

Then the 0-0 component of the equal-time current—current commutator can be expressed 1n terms of 74° %* and
°9[22]

[<%(x) ), %)) Jerc

=‘fah(10(6n—l(x_y)+(IOah_faCdA;IﬂOdb)an—l(x_y)+(IIOab_IOIab)alan-](x_y) (36)

This means that there are no Schwinger terms 1n [7°, 7°]grc if the current ; 1s conserved, since 1 this case /#° 4
and /°“® vanish
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3 Conclusion

In the present work we have explicitly shown that the chiral nonabelian gauge theory in two dimensions 1s
gauge invanant, free of anomalies and that there are no Schwinger terms in the j°~° commutator The con-
sistency of the model (at least up to this level) is dynamically ensured by the boson fields which stem from
the appropriate quantization procedure for the gauge field In this way the theory seems to rescue 1tself as soon
as there arise anomalies 1n the fermion sector, these boson fields become nontrivially coupled and cancel the
fermionic anomalies, leaving behind a theory which appears to be consistent
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