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We present a rigorous path integral treatment of free motion on the Poincaré upper half plane. The Poincaré upper half plane,
as a riemannian manifold, has recently become important in string theory and in the theory of quantum chaos. The calculation is
done by a time-transformation and the use of the canonical method for determining quantum corrections to the classical lagran-
gian. Furthermore, we shall show that the same method also works for Liouville quantum mechanics. In both cases, the energy
spectrum and the normalized wavefunctions are determined.

In this paper we present a complete path integral treatment for a particle moving freely on the Poincaré upper
half plane U= {z=x+iy|y> 0}. Recently, this model for a non-euclidean geometry has become important in
the theory of strings, in particular in the Polyakov approach for the bosonic string - see e.g. ref. [1], and in
the theory of quantum chaos - see e.g. ref. [2-4]. In both cases one considers bounded domains in the upper
half plane, which are fundamental regions of discrete subgroups of PSL(2, R). We shall not consider the motion
in bounded domains; our paper will deal with the free motion on the entire upper half plane.

The Poincaré upper half plane is analytically equivalent to three further riemannian spaces: the pseudosphere
A2, the Poincaré disc D and the hyperbolic strip S. For a review of classical and quantum mechanical motion
(in bounded and unbounded domains) in these four riemannian spaces, see e.g. ref. [4].

The study dof Liouville quantum mechanics and quantum field theory arises in many areas of mathematics
and physics, recently also in string models - see e.g. refs. [5,6].

Classical mechanics on the Poincaré upper half plane is described by the classical lagrangian and hamilton-
ian, respectively:

La=(m2y )X +y?),  Ha=0P12m)(0i+p}), 1)

with p,=mx/y?, p,=my/y? and the metric g,,= (1/y*)d,, The Laplace-Beltrami operator or quantum ham-
iltonian reads (fi=1)

H=—(y*/2m)(9*/9x> +3*/3y?) . (2)

Notice that a necessary condition for wavefunctions weL?(U) nD(H) is w(x, ) =0 for y=0 (xeR). The sca-
lar product for two functions f, g defined on U is given by

[= =]

o= [ ax [Frronnecy.
0

In order to construct the path integral on U, we follow the canonical approach as described in our previous
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paper [7]. We want to express the hamiltonian (2) by hermitian momenta p,= —i(d,+1I",/2) (a=x, y), where
I',=d,(In \/é) and g denotes the determinant of the metric tensor. The quantum correction AV to the classical
lagrangian %, follows then easily from the prescription given in ref. [7]. We have

1 2 14 Ifa 1
\/§=;33 Fx=0a Fy=__a DPx=77T" py=7(___>’

y idx’ i\dy y

d? 1 1
ab —_— ab ab ab _——
Ap= f 3.8/ = (axz af) AV=ge (8T ol s +20,(87 ) +8% w) =7~ (3)
and the hamiltonian (2) reads
1
H(x,pe, y,P)) =5 (g"”papb +20a8°'Ps t PP ) + o 4)
Notice that the hamiltonian (4) is Weyl-ordered which implies the midpoint prescription (i.e.

Zy=3(zy +z;_1)), all j) in the lattice definition of the path integral [8] *..
Now we can write down the hamiltonian path integral (x(¢#')=x", x(¢")=x", y(£')=y’, y(t")=t", T=t" —1')

.
K(x",y",x',y;T)=C(g',8") j Dx(¢)Dy(t)Dp.(t)Dp,(t) exp<i J (pxx+p,y—#) dt) , (5)
with
N—1 N
Dx(¢)Dy(t)Dp.(t)Dp,(t)— ]—Il dxydy, ><Hl (2r)~%dp,,dp,,, (N-oo),
J= j=

where 3¢ coincides with the classical version of the hamiltonian (4). Here C denotes the normalization (see
also ref. [8])

C(g,g")=(g8) "=yy", (6)
where g’ and g” are the determinants of the metric tensor at initial and final points, respectively. Performing
the momentum integrations we get (e=7/N):

-
K(x",y",x'",y'; T) =j ——Dx(?,?y(t) exp(% ;% (x*+y?) dt)
/

= lim

N—oo

N [e oliv =)
( m > J d-x(l)dy(l) j dx(N—l)dy(N~l)e p[ Z (X —Xg— 1)) + (g — .V(;'—n)z]
- e > .

2
2mie i, Yin-n € /5 Y Y-

(7)

In eq. (7) we replaced the midpoint expression y7;, by ¥,¥;_1,, which yields additional terms of O(e), but
which cancels exactly AV of eq. (3). Eq. (7) is the correct path integral on U. This can be verified by deriving
the Schrédinger equation from the short time kernel of (7), see the appendix.

In order to make the path integral manageable we perform a time-transformation (see ref. {7]):

1 " " 'Yy —
S(Z)E‘ijdd, s"=s(t"), s(t')=0, (8)

#! ' We wish to thank N.K. Falck for drawing our attention to ref. {8].

320



Volume 123, number 7 PHYSICS LETTERS A 24 August 1987

with f{y) =1/y2. The variables x and y are transformed into

x(1)—&(s) with $(s())=x(2), y(®)-n(s) with n(s(2))=y(1), 9
with £(0)=x', &(s") =x", n(0) =)’ and n(s")=y". Let us assume that the constraint
s” ds
—_ 10
R (10)

has for all admissible paths a unique solution s” >0. Of course, since T is fixed, the “time” s” will be path-
dependent. To ‘incorporate the constraint (10) we use the identity

(T LT 0Ty
”Zjds ( n(s) T>—Y"Z Jom TEIds exP( st 2(S)) th

in the path integral (7). The only difference to the prescription given in ref. [7] is that we have now only a
time- and not a space-time-transformation. This has the consequence that the additional factor in equation
(IV.6) of ref. [7] is absent in the present case. Defining the energy-dependent Feynman kernel G(E) via the
Fourier transfarmation

(=)

K@,y %,y D=5 | e=™5G(x",y", %',y E) dE, (12)

—oo

we obtain the transformation formula
Gx, v, 2,y Ey=i | R, &5 s, (13)
0

where the transformed path integral is given by

R n", &, 05 5") = | DEs)m[n1Dn(s) exp| = | (& +#2) ds
2 0

n(mg) TTotwon [ otmsones

—o0

X ngl exD(%j; (& —¢6-1)* + (g _'I(j—l))zl) s (14)

with d =5”/N and A=./1/4—2mE. The functional measure is given by

N 2rm m m
l‘l[ﬂ]"jl;[l[ . /T NpNG-1) CXD( i 'I(j)'l(j—l))IA(ﬁ 'IU)'TU—I)):I . (15)

I, denotes a madified Bessel function. Following our general theory [7], we have used
gab=5ah’ \/ézl, I-'{:O, F,,:O, AV=0. (16)

The path integral in (14) factorises into a path integral for a free particle in {eR, and into a radial path integral
with “angular momentum” 4 in the variable 7eR*. Using the well-known path integral identity
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Iu,l[r]Dr(t) exp(i%n I r? dt):,/ —7—.exp<— (r? +r”2))1,1( 7" r”) 17)

(see ref. [9]) we can immediately write down the solution of (14):

3/2
& " " ’ ! ” ' i m ” ’ ” ’ m ! "
R ¢ s sm) = /%7?(15—) ex( 5 18 é)2+n2+n2])h(is—,,nn)- (18)

Inserting (18) into eq. (13), the s”-integration can be carried out by first performing a Feynman—-Wick rotation
(s" - —it, 7eR™"), and then introducing the integration variable z=my’y"/t and the Poincaré distance
coshd(z", z')=[(x" —x')>+y'2+y"?]/2y'y". we then obtain (see p. 712 of ref. [10]):

m d
GG,y Xy By=—rom [ exp(~zcoshdy1, () Ti=7 2-uenlcoshd), (19)
0

where we have introduced the momentum p=.,/2mE —1/4. Eq. (19) gives a closed expression for the energy-
dependent Green function (resolvent kernel) in terms of the Legendre function of the second kine 2, #2. This
result agrees with the one obtained by solving directly the Schrodinger equation (see e.g. ref. {2]). Using the
integrals (see ref. [10] pp. 819 732):

at+b2+c? ,p' tanhnp’ a?+b%2+c?
'@V 12\ ~..1. d 2. 2 ’

2ab piyp'2 T2 2ab
2 2 2 4 b
9’,,_,,2(‘1 +2bab+c ): \n/za—bcos 1% 4 J‘ dk K, (ak)K,(bk) cos ck , (20)
0

eq. (19) can be rewritten as
1 T T sinh &t .
GG,y yiE) =55 | dk [ p BT Yy Ky (1k1y) Ky (1K1y") explik(x =)
—o0 0

(21)

(K, denotes a modified Bessel function). The representation (21) shows clearly that G(E) has a cut on the
positive real axis in the complex energy plane with a branch point at E=1/8m. We thus infer that the quantum
mechanical motion on the Poincaré upper half plane U has a continuous energy spectrum. From (21) we
immediately read off the normalized wavefunctions

sinhnp . 1
Vas(x )= [FERTE e [yKy(1kly) (xeR,y>0);  E,=3—(p*+1) (22)

with p>0 and keR\ {0}. these are the correct wavefunctions (see ref. [11]). The spectrum has a largest lower
bound E,=1/8m. A state with p=0 and E,=1/8m does not exist, because y,, vanishes identically. One also
has to exclude the case k=0, which is obvious from the asymptotic behaviour of the K, function for z—0:
Ki,(2)-4[I'(ip)(2/2)'?+I'(—ip)(2/z) ~'7]. It is nevertheless possible to define a function ¢,(y) :=y?*"? which
is an eigenstate of H, Hg,=E,¢,, but this function is not normalizable in U. ¢, is only normalizable in a bounded
domain.

¥2 We use 2% (z), 24(z) for zeC\ [ -1, 1] and P%(x), Q%(x) for xe(—1, 1) for the Legendre functions of the first and second kind,
respectively.
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As already mentioned in the introduction, U is equivalent to the pseudospere A2 where the wavefunctions
are given by (p>0, keZ\0):

voult, 9)= [P TP E”” T'(ip+k+4) P35 12(cosh T)ei*? (23)

in terms of the pseudospherical polar coordinates >0 and ¢€[0, 2x] with x=ysinh 7 cos @, y=(cosht+
sinh 7 sin¢) ~! 5,6,12,13]. The corresponding path integral expressions on U and A2 can be transformed into
each other as will be shown in our forthcoming paper [14].
Finally, we perform a Fourier transformation in (21) to get the time-dependent Feynman kernel
K(x",y",x',y; T)=l3 I dkj dp psinh np exp[ —iT(p?+4)/2m)]
0

— 00

V'Y K,(1kly' )K,(1kly") exp[ik(x" —x")] . (24)

The v, form an orthonormal basis,

o0

N= [ ax j O 1 YW (3, ) == KV S(D—P) (25)

— Qo

Proof. Inserting . from eq. (22) and performing the x-integration yields

2./pp’ sinhxpsinhp’ | 1
L/op’sioh xpsinh p' ( 5 KoKy () dy. (26)
0

N=4d(k-k')

We now use the integral (ref. [10] p. 693):

a}.—v— 1 bu

Jo.y“K,,(qy)K,,(by) dy=m

xr(l—l+u+v)r(l —l—u+v)r(l—ltu—vﬁr(l—A:u—-v\
2 2 r- 7\ Z 7

2
% (l ).+/1+Vl /Iz,u+u _x l—b—) 27

Let a=b=1, A=1-2¢, u=ip and v=ip+2iq, g=(p’' —p)/2, then

I'(e+ip+ig) (e+ig)(e—ig) [ (e—ip—iq)
I'(2¢)23-2 )

[ Y K 0)K prnal) dy= (28)
0

The “good” terms yield in the limit e—0:
I'(e+ip+ig) ' (e—i
m%{ I" -+ 2 __
25 P +i0) I =g e T o]
where we have used a well-known property of the I'-function. The remaining terms yield

. I'(e+ig)T(e—ig) ,
lim e = im a= 4 -p) (39)

(29)
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and eq. (25) is proved.
Vice versa, the y,, form a complete set, i.e.

<o (=)

[ k[ apyutr, yowsate, =y s — )80 ) 31)

— 0

(the factor C=y'y" =(g’'g”) ~"* has to be included, see eq. (5), due to the riemannian structure of U).
Proof. Consider the integral ([10] p. 772):

J. dx K (@)K (b) cosh[(r —¢)x] =Ko(~/a® +b*—2abcos ¢) . (32)
0

Differentiation with respect to ¢ gives on the left-hand side

—a%fdxlﬁx(a)lﬁx(b) COSh[(ﬂ—-¢)x]=Jdxxsinh[(n—¢)x]Kix(a)Kix(b), (33)
0 0

while the right-hand side yields

ab sin ¢

K 2+b%*-2ab . 34
24b* _2abcos ¢ '(\/a ab cos 9) (34)

_9 Ti 7 _
6¢K°(\/a +b 2abcos¢)_\/a

Here we have used some properties of the K,-function (see e.g. ref. [10], p. 510). Therefore we have in the
limit ¢—-0 and for y’ #£y":

fdppsinhnpKi,,(|k|y’)Ki,,(|k|y”)=0. (35)
0

It remains to consider the case y’ ~p”. Let us set y=y', y" =y+4 with |§|<1 and cos ¢~ 1—¢%2 for |g|<1.
Using Ky~ —In(z/2) (z—0) we get for the right-hand side of eq. (31):

InKo(1kl\/y' 2 +y"~2y'y" cos ¢) > 4m[In § k| +4In(82 +¥29?)] (161, [gl<1), (36)

from which we get in the limit ¢—0:

[ o psinh np K, (k1)K (151" = 472757807 —37) (37)
0

Together with the well-known equation

1 I dkexp[ik(x” —x')] =6(x" —x")
2n e
the completeness relation (31) is proven

The same technique as for the path integral on the Poincaré upper half plane is also applicable to Liouville
quantum mechanics. Let us consider the hamiltonian of Liouville quantum mechanics (xeR) [5,6,13]:

1 d2 V% 2x
_—m dx2+"2";C . (38)

The path integral reads (7=t" —t'):
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K(x",x'; T)=J Dx(?) exp(ij [imx? — (Vii2m)e*] dt) . (39)

In order to makie the path integral manageable, we perform a space-time transformation. Following the general
theory of section IV in ref. [7] we have to start with the Legendre transformed hamiltonian H:

1 d? V2

Hg=-— + e>—E. (40)

= T Imadx?

We consider the transformation g=e* and get a transformed hamiltonian H:(d/dg, ¢). With A(d/dq, ¢)=
(1/¢*)A:(d/dg, g) we obtain

1 /d®2 14d Vz E
Hddg 9)=-7_ (d_tf+q dq) 2m” ¢ (41
The relevant expressions for calculating the quantum correction AV are
1 1/d 1 1
Thus we arrive at the effective hamiltonian
1 V3 2mE+}
Heﬂ"(pq’ 4)“-=2m172+2m— zqu . (43)

Notice that in this case one has a non-vanishing quantum correction. The path integral for Liouville quantum
mechanics can now be calculated via the equations

e o]

K(x”,x’;T):%{ f e~ TEG(x", x'; E) dE, (44)

where
i [~ 2]
G(x",x’;E)= J‘E qn’ql;sn) dsn R 45)
;q’qﬂ 0 ( (

and

R(q",q';s") =exp(—is" V3/2m) f Dgq(s)u; szl 4] exp(‘—;"— f q° ds) . (46)

0

The functional measure is given by (15). With eq. (17) for radial path integrals we can write down the solution
of (46) immediately, yielding

R(q",q';s" ~—\/qq exp(zs,, (¢*+q"*) -

For G(FE) we get
G(x", x's E)=2ml, s5mz(Voe™ ) K; szmr(Voe™ ), (48)
where we have used the integral (ref. [10] p. 719):

)I.ﬁ;z( ~q'q" ) (47)
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exp(—a/x—bx)J,(cx) d?x=2J,,[\/2a(1 /b%+c¢?—b) ]K,,[\/Za(. /b2 +c?+b)]. (49)

ot———38

We have assumed without loss of generality that x” > x’. Otherwise one has to interchange x” and x’. We now
use the integrals (20a) and (see ref. [15] p. 194):

2
I(ax)K(bx)_—TJdt 9, 1,2(" +2i’1b+’ )cosxt,

x [ a’l+br+¢?
K@ (b= | at () o
(ax)K,(bx) modtﬁ’ ,,2< >abh )cosxt (50)
to obtain
. 2 7 ps1nh1tp .
G(x,x;E):—; 27 72m— EK,,(Voe YKip(Voe™ ) . (51)

0

The resolvent kernel (51) has a cut on the positive real axis in the complex E-plane, and we immediately can
read off the wavefunctions and the energy spectrum:

v,(x)=(/n)./2psinh np K;,(Vye*) (p>0,xeR) ; E,=p*2m (p>0). (52)

This is the correct result — see refs. [5,13]. From egs. (25) and (31) we infer that the wavefunctions have the
correct normalization and form a complete set. The Feynman kernel X(T) is given by

2 7 . . , )
K(x",x'; T) =27 J dp p sinh np exp( —iTp*/2m)K;,(V,oe~ YK, (Voe™) . (53)
0

In this letter we have presented a complete path integral treatment of free motion on the entire Poincaré
upper half plane. The calculation was based on the canonical method for calculating the quantum correction
AV to the classical lagrangian and a time transformation in the lagrangian path integral.

The canonical method also works for Liouville quantum mechanics, where the path integral could be cal-
culated via a space-time transformation.

In a forthcoming paper [ 14] we shall present a path integral treatment for the pseudosphere A2, the Poincaré
disc D and the hyperbolic strip S. Of special importance is also the d-dimensional pseudosphere A“~!, where
again the canonical method works very well, yielding the energy spectrum

E{® =(1/2mR?)[p*+4(d-2)*] (p>0) (54)
with largest lower bound
E{ =(d-2)*/8mR? . (55)

A recent path integral formulation due to Bohm and Junker [12] for the d-dimensional pseudosphere gives
unfortunately a wrong result, because these authors missed the quantum correction AV, which is crucial and °
which is caused by the curvilinear nature of A“~'. In our forthcoming paper we shall also show that the “mys-
terious phase factors” in Gutzwiller’s semiclassical calculation [2] arise very naturally.

These new examples in path integral techniques show very clearly the great advantage of the canonical method
[7] over other approaches, giving in a simple way the correct quantum corrections and thereby the correct
path integrals.

326



Volume 123, number 7 PHYSICS LETTERS A
Appendix

We want to prove that with the short time kernel of eq. (7):

: )2 )2
K(C,ze):z m "p(l‘z'%(f x) ;:,(n ») )

and the time evolution equation

(=]

v ito= [ ax [ Fk@zowan
]

the Schrédinger equation follows:

(w7’ /azw(c,t)+62w(c,t))
at 2m\ e on?

24 August 1987

(A.1)

(A.2)

(A3)

(We have used the abbreviations z=z;,, { =2+ ), With z=x+iy, {={+in, X=X, {=X(+1), Y=V, and

n=Y+1).) One has to perform a Taylor expansion in (A.2). We get ({,=¢, {>=1):

(, )Be+ 3 W&

w(, ) +e——"— PR3

W, m ( (B, —{;Bo)

at  2mie

A4 ()]
+%I\IZ|2 aClaCJ

izj
o
—ao

5= | xdxf explie(, 2)] =¢By

— Q0

(B, —CiBy, =B +¢ ,-C,-Bo)
with

2mie)"” 2nie
3 N - m/xe
exp[le$ (C,z)]_Z(—) K_,,(mlie)=——

0‘—-.8
<&

@ [ -] . 172
B,= J dx f %exp[ie-‘t’”(c, 2)] =2'I(%€) e™ K, ,,(mlie)=nB, ,
—o0 0

By= | xax [ Lexplies™, 21 =enB
- 0

o

Bu= f x? dx f = explie£V((, )] = (52 )Bo,

—_—0

Bﬂz_J dxjdyexp[u.?”((,z)] =n ( +’i;)Bo.

— oo

(A.4)

(A5)
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Here

m (§—x)*+(n-y)*

2¢2 > (A.6)
denotes the lagrangian on the lattice. We shall only calculate the integral B,. The remaining integrals are similar.
We get

e« 0 . _ 5 _ 2
By= J de’Q%/exp(l_m_(é x)? +(n-y) )
=) 0

LN 2) =

€ m

12 %
_ [ 2nie m/ieJ. -312 ( m __my l)
—( m ) \/;Ie ! y exp _2ier]y_2iey dy

2rie 2 2rmie
mlie 3
—2( ) € K_l,z(m/lé)— . (A7)

In the last step we have used the integral ([10] p. 340):
J x~! exp(—B/x—yx) dx=2(B/y)"*K,(2,/B7) (A.8)
0

and the expression K., (z)=./%/2ze . Inserting the expressions (A.5) into (A.4) yields the Schrodinger
equation (A.3).
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