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We investigate unified models where all small quantities in the fermion mass matrices are 
given in terms of one small ratio of symmetry breaking scales. We describe for a U(1) generation 
symmetry how the size of masses and mixings is determined, including possible contributions 
from heavy mirror quarks and leptons. This can be used for computerized model scanning. We 
search for realistic mass patterns in anomaly-free SU(5)x U(1)o models and find several 
examples. Interesting patterns for neutrino masses can be obtained. 

1. Introduction 

It has been proposed recently [1] that the orders of magnitude of all fermion 

masses and mixings can be understood in terms of symmetry and one small 

parameter )~ which is the ratio of a symmetry breaking mass scale M o divided by the 

overall mass scale M of the model. The main assumption is that all Yukawa 

couplings are of the same order as the gauge coupling g (as suggested in higher 
dimensional models) so that all small quantities in the fermion mass matrices should 

be related to symmetry [2]. This approach requires a symmetry G larger than 

SU(3) × SU(2) x U(1). In the limit of unbroken G only the top quark (or fermions 

of a fourth generation) should be allowed to couple to the low-energy weak Higgs 
doublet tp and acquire a mass from weak symmetry breaking. Breaking of G at the 

scale M o induces mass terms for the other fermions suppressed [3-6] by powers of 
)~ = M o / M .  T h e  various powers of )~ appearing in the mass matrices determine 

their structure. They can be calculated by group theoretical methods [7]. 

We also assume here that all possible fermion bilinears are coupled to scalar 
fields. (All these scalar modes are typically present in compactified higher dimen- 

sional models, except when either the scalar fields or their couplings to a fermion 

bilinear are forbidden for topological reasons [2, 8].) The generic mass of these 

scalars (doublets under SU(2)L X U(1)y) is of the order M*, cubic couplings are 

* We generally assume a high scale, say M - 1017 GeV. Nevertheless, all our discussion is valid for 
lower M as long as M w / M  << (Mc,/M) 4 (up to an appropriate rescaling of light neutrino masses). 
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-gM and quartic couplings have strength g2. If all super-heavy particles have a 
mass of the same order M the calculation of the structure of mass matrices is greatly 
simplified. It is sufficient to determine the G transformation properties of a fermion 
bilinear corresponding to a given mass matrix element. These then determine the 
power P needed to construct an invariant of the type ~k~k'q0x e. Here cp is the 
doublet whose vacuum expectation value (vev) breaks SU(2)L X U(1), X is an 
SU(3) x SU(2) X U(1) singlet whose vev breaks the symmetry G. The corresponding 
element in the mass matrix will then be of the order A'gcp L [7], with q~L = 174 GeV 
the scale of weak symmetry breaking. 

However, not all heavy particles have always mass M. Sometimes G symmetry 
requires some of the superheavy masses to be of the order A~M instead of M. 
Effects from the exchange of these particles are enhanced and one has to account 
for this in the analysis of the structure of fermion mass matrices*. The most 
important  case are fermions [6] which are chiral with respect to G but vectorlike 
with respect to the low energy symmetry SU(3) x SU(2) x U(1). These fermions are 
massless in the limit of G symmetry. Once G breaks to SU(3) x SU(2) x U(1) their 
mass is not protected anymore and masses appear from direct or indirect couplings 
to X- They are of the order A~M where ff can again be calculated by group 
theoretical methods. A second class of particles with mass M G = AM are the gauge 
bosons corresponding to G/SU(3)  x SU(2) x U(1) if G contains local symmetries 
beyond the standard model. Due to Lorentz symmetry they give no direct contribu- 
tion to mass terms in the tree approximation and play only a role in loops. We 
neglect them here**. Finally, the dynamics of spontaneous symmetry breaking 
requires that all scalars which belong to the same G multiplet as qo or X has at most 
mass M6 = AM. In this paper we are mainly concerned with the case G = SU(3) X 
SU(2) X U(1) x U(1)6 where exchange of such scalars in intermediate channels does 
not play a role for fermion mass matrices. We assume that the masses of X and cp 
are M6 and M w whereas all other scalars have mass M***.  

In this paper we discuss the role of heavy mirror partners of quarks and leptons 
for the structure of fermion mass matrices. Pairs of mirrors and ordinary quarks 
(leptons) will acquire a heavy mass and disappear from the low energy spectrum, 
but  their contribution to the low energy fermion mass matrices may be important. 
Mirror quarks and leptons appear for many compactifications of higher dimensional 
theories (including superstrings). Sometimes they are required for a cancellation of 
anomalies with respect to G. We are also interested in heavy SU(3) x SU(2) x U(1) 
singlet fermions (right-handed neutrinos). They play an important role [11] for the 
masses and mixings of the (left-handed) low energy neutrinos. 

* In  ref. [1] we only considered the case where all relevant heavy particles have mass - M. 
**  A typical loop suppression - a/~r is smaller than a realistic value X ~ 20-1 ~ .  For  fermion masses 

due to radiative corrections see ref. [9]. 
* * *  This  a s sumpt ion  was used in refs. [3-6] and became later known as extended survival hypothesis  [10]. 

Fo r  an example  where scalars with mass  M e play an impor tant  role see refs. [3, 5]. 
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Our method first determines the orders of magnitude of the full mass matrices for 
all fermions with mass smaller than M. This includes quark-mirror pairs and right 
handed neutrinos which are chiral with respect to G and therefore acquire mass 
- ?~VM, ff > 0, as well as all light fermions, chiral with respect to SU(3) × SU(2) × 
U(1), which have mass of the order M w or smaller. We separate the heavy from the 
light modes and discuss the remaining low energy mass matrices. This is in some 
respect superior to a graphical method* with intermediate heavy fermions [5,6] 
since particular features as vanishing or small determinants of mass matrices can be 
easier detected. The mass matrices contain singlet terms - ~,~M as well as doublet 
terms -XPMw (or triplet terms - ~ k M 2 / M  for neutrinos). We give a simple 
algorithm how orders of magnitude of mass eigenvalues and mixings can be 
determined for such matrices. It can be implemented on a computer. 

We concentrate on the case of an abelian local generation group, G = SU(3)c × 
SU(2)L )< U(1 ) r  × U(1)G. The structure of the mass matrices only depends on the 
U(1)~ charges of the fermions and the scalars X and ep. In sect. 2 we give the mass 
matrices in terms of the small parameter ~ = M~/M. In sect. 3 we show an example 
how realistic fermion masses and mixings can be obtained for a set of fermion 
charges without anomalies. We describe the general algorithm for finding masses 
and mixings for quarks and charged leptons in presence of mirror fermions. 

In sect. 4 we turn to the neutrino sector. Light neutrino masses are of the order 
~eM2/M. If there are no right-handed neutrinos v c the power P is necessarily 
positive (or zero) and neutrino masses come out small. (For a typical scale M = 1017 
GeV neutrino masses would be of the order 10 -4 eV or smaller.) However, the 
power P can be negative due to the exchange of intermediate v c with mass smaller 
than M. We found examples with neutrino masses as high as --10 eV (although 
M = 1017 GeV!) or examples where masses and mixings could account for solar 
neutrino oscillations. In general, the generation pattern observed for quarks and 
charged leptons is not repeated in the neutrino sector. The structure of neutrino 
mass matrices is given by the U(1)~ charges of triplet, doublet and singlet operators 
in a way quite different than for quarks and charged leptons. (There are examples 
where the heaviest neutrino is the electron neutrino.) Neutrino mass patterns 
depend critically on the charges of right-handed neutrinos. For an anomaly free 
U(1)~ symmetry the v c charges are related to quark and lepton charges by anomaly 
cancellation. Unfortunately this constraint is not strong enough to fix the v ~ charges 
completely. 

In the last section we investigate conditions for a mass structure from local U(1)~ 
generation symmetry compatible with (four-dimensional) grand unification. We 
perform a computerized scan for anomaly free models with SU(5) × U(1)~ symme- 
try and arbitrary charges for the fermion multiplets (within a certain range). We 

* In principle, the graphical method is equivalent. For all our discussion we work in the tree 
approximation.  
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find several possible choices for the charges leading to realistic mass patterns where 
all small quantities are explained in terms of ?~. No such solutions are found for 
models based on SO(10) × U(1)G or E 6 X U(1)G. Although our investigation should 
be extended to generation symmetries different from U(1)~, we think that it will be 
rather difficult to obtain realistic mass matrices in terms of only one small 
parameter from a generation symmetry commuting with SO(10) or E 6. This suggests 
that possible unifications based on gauge groups containing SO(10) as a subgroup 
may be more attractive in higher dimensions, with a nontrivial breaking of SO(10) 
[2, 12] in the course of compactification. 

2. The structure of mass  matrices 

We aim for a general discussion of fermion mass matrices in theories with a U(1) 
generation group broken at M G somewhat below the characteristic scale M. Let us 
assume that the t_heory contains n + m quarks (charged leptons) ~i and m mirror 
quarks (leptons) ~k of a given type (q, u c, d c, ~, eC). The "generation" charges of the 
quarks are Qi and for the mirrors -ok- We only consider particles chiral with respect 
to SU(3)c X SU(2)L x U(1)r  X U(1)G and eliminate all pairs with Qi + -ok = O. 
(Different types of quarks and leptons_may have different charges Qi, Qk.) Quarks 
and mirrors have Yukawa couplings ~kAbkXq (which we assume to be of the order of 
the gauge coupling g) to SU(3)c x SU(2)L X U(1)y singlet scalars Xq with charge 
q = - ( O i  + Qk) ( X q  =- X -q ) .  Once U(1)G is spontaneously broken, the Xq acquire 
vacuum expectation values (vev's) and induce a mass matrix coupling quarks and 
mirrors 

(MM)ik~g(Xq), q= - (Qi  +-Ok). (1) 

Assume that U(1)G is broken by X1 at a scale M G 

M G M 
(Xl) -~ - -  = X - - .  (2) 

g g 

The ratio MG/M = ?~ is the only natural small parameter appearing in the fermion 
1 mass matrices. We take ?~ = 2o ~o. Interactions between the different X q induce 

non-leading vev's of the order [3-5] 

M 
( X q )  ~,~lq[__.  (3) 

g 

Since the vev of any operator with charge q must be proportional t o  ~Xl) q, one 
obtains for the quark-mirror mass matrix M M 

( g M )  ik = ~,Pi* g , 

eik = [Qi + Qkl . (4) 
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These mass terms will eliminate m quarks and mirrors from the spectrum of light 
particles and leave only n generations of quarks chiral with respect to SU(3)c × 
SU(2)L × U(1) v. 

Similarly, SU(2)L doublets ~q will give contributions to the mass matrix for the 
light quarks. Assume that Cpq ° acquires a vev of the order CpL = 174 GeV. By effects 
of U(1)~ symmetry breaking a doublet Cpq will acquire an induced vev of the order 
[1] (note Cp_q~ ~p~!) 

( % )  = Xlq-q°[~0 L • (5 )  

Consider the up-quark matrix for u and uC: Yukawa couplings -guCujqgq, q = 
_ Q!U c) _ Q)U). give a mass contribution 

( M ~ U )  i 2 -~ ~k/',Jgq0L = XJ',JMw, 

Pgj= [Q} uc)+ Q~U) + q01 • (6) 

The total mass matrix including mirrors is 

u U o) • A t u =  = ~ 
u M ~  

u u c 

(7) 

Here denotes transposition and we have put the irrelevant ficfi mass term to 
zero**. All orders of magnitude are determined by the calculable powers of ~, i.e. 
the Pij in eqs. (4) and (6). For down-type quarks and charged leptons eq. (6) is 

replaced by Pij = [Qi + Q j -  qol [1]. 
Neutrino mass matrices involve left-handed neutrinos v, mirror neutrinos F and 

possible S U(3 )c×  SU(2)L × U(1)y singlets v c (which we may call right-handed 
neutrinos - or more exactly their antiparticles). The U(1)~ charges are Q, Q and QC 
respectively. Up to irrelevant terms (which we put to zero) the mass matrix in the 
neutrino sector is 

MM 0 
0 MR} 

p ~ /yc 

(8) 

* This is equivalent to sect. 1. The field ¢pq could also be considered as composite ¢pq - ~qo x(q-q°). 
** These terms only correct heavy masses by contributions of the order M w. 



448 J. Bijnens, C. Wetterich / Quark, lepton and neutrino masses 

The matrix M T comes from Yukawa couplings to SU(2)L triplets and is of the order 
[3,5] 

(MT) ij  ~ •Pij - -  
M ' 

Pig = IQi + Oj + 2q01, (9) 

whereas the "Dirac mass" M o is due to the doublets ¢pq: 

( M o  ) im ~ ~kPi 'Mw , 

Rim = I Qi + Q¢,,, + q0l- (10) 

The singlets Xq couple both to M M (see eq. (4)) and MR* 

( M R ) r a n  = ~.t'-.M, 

P,,,, = IQ~, + Q~I- (11) 

Again, orders of magnitude in ..¢t~ only depend on the charges Q, ~9 and QC. 

3. Masses and lnixings for the light quarks and leptons 

We want to know which light quarks and leptons are left, what are their mass 
eigenvalues and flavour mixing angles. Before discussing the matrices J / o ,  J fD,  
~ ' L  and .X¢~ more systematically we may understand the structure of the problem 
by studying an example. Consider an anomaly free set of U(1)~ quantum numbers, 
consistent with SU(5) without additional singlets (vc): 

Q(u ,d)  = Q(u ~) = Q(e ~) = ( - 1 , 0 , 1 , 1 , 4 ) ,  

Q(v,e)  = Q(d c) = ( - 4 ,  - 4 , 2 , 2 , 3 , 3 ) ,  

a ( u , ~ )  = Q(fi¢) = Q(~C) = ( - 3 , - 2 ) ,  

O(~,g) = a (~c )  = ( - 1 , - 1 , 0 ) .  (12) 

The model has three 5 and two 1--0 mirror representations of SU(5). (Of course one 
could add an arbitrary number of nonchiral quark-mirror pairs.) We assume that 
the leading part of the low energy doublet has q0 = - 2  and that ~ = M G / M  is 
about  }0 1 10" 

* I f  there  is an  addi t ional  B - L s y m m e t r y  b roken  at M s L << M an addi t ional  factor  ( M B _ L / M )  N 
appea r s  in M R [5]. 
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We use a notation* for the mass matrices which only indicates the power of X of 
the elements (Piy)- Consider first the singlet part of ~¢u coupling quarks to mirrors: 

~ - 1  0 1 1 4 

M~ - 2  ( 3  2 1" 1 21) (13) 
M - 3  4 3 2 2 

(A star means that the corresponding dement, by a suitable choice of basis for the 
two u-quarks with charge one, will be one (or several) orders of magnitude smaller 
than the number indicated.) In leading order X the two underlined dements will 
eliminate the two up quarks with charge 1 and 4 together with the two mirror 
quarks from the spectrum of light particles. Non leading orders of ~, however, lead 
to mixing between the Q eigenstates. For example, the light quark with Q = 1 has an 
admixture of order h of the quark with Q = 4. We keep track of these mixings by 
indicating the power of ~ of an admixture by a subscript. In this notation the charge 
of the remaining light u-quarks is 

1, 41, 0~', - 1 3  

Q(u) = 0, 11, 42, -13  . 

- 1 ,  12 ,  03, 43 

(14) 

(We often omit the subscript zero and use the leading charge as a name for the 
corresponding light quark). The elimination of u c is done in parallel and we obtain 
for the light up-quark matrix 

- 1  0 1 

M w 0 3 2 " 
1 2 1 

In this case the pattern (6) is not modified by the mixings and we have, as far as 
orders of magnitude are concerned, )hru= M(F "°u) (restricted to the charges 
( - 1,0,t)). 

Concerning the down-quark mass matrix we eliminate the heavy d -  ~ pairs as 
described for u. The matrix determining the elimination of d ¢ - de pairs is 

~ d  c 
M M - -  1 

M - 1  

0 

- 4  - 4  2 2 3 3 

5 5 1 1" 2 2 1 

5 5 1" 1 2 2 ) " 

4 "4* 2 2 3 3* 

(16) 

* T h i s  i s  r e l a t e d  to  t h e  n o t a t i o n  o f  ref .  [1] b y  n s = 4 - P .  
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From the charge content of the light d c 

-4 ,  22, 31 
0(dC) = - 4 ,  2~', 3~', 

3, -4~ ' ,  21 
(17) 

we derive the orders of magnitude of the mass matrix M D for the light down-quarks 

- 1  0 1 3(4 2,). 
M w - 4 3 2 1 

- 4  3 2 1 

(18) 

(The elements M,2 and 3413 are 5 and 6 without the effects of charge mixing.) The 
lepton mass matrix 34 L is of the order of ~t D since 1 and d c as well as e c and d 
have the same U(1)o quantum numbers. As discussed earlier [1] the matrices (15), 
(18) reproduce correctly all orders of magnitude of mass eigenvalues and mixing 
angles. 

Let us now give a more systematic discussion for the mass matrices of the light 
quarks and charged leptons. (We take three generations and up-type quarks as an 
example.) We denote the eigenstates of U(1)o charge by up and uj with charge Q} uc) 
and Q}U). As a consequence of U(1)o breaking and mass terms involving mirrors the 
mass eigenstates in the limit ¢PL = 0 comprise three zero mass quarks u~, u~ and a 
certain number of heavy states (coupling to the mirrors) u~i~, Ua~. (The indices a, fl 
have the same range as i, j and denote mass eigenstates in the limit q0 L = 0. Three 
values of these indices correspond to light quarks, the rest to heavy ones.) The light 
mass eigenstates u c consist of a mixture of states with different charge 

c m c 

U a - -  ~ l a i U  i , 

~i---A ~-, , (19) 

and mixings involve various powers K,i of A. Our short hand notation Q~ = (Qi; K.,) 
means, for example, that the light quark (2 0,11, 31, 54) has dominantly charge 2 with 
an order X admixture of charge 3 and 1 and A 4 admixture of charge 5. (For every a 
at least one x~i is zero.) The leading powers of X appearing in the various elements 
of the mass matrix for the light quarks are given by 

= min  { Pij + K,,i + xBj } .  
t , J  

(20) 
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This is seen easily by writing (MF)ij (eq. (6)) in the a, fl basis and restricting it to 
the light quarks 

u~( MF ) uUj = u~T,,*T~j (Mr),yU# 

+ negligible terms involving u~i~ a n d / o r  UHa. (21) 

What remains is the determination of the light u~ and u# and a calculation of the 
mixing coefficients x,~, K#j. This depends on M M (eq. (4)) and must in general be 
calculated separately for both u c and u. We use a step by step procedure and start 
with the lowest power of X, P~I, kt, in M M. (If there are several equal lowest P we 
may take an arbitrary one.) This dominant mass term will eliminate u~t and =~ Ukt 
from the spectrum of light particles. After this step the remaining n + m - 1 quarks 
u~ 1~ have charges ~ 1 ) =  (Qi',o2?) with mixing coefficients o m (similar to the x 
above) given by 

0 for a = i 
for a =# it (22) 

/3i~) __ rain (p~k; (p~k ' + P~k + Pi, k ' -  2Pilkl) } " 
k ' - - k  k 

(23) 

(This accounts for mixing of u~ with u c which in turns is mixed with u~ and for il~ 
effects from ~c mixing - see below.) If there are no mirrors left the r~i are given by 
o~/1~. Otherwise we repeat the same procedure by looking for the lowest power of X 
in the remaining matrix M ~  ~ for the n + m - 1 quarks and m - 1 mirrors left after 
elimination of U~l and U~l. We repeat this until all mirrors are eliminated and 
obtain 

x., = o ~  ') . (24) 

For  any given step the o <") can be calculated from 0 ("-1) by 

e (n) = r a i n / n ( n  -1)" ffa (n) } ~tl -'---" I VOtl ~ 

~(n) mia.,n (/3(~? .¢_/~(n) (n-  l) ..{_ o(,n- 1) } = -'7. - 2P~t.r. • (25) 

Here _P("-l)~.~. is the leading element in (Mr~-t))~ v which will efiminate at step n the 
e and =¢ particles u . .  % ;  

We have to specify how to calculate (Mh")) from (Mt~-l)) .  This will also explain 
the formulae (22)-(25). The leading element at step n is p ( . -1)  and we first rotate 

-- ~tn y n 

the u~ so that the mass matrix has vanishing elements (MM)~. ~ = 0 for T 4: %. After 
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thiS, the powers of ~ in M M are 

P(~ '="  m i n { p ( n - 1 ) ' ( P ( ~  " - 1 ) ' 1 - -  oc~ , p ( n ~  1) ..i - ~  p~y,(n-I, -- 2P("~1))} . (26) 
7'~'/ 

A subsequent rotation brings (MM)~r ., a =~ a .  to zero*. The mixing angles are given 

by powers of )~ 

0 for a = a '  
6~g) = ~ . )  + fi t . )  ~.-1) a' (27) ~v, ~'v, - 2P~.v, for a 4= . 

Expressing u~, in terms of quantum number  eigenstates u c with the use of n (,".-1)_~,, 
gives** (25). The final mass matrix after step n, eliminating u c , ,  and u =¢ ~, is given by 

e ( y ) =  m i n ( P ( n ) ' ( p ( , n y ) " l - P ( n ) - ~  e ( n ) - - 2 p ( n y n l ) ) )  
~tt q:ot ~ a T , a "Yn °t~n " 

(28) 

At this place we should note that the X-powers in the mass matrices discussed so far 
are only the group theoretically allowed minimal values. There are certain cases 
where the actual powers of )~ for some elements are higher even if there is no 
unnatural  cancellation of contributions. For example, if two quarks have the same 
U(1)o  charge one can always work with a basis where one appropriate element in 
the mass matrix for these particles is set to zero. (This corresponds to the star 
above.) Also, our procedure overestimates the contribution from mixing to the 

eigenvalues for matrices of the type 0 since it does not account for the 
0 

vanishing determinant of this matrix (and similar if zeroes are replaced by small 
elements). Discarding these special cases (they are relatively rare and could in 
principle also be treated systematically) we have given an algorithm how to estimate 
orders of magnitudes of eigenvalues and mixings for matrices of the type (7). Of 

course, this algorithm does not depend on the specific assumption of a U(1)o 
generation group. The only input needed are the powers of X, Pij, and the 

separation of light and heavy mass scales Mw and M. 

4. Neutrino masses 

The mass matrix for the light neutrinos for the example (12) is 

3 - 4  - 4  

~¢~ _ 3 ( 2  3 3" )  . (29) 
M2w/M - 4 3 4 4* 

- 4  3* 4* 4* 

* This induces again nonvanishing (MM)~. v and one has to check if repeating this procedure with 
these values would lead to lower o tn) or P("). For most cases this will not happen. 

** Eq. (22) is obtained for o t°) = 0 for a = i and oc otherwise. ai 
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In this case the electron neutrino would be the heaviest neutrino with mass 
_ X2M2/M .~ ~2 × 10-4 eV < 10 -6 eV. The second eigenvalue of the order ?d comes 

mainly from the order ~ admixture of Q - - 3  to the Q =  - 4  neutrino (17). All 
neutrino masses are very small. This situation may change dramatically in models 
with right-handed neutrinos r ~, where masses of the order of the cosmological 
bound = 100 eV can be obtained naturally even if the unification scale M is high 
( M  = 10 z7 GeV). Neglecting mirror neutrinos ~, for a moment, the mass matrix for 
the light neutrinos is [5] 

~ t  = MT + M D M R  1MD " (30) 

If all SU(2)L triplet scalars have mass M * the first contribution is always small (of 
the order ~PT 10-4 eV with PT >/0). In contrast, the eigenvalues of M s will be 
suppressed compared to M by one or several powers of ~ if ~,~ has nonvanishing 
U(1)~ charge. This may result in light neutrino mass eigenvalues enhanced com- 
pared to M 2 / M  by inverse powers of X. (The generation group U(1)c may 
therefore replace the role of U(1)B_ L [5] for setting the scale of neutrino masses.) 

As an example consider the following neutrino charges 

Q ( r ) = ( - 4 , - 4 , 3 ) ,  

Q(uC) = (1,4) .  (31) 

The v-charges correspond to (12) neglecting those eliminated by coupling to mirrors 
and we assume again q0 = - 2 .  The mass eigenvalues for r c are of the order X2M 
and )tSM. The Dirac mass term coupling the neutrino with Q = - 4  to the v c with 
Q = 4 is of the order h2 (compare (10)). A mixture of u, and % (Q = - 4 )  acquires 
therefore a mass of the order )t-4M2w/M ~- 1-20 eV. For the remaining two fight 
neutrinos the contribution of M r is dominant (for the mass of v e the contribution 
from Dirac mass terms involving the v ~ with mass )tZM is of the same size as the 
contribution from My). One finds m~o ~ )tZM2/M and the lowest neutrino mass is 
- -X4M2/M.  The neutrino mixing between the heaviest neutrino and l, e is of the 
order X 3. 

An investigation of a few more examples with other Q(r) ,  Q(r¢) quickly shows 
that the spectrum of neutrino masses and mixings has often a quite unexpected 
structure, depending very sensitively on the U(1)G quantum numbers. In general, 
neutrino masses and mixings do not follow the usual generation pattern for charged 
quarks and leptons! There are many examples where pe is not the lightest neutrino 
and it may even have mass in the 10 eV range. There are also many examples where 
the neutrino mass pattern would be consistent with solar neutrino oscillations [13], 
where a linear combination of ~,~ and I,, has mass = X - E M 2 / M ~ I O  -2 eV 

* See ref. [5] for cases where the triplet masses are required to be at a lower scale. 
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(whereas m~o is smaller or roughly equal) and the mixing angle is not too small. It is 
not difficult to obtain neutrino masses in the range relevant for dark matter in 
cosmology (m~ ~ h-4M~v/M ) - some choices for neutrino charges have even to be 
excluded because neutrino masses exceed the cosmological bound of about 50-100 
eV. Mixing angles relevant for neutrino oscillations appear in various patterns, in 
general quite distinguished from the quark mixing pattern. 

For a more systematic discussion of the neutrino mass matrix ./4~ (eq. (8)) we 
first eliminate the mirrors ~, according to the procedure described above for the 
quarks. This will leave us with modified matrices ~t T and /~tt) and a mixing - )~o, 
of Q eigenstates due to intermediate heavy states. The matrix element (/~t) ,a has 
then maximal size hP(-h)ME/M, 

P - T =  "~ ~ ( ' )  ^ R . ~ ) ,  min/ro ,, + + (32) 

with fi~a and/3~k the powers of X in/~t T and/~t o and Rkt the power of ~, in MR 1. 
Here R may be obtained from (11) by a simple matrix inversion algorithm and 
contains always some negative elements. Although (32) is useful for a quick 
inspection of the heaviest neutrino mass and for mixings it will often be misleading 
for a determination of the smaller neutrino mass eigenvalues. The determinant of 
the matrix MDMRI~tD is always zero if the number of pC is smaller than the 
number of p. Similarly, one very light pc gives a relatively large mass only to one of 
the light neutrinos. Instead of (32) (which only gives the maximal size of matrix 
elements consistent with U(1)~ symmetry) we need a step-by-step procedure to 
extract eigenvalues and mixings from /~tT, /~t D and M R. 

We first choose a basis for pc where M R is diagonal 

p;_C _ ~.p.~ p~, 

Xv(R)M8 (33) (MR)~  ~ . . . . . .  ~ 

by starting with the lowest P,,, in (11) and proceeding similar as for the mirror 
matrix M M. In this basis -QD = ff(t))Mw with 

if(o) min /3 (D)0r , , }  (34) 
a , ~  = m { + " 

The eigenvalues of h4DM~IMD can now be obtained step by step, looking first for 
the lowest power of X, 

min { 2ff(• ) - p(R)}, (35) 
et,/x 

then eliminating u~ and p~ (while accounting for mixing among v~) and proceeding 
in the same way until all p~ or all p~ are eliminated. These eigenvalues have then to 
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be compared  with the corresponding relevant elements of 3~t z and the final neutrino 
mass eigenvalues ~ e  obtained by taking the dominant contribution either from A~t T 

or f rom 3~tDM~XM D. Neutrino mixings are calculated by comparing off diagonal 
elements of  the combined matrix 3~t with the size of corresponding eigenvalues. 
The mixing angles relevant for neutrino oscillations are composed from these 

neutrino mixings and the mixings in the lepton mass matrix h~t L. 

5. A scan of anomaly free SU(5) x U(1) models 

In the preceding sections we have described how to calculate fermion masses and 
mixings for given quantum numbers with respect to the generation symmetry 

U(1)~.  Orders of magnitude only depend on ?~ = M G / M  and on the leading charge 
q0 of the low energy doublet. (We normalize the charge of X to one.) For given ?~ 

~ - ~ we can check if a certain choice of fermion charges and q0 leads to an 
acceptable fermion mass spectrum. The algorithms for determining mass eigenval- 

ues and mixings described above can be used for a computerized scan of which 
quantum numbers are realistic. In this paper we will only be concerned with 
quantum numbers consistent with (four-dimensional) grand unification, i.e. the 
U(1)~ charges of u, d, u c, e c as well as d c, u, e must be equal. (U(1)G commutes with 

SU(5)). We also restrict our scan to models where SU(5 )x  U(1)~ is free of all 
anomalies. To start with, we first determine analytically for three generations all 
realistic U(1)G charges (not necessarily anomaly free) consistent with grand unifica- 
tion in the absence of mirror particles. We will use in this section a shorthand 

notat ion u i instead of Q ( u i )  etc. For u i = d i = u~ = e~ and d~ = ui = ei the mass 
pat tern (6) (and the corresponding formula for MD, ME) is left invariant under the 
following shift in quantum numbers [1] 

Ui"~ Ui + ~ , 

d~ ~ d~ - 38, 

qo ~ q0 - 28. (36) 

We can therefore choose t = b = t c =  ~.c= 0. A top quark mass of the order M w 
requires qo = 0. From rob, m~ = AM w we conclude b c = ~" = 1. (We have a freedom 
in the choice of the overall sign of U(1)~ charges.) The only charge assignment 

with mc is c = c  c =  +1" .  One obtains M U of the type (2 1 ) w i t h a  
g x 

compat ible  

mixing angle ~923 between the second and third generation of the order A and a 

* We have defined t c, c c and u ¢ so that they have the same Q than t, c and u, respectively. They are 
indeed also the mass partners. This is obvious for t since the largest element in M u cannot be off 
diagonal. For the charm mass one easily finds that different assignments would lead to unacceptable 
values either for the up-quark mass or the mixing angle ~13. 
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consistent order of magnitude for m c (for a more detailed discussion of mass 
pat terns compare  ref. [1]). Now/~c cannot be - 1 ,  otherwise M L would have an 
element ( - ~.#c) of order Mw, and therefore c = c c = s =/~c = + 1. For the up-quark 
mass matrix there are two possible choices u = u c = d = e ~ = + 2 or - 4  with mass 

pat terns 

M u =  2 or M u =  3 2 1 . (37) 
1 4 1 0 

For  the second choice we have a Fritzsch [14, 6]-type structure where the up-quark 
mass is generated by paired off diagonal elements of the order ?dMw (their size 
should be around 80 MeV). For both possibilities the fairly large Cabibbo angle ~12 
is not  obtained from M u and must come dominantly from M D. This requirement 
together with the values of m s and m~, fixes s O = #  = + 1. (The charges s c =  - 3  or 
s c =  + 2  (limiting case) are consistent with m s but do not lead to an acceptable 

Cabibbo  angle.) From a typical value m e --h4M w we find for u = 2 the two 
possibilities d ~ = e = + 2, - 6 and for u = - 4 one gets d e = e = - 4. The MD, M L 
mass pat terns for these three possibilities are 

(432) (!5!)(834) 
M D = M  T =  3 2 1 , 2 , 3 2 1 • (38) 

3 2 1 2 3 2 1 

It  is easily checked that for appropriate ~ the mass patterns (37), (38) lead to correct 
mass eigenvalues and mixings up to a factor about three which is well within the 
uncertainty of our approach. 

To  summarize, we found the following realistic U(1)G charges consistent with 
su(5) 

10 

0 1 
0 1 
0 1 

2 1 1 2 
2 1 1 - 6  

- 4  1 1 - 4  

(39) 

Other  realistic charge assignments can be obtained by using the shift 8 (eq. (36)). 
We note that for none of these examples the charges are equal for 10 and 5. It  
follows that a mass pattern from U(1)o symmetry breaking at M G =  2,M is not 
realistic if U(1)G commutes with SO(10) or E 6 (unless additional small parameters 
are introduced). This feature persists in models with additional quark-mirror pairs. 
For  U(1)G commuting with left-right symmetry every element in M u generated by a 
doublet q0q will be mapped by left-fight symmetry onto a corresponding element in 
M D generated by a doublet with opposite charge q0*q. This does not imply that M D 
and M v must  have the same structure (except for qo = 0) but this mapping is 
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nevertheless the origin of the difficulties to construct realistic models based on 

so(10) × u(1)o. 
There are much more realistic charge assignments without mirrors if U(1)~ only 

commutes with SU(3) × SU(2) × U(1) but not necessarily with SU(5). In this case 
there are three possible shifts similar to (36) which may be used to set t = b = t c = zc 
= 0 so that again qo = 0. One needs b c = 1 and z = 1. (Both the sign of b c and r are 
convention since the overall sign of quark and lepton charges can be chosen 
separately.) One finds already 23 possibilities for the assignment of (c, s), c c and s c 
(compared to only one for the SU(5) case). A few simple conditions for realistic 
mass  patterns are 

(c,s)=l 
Ic+cCl = 1  

Is+sOl = 2  

I~+~Cl =2 

or 2 or - 3  or - 4 ,  

or c = c C = l ,  

or s = l ,  sO=2 or s = - 3 ,  s C = - l , - 2 ,  

or # = 2 ,  [t~ c + ~ ' 1 = 1 , 2 .  (40) 

None of the SU(5) x U(1)o models with realistic charge patterns (without mirrors 
and without singlets ~,c) is anomaly free. If we denote the U(1)c charges of the 
SU(5) representations 10,10, 5, 5,1 by a i, A~, bi, Bi,  N i the absence of all anomalies 
of SU(5) x U(1)a (including mixed gravitational anomalies) requires 

3Eai+3EAi+Ebi+EBi=O,  

2Eai+2EAi+ Ebi+ EBi + ~ E N ~ =  0, 

2 E a i  3 + 2 E A  ~ + Eb/3 + EB• + 1 EN/3 -~- 0. (41) 

If we interpret U(1)~ as a local gauge symmetry the cancellation of anomalies 
implies relations between singlet (v c) charges and quark charges. As a consequence 
the quark and lepton mass matrices (7) and the neutrino mass matrix (8) are not 
independent anymore. For given quark and lepton charges the choice of N~ and 
therefore the possible neutrino mass patterns are restricted. First of all, the sums 
EN~ and ]~N,. 3 must be divisible by five (in a normalization where a i and b i are 
integer). We give in table 1 the charges of up to three neutrinos with I N~[ ~< 5 
fulfilling this condition. (This includes the pc charges (31) discussed in the preceding 
section.) Table 2 shows the number of different (linear + cubic) anomaly contribu- 
tions for up to ten pc. (Nonchiral pairs of ~,c with opposite N or N = 0 are always 
discarded. We note that different sets (N~ } may give the same value for Y.N~ and 
EN/3.) 

The vanishing of mixed SU(5) / × U(1)o anomalies (the first equation in (41)) is 
independent of N v We found that it cannot be accomplished for realistic charges 
((39) or those obtained from (39) by 8-shifts). Additional quark-mirror pairs, which 
are chiral with respect to U(1)o, are therefore needed for any anomaly free 
SU(5) x U(1)c model with realistic mass patterns involving only one small parame- 
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TABLE 1 
Possible sets of fight-handed neutrino ( ~ )  quantum numbers with up to three ~ 

of U(1)~ charges smaller than 5 and anomalies divisible by 5 

l l 3 ~EN, n~ gENi  N 1 N z N 3 

1 - 1  - 2 5  - 5  
2 - 2  - 5 0  - 5  - 5  
2 - 1  - 1 3  - 4  - 1  
2 - 1  - 7 - 3  - 2  
3 - 3  - 7 5  - 5  - 5  
3 - 2  - 3 8  - 5  - 4  
3 - 2  - 3 2  - 5  - 3  
3 0 - 1 2  - 5  1 
3 0 - 1 8  - 5  2 

- 5  
- 1  
- 2  

4 
3 

The sets with opposite signs are also possible. 

TABLE 2 
The total number of different sets of anomalies divisible by 5 for n v right-handed 

neutrinos and quantum numbers I N~ I ~< 

1 2 3 4 

4 1 5 5 13 
5 3 9 19 37 
6 3 13 29 63 

10 5 37 135 411 

5 6 

29 37 
69 105 

129 199 

ter ~. Using the general algorithm of sect. 3 one may perform a computerized scan 
for anomaly free SU(5)× U(1) models with mirrors which lead to realistic mass 
patterns. As a first step we have chosen the following simplified (incomplete) 
procedure: We take the "realistic" quantum numbers obtained from (39) and add 
all possible chiral quark-mirror pairs with charges such that all anomalies are 
cancelled for appropriate ~,c quantum numbers. We then evaluate the mirror mass 
matrices and ask if the leading quantum numbers of the light quarks and leptons 
correspond to (39) - i . e .  if the "right" quarks are eliminated by couplings to the 
mirrors. The number of "realistic" solutions fulfilling these criteria* is shown in 
tables 3 and 4, where we have considered up to six quark-mirror pairs with I Q[ ~< 4. 
Finally we checked explicitly (by hand) for some of these solutions if they lead 
indeed to realistic mass patterns, including all mixing effects from mirrors as 
described in sect. 3. 

* Instead of (26), (28) we used a simplified algorithm "~vPtn) = ..-mlntt ptn-av 1).,,.~ Ptn-~v. 1) + -~.vPt"-1) _ p~,v~ 1~ ) } 
which for most (but not all!) cases lead to identical results. 
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TABLE 3 

The leading quan tum numbers  of the 5 and 10's for the light SU(5) families and the number  of totally 

anomaly  free "realistic" solutions with at most  six added 3 or 10's and six 5 or i-0's with U(1)~ 
quantum numbers  less than or equal to 4 (absolute values) 

# sol. # sol. with one u c 

charges 10 charges without uc N = _ 5 

1 1 - 4  0 1 - 4  40 40 
4 4 - 1  - 1  0 - 5  0 13 

- 1  - 1  - 2  0 - 1  - 2  0 0 
2 2 1 - 1  - 2  - 3  2 27 
5 5 4 - 2  - 3  - 4  0 0 

- 4  - 4  5 1 0 - 1  1632 2175 
- 4  - 4  3 1 0 - 1  16 952 
- 1  - 1  6 0 - 1  - 2  0 0 

We give the number  of solutions without right-handed neutrinos ~c and with one right-handed 
neutr ino of charge + 5. 

TABLE 4 
A more detailed search, including more neutrino patterns with up to six extra quark-mirror pairs with 

U(1)G quantum numbers  I QI ~ 4 and up to three SU(5) singlets 
with U(1)~ quantum numbers  IN I ~< 5 

ns hi0 nsol n5 nlo nsol 

0 0 0 4 0 0 
0 1 0 0 5 0 
1 0 0 1 4 14 
0 2 0 2 3 38 
1 1 0 3 2 45 
2 0 0 4 1 0 
0 3 0 5 0 0 
1 2 3 0 6 0 
2 1 0 1 5 28 
3 0 0 2 4 109 
0 4 0 3 3 145 
1 3 8 4 2 105 
2 2 9 5 1 0 
3 1 0 6 0 0 

Here n s is the number  of 5 and 5's added and nlo is the number  of  additional 10 + ]O's. The charges 
of the light ~'s are 2 2 1 and those of the light 10's - 1 - 2 - 3. There are a total of  504 solutions. 
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Among the "realistic" solutions we found various interesting neutrino mass 
patterns as described in sect. 4. The explicit check showed that realistic anomaly 
free SU(5)× U(1)G models indeed exist which explain all masses and mixings in 
terms of a single small parameter ~ (compare the example in sect. 3). However, for 
none of these examples the U(1)G quantum numbers look particularly attractive. 
Often three or more quarks have the same U(1)G charge. Without additional criteria 
on the "allowed" U(1)G quantum numbers it seems difficult to single out one 
specif ic  model .  On  the o ther  hand,  the add i t iona l  requ i rement  that  a given charge a~ 

a p p e a r s  a t  mos t  twice (similar  for  b~ etc.) a l ready  leads to a dras t ic  reduc t ion  of  the 

n u m b e r  of  solut ions.  If  the general  form of  the charge spec t rum is given - as may  

be  expec ted  for  higher  d imens iona l  compac t i f i ca t ion  - the answer abou t  the ex- 

i s tence  of  real is t ic  mass  pa t te rns  may  be  unique.  We have looked  at  a six d imen-  

s iona l  examp le  [2,7] where U(1)G is e m b e d d e d  into  a genera t ion  group S U ( 2 ) ×  

U(1)q  wi th  q = + ½ for all fermions  and  with SU(2)G represen ta t ions  given b y  

m o n o p o l e  number s  f rom spontaneous  compact i f ica t ion .  There  is no real is t ic  mass  

p a t t e r n  at  al l  if  U ( 1 ) 6  commutes  with SU(5), i ndependen t ly  of  the var ious  poss ib le  

e m b e d d i n g s  of  U(1)G into  SU(2) × U(1)q. 
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