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Abstract. The O(~) QCD corrections to the thrust 
distribution for three-jet production in e + e- annihila- 
tion are found to depend on the algorithm for recom- 
bining four partons into three jets. Several recombina- 
tion schemes are discussed and results are compared. 
Results of the recombination approach are compared 
also to recent direct calculations of three-jet thrust 
distributions. The importance of terms proportional 
to jet resolution parameters is stressed. 

I Introduction 

It is well known that the study of jet production in 
high energy e+e - annihilation is one way to test the 
validity of perturbative QCD [1]. Therefore, in the 
past much effort has been devoted to the calculation 
of higher order QCD corrections to the e+e - annihi- 
lation total cross section [2] and to various differen- 
tial cross sections [3-11]. At the level of perturbation 
theory up to O(e 2) e+e - annihilate into two-, three- 
and four-parton final states: e+e--*qq,  qqg, q~gg, 
q(lq(l. IndividualIy, the loop-corrected two-parton and 
three-parton diagrams are infrared and collinear di- 
vergent. These divergences cancel if the virtual correc- 
tions are combined with appropriately integrated real 
contributions. In the case of three-jet differential cross 
sections the divergences cancel if the qqg loop terms 
are taken together with the four-parton contributions 
where two unresolved partons (qg or q0) are integrat- 
ed over to produce one jet. This procedure yields finite 
jet cross sections which, however, depend on the reso- 
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lution parameters. As resolution criteria for two par- 
tons two methods have been applied in the past. First 
there is the Sterman-Weinberg definition [12], where 
two partons are considered irresolvable if either par- 

ton has energy less than e ~ / 2  ( V ~  being the total 
c.m. energy) or the angle between the two partons 
is less than 6. The second procedure for defining irre- 
solvable partons is based on an invariant mass con- 
straint. Here two partons are said to be unresolved 
if their invariant mass squared (Pi + Pi) 2 is less than 
cyq 2. 

0(% z) differential three-jet cross sections with 
(e, 6)-resolution have been first calculated in [4] and 
with invariant mass resolution in [5]. These calcula- 
tions were based on the most singular terms of the 
four-parton production cross section which are re- 
sponsible for the infrared and mass singularities. In 
this work it was assumed that the non-singular pieces 
give small contributions proportional to e, 6 or y, 
respectively, which could be neglected. We can expect 
this for very small values of the resolution parameters. 
Therefore in some of the phenomenological analyses 
of e+e - annihilation data the resolution parameter 
was chosen rather small. So, for example, in many 
analyses based on the work of Sj6strand [13], who 
incorporated the formulae of [5] into the string frag- 
mentation model of the Lund group, the squared 
mass cut parameter was chosen to be y=0.015. But 
it had not been checked whether this value of y is 
small enough to make the subleading terms negligible 
in the total sum of the O(e2) three-parton and four- 
parton contributions. 

The magnitude of subleading contributions has 
been studied recently by the TASSO Collaboration 
[14] in connection with the analysis of their data to- 
wards a determination of es with the result that sub- 
leading terms are not negligible and must be included 
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for a reliable determination of ~s*,**. The TASSO 
procedure is as follows. One starts from the FKSS 
formulae 1-4] for d~r3_j~ t based on leading four-parton 
contributions with (e, ~) resolution. The (e, cS)-values 
were chosen very small, i.e. %=0.01 and ~o=0.1 (ra- 
dians), with the understanding that for such (e, 6)- 
values the subleading terms O (%, ~o) are really negli- 
gible. However, to separate the real three- and four-jet 
events one must go to larger (e, 6)'s, i.e. ~ = 0.2, 6 = 40 ~ 
for example. Furthermore, for smaller s, c5, for exam- 
ple ~=0.1 and ~5=0.5, the higher order correction is 
large and negative I-5], which indicates that we are 
already outside the range of perturbation theory. To 
obtain da3_j,t with these cut values the four-parton 
terms in the phase space region between the smaller 
so, 6o and the larger ~, 6 constraints are calculated 
numerically and added to do-3_j~ t obtained with the 
(%, 60)-cut. In this calculation two of the partons must 
be combined if they are inside the (s, 6)-constraint 
to obtain three jets. It was found out, however, that 
the way and how, which of the two partons are com- 
bined in one jet, is important and the amount  of cor- 
rection through nonleading terms depends on the re- 
combination process. This possibility was already em- 
phasized in early work by Gottschalk [16]. 

It is the purpose of this work to study this recom- 
bination dependence in more detail. We shall describe 
several possibilities for recombining two partons in 
one jet. The influence of the recombination on the 
three-jet cross section is studied in terms of the thrust 
distribution, as an example of a one-variable distribu- 
tion. This influence exists for any variable and may 
be smaller or larger than in the thrust distribution. 
This must be found out then in separate calculations. 
Of course, one would be interested to know variables 
for which the recombination dependence is minimal. 

In the meantime the three-jet cross section dO-a_je t 
was calculated with all subleading four-parton contri- 
butions included from the start [17]***. Also here 
it was found that the three-jet cross section depends 
on the way how the variables describing three jets 
were formed out of the momenta of the four partons. 
This result is similar to the recombination dependence 
described above. In these calculations the invariant 
mass resolution was applied to distinguish three and 
four jets. Therefore the three-jet thrust distribution 
cannot be compared directly with the results of the 
TASSO approach. We can make a comparison by 

* Actually in the TASSO paper only part of these corrections were 
used for determining ~s, a l though the complete corrections had been 
computed. For more details see [11] and [14] 
** This was found also by R.Y. Zhu in his thesis [15] by comparing 
with the approach first used in [10] based on matrix elements of 
[3] 
*** For work, where part of subleading terms were included, see 
Gottschalk and Shatz [14] 
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Fig. 1 a, b. Recombination of four parton into three jets with a 
almost collinear gluon and b with soft gluon emitted under large 
angle as an example 

adding also the four-jet thrust distribution in the two 
cases. 

The outline of the paper is as follows: in Sect. 2 
we describe the different procedures for combining 
four partons into three jets and present the results 
for the O(~)  three-jet thrust distributions. The result 
for two of the procedures is then compared with the 
thrust distributions obtained in a direct calculation 
in [17]. In Sect. 3 we draw some final conclusions 
from the comparisons given in Sect. 2. 

2 Thrust distribution 
in different recombination schemes 

We consider the three-jet cross section O'3_jet(Xl, X2; 
e, 6) which depends on the two scaled energies x~ 

and x2 (x i=2Ei /~q 2 with i=  1, 2 for quark and anti- 
quark momenta as usual). In O(c~) this cross section 
is obtained from 

- % .  (x~, x~) O'3_je t (X1, X 2 ; e, ~ ) - -  (3) 

+{ j d~(~)}(x~,x2;~,~) (2.1) 
3-jet 

where Vvirtrr(3) (X1, X2) stands for the loop corrections with 
final parton state q~lg, which are infrared and mass 
singular. This divergence (negative) is compensated 
by the divergence (positive) in the second term in (2.1) 
which is the contribution of the four-parton diagrams 
evaluated over the three-jet kinematical region para- 
metrized by the resolution parameters s and 8. This 
three-jet region is defined as usual in the form that 
the four partons are considered as three jets if either 
one parton has a scaled energy x~<s (soft parton) 
or has an angle 0i < 6 with any other parton (collinear 
parton). For  an illustration see Fig. 1 a, b, where a 



soft gluon and a gluon collinear with a quark are 
considered. If two partons fulfil these conditions the 
contribution is considered as part of the two-jet cross 
section. For  those terms in a (4) which yield the infra- 
red and collinear singularities, denoted as singular 
terms of o -(4), the integration within the e, fi resolution 
has been done analytically and the results are re- 
ported in [4, 5] (FKSS-formulas). These results are 
correct only for very small e, 6 values, i.e. e<0.01, 
6<0.1  [-11, 14, 153. For  calculating the corrections 
in case e and 6 is much larger, which is needed for 
physical applications, we adopt  the procedure already 
mentioned in Sect. 1. One chooses %, 60=0.01, 0.1 
and calculates the last integral in (2.1) in the phase 
space region with recombination values lying between 
eo, go and e, 3. The numerical computations are done 
with the iterative Monte Carlo routine VEGAS, 
which was necessary to obtain sufficient accuracy. 
The integration involves either the integration over 
an energy xi with eo < x~ < e or, if x i_> e, integration 
over an angle 0~i between two partons with 
go-<0~j<6. This way a four-parton configuration is 
transformed into a three-jet configuration. However, 
the result for this averaging depends on the way the 
original four parton variables xl, x2, x3, x4 are related 
to the three-jet variables x~, x~ and xm. This produces 
the recombination dependence referred to in Sect. 1. 
The three jets are again considered as three massless 
partons and their variables are assumed to obey x~ 
+ xn + xn~ = 2. To study the influence of different defi- 
nitions for the three-jet variables we considered sever- 
al possibilities which we list in the following: 

(1) Sterman- Weinberg Recombination (SW) 

The three-jet variables x~, x , ,  xiH are given as twice 
the energies going into the q, c~ or g cone with opening 
angle 6, divided by the sum of the energies going 
into these cones. However, we must distinguish the 
case of a collinear par ton (a) from the case of a soft 
parton (b): 

(a) Suppose for example gluon 4 is produced so 
that its momentum with the momentum of quark 1 
has an angle 014 < 6 (see Fig. 1 a). Then 

X I = X  1 q-X 4 

XII ~ X 2 (2.2) 

Xii I = X 3. 

Since x 1 + x 2 + x a + x 4 = 2 we have also x I + x H + x m 
= 2 .  

(b) Gluon 4 is soft (x4< e) and is emitted in such 
a way that the angles with all other partons 0~4 (i= 1, 
2, 3)> c5 (see Fig. 1 b). Then 
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Fig. 2. Four-parton configuration with soft gluon emitted with large 
angle and scaled parton energies xl =0.85, x2=0.60, x3=0.50 and 
x4 =0.05. All four momenta lie in one plane 

2 x i  x 1 
x I ~- 

x i + x 2 + x 3  1- -x4 /2  

2X2 X 2 
x i i -  (2.3) 

XI-~-X2-~-X 3 1 --X4/2 

2X3 X3 

Xm- -X i  + X2 + X3 1- -X4/2 '  

i.e. the energy of the soft gluon is combined by rescal- 
ins. 

An alternative to the scheme above would be to 
add x 4 randomly to xl, x2 and x 3 (scheme SW'). 

(2) Minimal  Mass  Recombination (MM) 

In this scheme the recombination of two partons to 
one jet is controlled by the invariant mass of the two 
partons i and j:  Yi~ = (Pi +pj)2/q2. Then those partons 
i, j are combined whose invariant mass is minimal. 
The corresponding jet four-momentum is equal to 
Pi + Pj. This means, that independent of whether one 
has the situation collinear or soft in (2.1), the three-jet 
variables are always given by formulas as in (2.2). 
This scheme was studied earlier by Zhu [15]. He con- 
sidered in addition two possibilities. (i) The momen- 
tum scheme: the three-momentum vectors of the two 
partons are added and the resulting parton is again 
assumed massless. The energy conservation of the 
three resulting partons is reestablished by rescaling 
similarly to (2.3). (ii) The energy scheme: the energies 
of the partons, which are combined, are added up 
and are again interpreted as energies of massless par- 
tons. This scheme is identical to the scheme we are 
using here. It was found that the momentum and the 
energy scheme produce almost identical results, in 
agreement with [15]. Therefore we now restrict our- 
selves to the energy scheme. 

We shall illustrate how the three-jet thrust 
changes in the various recombination or dressing 
schemes. The main difference appears in such configu- 
rations in which a soft gluon x4 < 0.2 is emitted with 
a large angle 041>40 ~ Such an event, assumed to 
lie in a plane, is shown in Fig. 2. This event has four- 
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parton thrust T=0.850. In the SW and the SW' 
scheme we obtain T=  0.872 and T=  0.867 respective- 
ly. In the MM scheme the thrust is T=0.857 (momen- 
tum scheme) and T=  0.850 (energy scheme). The mini- 
mal mass occurs in combining parton 3 and 4. We 
see that the thrust in the MM scheme differs only 
little from the original four-parton thrust. In the two 
SW schemes the resulting thrust is larger than the 
parton thrust. Although the difference is small it has 
a strong effect on the thrust distribution which is steep 
in particular for the larger thrust values. Of course, 
similar to thrust also other jet variables change in 
the various schemes since the three-jet variables x~, 
xn and xiii, which enter into these variables, differ. 

A further problem, which we encounter, is the sep- 
aration of two-jet events from three- and four-jet con- 
figurations. Of course, four jets are separated equally 
in all schemes by demanding all x~ > ~ and Oij > 6 (i, 
j = 1, 2, 3, 4) in the four-parton configurations. Then 
we remain with the two- and three-jet separation. To 
disentangle two jets it would be natural to eliminate 
all those four-parton terms where three partons are 
emitted in an angular cone of width 6, two partons 
are emitted with energies smaller than e or two pairs 
of partons have angles less than 6. This procedure 
has been adopted in the SW, SW' and MM scheme. 
Another possibility is to apply the two-jet criteria 
to the three-jet configurations already obtained via 
recombination of two partons from the four-parton 
sample. This procedure was applied only in the mini- 
mal mass scheme. After recombination of two partons 
with the smallest invariant mass the two-jet test with 
s, 6 constraint was applied to the three-jet events. 
We shall denote this procedure as MM' which differs 
from MM just in the particular two-jet separation. 

To study the differences originating from these 
various procedures we have calculated the O (a~) cor- 
rections in these four schemes, SW, SW', MM and 
MM'. We have determined the three-jet thrust distri- 
butions in these schemes as an example. Distributions 
in other variables should show similar variations. 
Since we are interested only in the O(a~) corrections 
to da/d T we write the full thrust distribution as 

1 do-3_je t __ a s [ a s  \ 2  
ao dT 2n Al(T)+k~nn) A2(T) (2.4) 

and give the results for A2(T ). The correctly normal- 
ized three-jet thrust distribution follows from (2.4) by 
dividing by o-toJo-0, ao is the zeroth order cross sec- 
tion. AI (T) is the lowest order result with as/2rc fac- 
tored out. T is equal to max (xi, Xn, Xni) with xi, 
xn and xm as defined above in the different schemes. 
The parameters e and 3 are chosen as e=0.2 and 
6=40  ~ whereas So =0.01 and 6o=0.1. 

Table 1. O(cq) thrust distribution in terms of AI(T) as a function 
of thrust T averaged over bins of A T =  0.025. At (T) includes two-jet 
contributions. Az(T) is four-jet cross section for ~ = 0.2, 6 = 40 ~ 

T A~(T) AI(T ) Az(T),_j,t 

0.675-0.700 2.024 2.024 76.4 
0.700-0.725 4.601 4.601 138.8 
0.725-0.750 7.530 7.530 187.6 
0.750--0.775 11.06 11.06 244.0 
0.775-0.800 15.55 15.55 310.4 
0.800~.825 21.53 21.53 378.4 
0.825-0.850 29.91 29.91 409.2 
0.8504).875 42.31 42.31 438.8 
0.875-0.900 62.01 62.01 380.4 
0.900-0.925 96.59 81.67 308.8 
0.925-0.950 167.9 102.2 98.4 

11.525 9.493 74.28 

First we present in Table 1 the function AI(T ) 
for thrust intervals of A T= 0.025 for T values ranging 
from 0.675 to 0.950. To see the influence of the two-jet 
elimination we give A'~(T), where the two-jet con- 
straint with e, 6 is not applied and AI(T) with two 
jets taken out. Secondly, for later use we have given 
the genuine four-jet contribution to A2(T), i.e. those 
four parton contributions where all x~ > e and all 0~j 
>6 (i, j = l ,  2, 3, 4). We see that AI(T) is changed 
in the last two T bins because of the two-jet subtrac- 
tion*. The four-jet contribution to A2 (T) has its max- 
imum near T=0.85. The last line in Table 1 gives 
the integrated contribution up to T=0.95 for AI(T), 
A'I(T) and A2(T ) respectively. In Table2 we have 
collected our results for Az(T) for FKSS, SW, SW', 
MM and MM'. The column FKSS is the old predic- 
tion based on the most singular four-parton terms**. 

In FKSS several related approximations have 
been made. First, in the four-parton cross section only 
the most singular contributions were kept which were 
necessary to cancel the soft and collinear divergences 
with those of the virtual diagrams. These terms were 
integrated analytically with the further approxima- 
tion that contributions of O (~, b) were neglected (ex- 
cept for one term proportional to e, which could be 
calculated analytically. It was clear that this term did 
not yield all O(e, 6) contributions). Second, all the 
terms from q~gg and qglqgl final states where either 
one quark is soft and at large angle or two q u a r k s  
are collinear, obeying the resolution criteria, were ne- 

* If one uses the invariant mass constraint with y = 0.05 for separat- 
ing two and three jets in lowest order the thrust distribution is 
given by A'~(T). This shows that results for large T are sensitive 
to the cut procedure already in lowest order 
** The result for FKSS becomes positive for all T if the terms 
O(s), which had been calculated analytically in [4], are left out. 
The numbers for A2(T) in Table 2 are for this case: 1.356, 4.384, 
10.85, 23.54, 46.83, 88.16, 161.1,292.4, 540.9, 813.9, 1102.0 



Table 2. O(c~ z) thrust distribution in terms of A2(T ) for three jets 
as a function of thrust with e=0.2, 5=40  ~ for various dressing 
schemes FKSS, SW, SW', MM and MM' as explained in the text 

T As(T) 

FKSS SW SW' MM M M '  

0.675-0.700 -- 13.45 -- 14.5 5.8 19.9 17.3 
0.700-0.725 -29.52 - 2.9 21.1 36.9 52.0 
0.725-0.750 -45.42 - 15.9 52.8 87.9 82.4 
0.750-0.775 -60.86 - 0.0 75.9 166.1 143.1 
0.775-0.800 -75.30 80.9 114.5 218.8 224.1 
0.800-0.825 - 87,66 72.3 252.5 465.2 377.3 
0.825-0.850 -95.99 138.8 362.3 575.2 646.2 
0.850-0.875 -96.66 183.6 691.5 848.7 988.7 
0.875-0.900 -83.54 686.6 693.0 854.6 1619.0 
0.900-0.925 -50.22 751.7 721.3 555.5 1865.0 
0.925-0.950 22.81 1070.0 310.6 785.2 2255.0 

-- 15.40 73.8 82.5 1 1 5 . 3  206.8 

glected since they are less singular and are not needed 
to cancel infrared and collinear singularities. Compar- 
ing SW with FKSS we obtain the change caused by 
the non-singular terms. It amounts to a change of 
20% for the 3-jet cross section integrated up to 
T=0.95 taking e~=0.17. It is obvious that it is not 
sufficient to include only the most singular par ton 
terms as done in FKSS if one is interested in an accu- 
rate determination of e~. The results for the other 
schemes are in the columns labelled SW', MM and 
MM'. We see that these three schemes produce differ- 
ent O(~, z) contributions as compared to SW. If A 2 (T) 
is integrated up to T=0.95 (last line in Table 2) the 
change compared to SW leads to increases by 12%, 
56~ and 180%, respectively. In particular for the 
MM' scheme the change in A2(T) is quite large. Also 
the MM scheme produces larger correction terms 
than SW. The numbers for A2(T) in Table 2 and for 
SW, SW', M M  and MM' have Monte  Carlo errors. 
In case of MM' for instance they range from approxi- 
mately 20% for the lowest T bins, to 6% for the 
highest T bins. To get an overview about the influence 
of the change caused by the non-singular contribu- 
tions to A2(T) for the total thrust distribution we 
have plotted in Fig. 3 the sum of O(c~s) and O(e~ z) 
contributions to 1/O-to t (d a/d T) for e~ = 0.15. The O (e2) 
contribution is small and negative in the case of ap- 
proximate FKSS result but turns into an essentially 
positive contribution for SW and even more positive 
for MM'. The other two schemes SW' and MM lie 
between the SW and MM' curve. 

All the results presented so far have been comput- 
ed for Co=0.01 and 6o=0.1. In order to test whether 
these %, 5o are chosen small enough we have changed 
to and 6 o by a factor 2. It was found that the change 
in the O(e z) corrections were within the statistical 
Monte Carlo errors. 
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Fig. 3. Three-jet thrust d istr ibut ion for FKSS, SW and M M '  parton 
dressing O (~2) together wi th  O (cq) predict ion for ~, = 0.15 and s = 0.2, 
&=40  ~ 

Last year a calculation of the three-jet cross sec- 
tion with all non-singular four parton contributions 
included from the start, has been completed [17]. This 
was achieved by partial fractioning of the four-parton 
cross section so that direct double pole terms could 
be avoided. In this calculation the separation of two, 
three and four jets was done only with squared invari- 
ant mass constraints. For  example, when all yu>y, 
(i, j =  1, 2, 3, 4), the four parton contribution is in 
the four-jet class. If one Yu < Y it is counted as three 
jet etc. The calculations have been performed for vary- 
ing y in the range 0.01 < y < 0.05. For  comparison we 
select y = 0.05, which is of the same order of magni- 
tude as s=0.2,  5 = 4 0  ~ (/~2 ~_52/4~y). Nevertheless the 
four-jet cross section for y =  0.05 is not the same as 
for s = 0.2, 5 = 40 ~ In the case of the invariant mass 
cut this cross section in terms of A2(T) integrated 
up to T=0.95 is equal to 13.56 whereas with the 
(s, 5) cut according to Table 1 it is 78.28. Therefore 
we must add the three- and four-jet contributions to 
A2(T) to make a reasonable comparison. In Table 3 
we collected the results for A2(T)3+4_j~ t for two of 
our procedures SW and MM' and confronted them 
with the results of [17], denoted by K L  and KL',  
based on the complete invariant mass cut calculation. 
In this approach, in which the non-singular four-par- 
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Table 3. O(e~ 2) thrust distribution in terms of A2(T ) for the sum 
of three and four jets in SW and MM' dressing compared to two 
complete three-jet calculations KL and KL' of [-17] 

T A2(T)3 +4.je t 

SW MM' KL KL' 

0.675~).700 61.9 93.7 81.05 76.4 
0.70(M).725 135.9 190.8 170.5 157.6 
0.725~).750 171.7 270.0 267.9 243.5 
0.7504).775 244.0 387.1 382.1 345.5 
0.775~0.800 391.4 534.5 531.3 476.1 
0.800-0.825 450.7 755.7 724.9 629.5 
0.825~0.850 548.0 1055.0 963.4 805.5 
0.8504).875 622.4 1428.0 1270.0 1027.8 
0.875-0.900 1067.0 1999.0 1788.0 1370.0 
0.900-0.925 1061.0 2174.0 2701.0 1976.0 
0.925q3.950 1168.0 2353.0 4712.0 2972.0 

148.0 281.0 339.8 252.0 

ton terms are integrated over the total phase space, 
except the four-jet region, the result is not unique 

e i the r .  Again it depends how the three-jet variables 
are defined in terms of the original four-parton vari- 
ables. If, for example, Pl, P2, P3, P4 denote the four 
momenta of outgoing quark, antiquark, gluon 3, 
gluon 4, respectively, and gluon 3 is considered soft 
or collinear with the quark, in the KL  scheme the 
three-jet variables were chosen Y134=(Pl +P3 
§ p4)Z/q 2 = 1 - -  Nil , Y24 = (P2 + Pg)Z/q 2 = 1 - -  Xl, w h e r e a s  

in KL'  the relations were y 1 3 4 = l - x i i ,  Y123=(pt 
+pe+P3)2/qZ=l-xni, always with the constraint 
x~ + xi~ § xm = 2. There is no a priori reason to prefer 
either of these two definitions. This non-uniqueness 
of three-jet variables in the degenerate quark-gluon 
region is similar to the non-uniqueness of the recom- 
bination scheme considered above. This problem that 
three-jet variables cannot uniquely be defined in terms 
of the four-parton momenta is quite general. In [17] 
these two particular choices for specific contributions 
of the q~gg final state were studied in detail. But many 
more possibilities are conceivable. 

In the KL  approach the main effect is a change 
of the two-jet kinematic region. Since two-jet contri- 
butions have been subtracted the thrust distribution 
changes if one goes from the KL  to the KL'  approach. 
More details are found in [17]. From Table 3 we see 
that the O(e 2) corrections are smaller in the KL'  than 
in the KL  scheme. The change is minor for T<0.8  
but it is appreciable if one approaches the two-jet 
region, T--* 1. We observe that the results for K L  are 
very similar to the results of the minimal approach 
MM' except for the last two T bins. As we have seen 
already in connection with the first order result A~ (T) 
the last two T bins are very much influenced by the 
cut procedure. With the invariant mass cut criteria 
as in K L  and KL'  the two-jet region is identical with 

T>0.95 (if y=0.05) whereas with our e, 6 cuts the 
two-jet region extends down to T-~0.9. 

In connection with analysing e+e - annihilation 
data it is of interest to see what effect the various 
recombination procedures have if we want to deter- 
mine the strong coupling constant es- It is clear that 
the approach SW will give larger couplings es than 
MM' or KL. We have not confronted our results with 
complete hadronisation models as was done in the 
TASSO Collaboration work [-14]. To get a rough idea 
on the change of cq we adopted the following ap- 
proach. In the TASSO work not the full SW scheme 
was used. Instead the analysis is based on the so- 
called extended FKSS approach, which contains only 
roughly 50% of the SW corrections if compared to 
FKSS*.  As compared to the full SW scheme only 
part of the non-singular four-parton terms were in- 
cluded, in particular only those terms from qOgg and 
qglqgl final states, where one quark is soft and at large 
angle or two quarks are collinear with the (e, 3)-con- 
straint. In [-11] one of us estimated the effect on cq 
if the complete SW approach had been used. The 
result was that e~=0.144 at c.m. energy of 34.6 GeV 
follows from the TASSO analysis with independent 
jet fragmentation. With this value of e~ we have calcu- 
lated 1/Ototda/dT for three plus four jets using the 
results in Tables 1 and 3. This gives, for example, in 
the T interval 0.800 < T_< 0.875 the result 
1/Ototda/dT=0.953. We have chosen this T interval 
since it is outside the region where two-jet effects 
come in and where the cross section is still fairly large. 
Now we fit e~ in all the other approaches SW', MM, 
MM', K L  and KL'  to the cross section data in this 
T-interval, i.e. 1/atotd(r/dT=0.953. The results are: 
e~=0.129(SW'), 0.122(MM), 0.120(MM'), 0.123(KL) 
and 0.130(KL'). So SW' and KL'  as one group and 
MM, MM' and K L  as the other group lead to two 
different es. The range of all values together with the 
SW value is from e~=0.120 to e~=0.144 with es 
=0.132 as mean value. Of course, a fit to the thrust 
distribution up to T =  0.9 may produce somewhat dif- 
ferent numbers and it may also turn out that some 
of our schemes might give a better fit to the experi- 
mental thrust distribution than others. But this is not 
the topic of this paper. 

Our results for the MM' scheme are very similar 
to the results of Zhu [15] of the M A R K  J Collabora- 
tion. This is not surprising, since he applied the mini- 
mal mass recombination scheme (our MM') in his 
study of second order corrections to the energy-ener- 
gy correlations. This approach was also used earlier 
by Ali and Barreiro [-10]. Zhu's approach was also 
followed in recent analyses of the M A R K  J Collabor- 

* see first footnote on p. 544 
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a t ion  whereas  the  a p p r o a c h  of  Al i  and  Bar re i ro  was 
also appl ied ,  a m o n g  others ,  in the  T A S S O  analys is  
[14] for the energy-energy  cor re la t ion .  I t  is c lear  tha t  
all  these analyses  give values  for as s imi lar  to the 
one we o b t a i n e d  for the  M M '  scheme above.  

3. Summary and Conclusions 

In  this p a p e r  we s tud ied  the dependence  of  the  0 (a~) 
cor rec t ions  to  the  three- je t  cross  sect ion on  the dress-  
ing, i.e. the  m e t h o d  to combine  non- s ingu la r  four-  
p a r t o n  conf igura t ions  in to  three  jets.  As  an example  
we ca lcu la ted  the th rus t  d i s t r i bu t ion  app ly ing  Ster- 
m a n - W e i n b e r g  (e, 6)-cuts (SW). W e  inves t iga ted  sever- 
al schemes and  found  tha t  the  m a i n  effect arises f rom 
the different  t r e a tmen t  of  soft large  angle  par tons .  
The  S W  scheme, in which  the soft p a r t o n  is ave raged  
over,  gives smal ler  O(a~ 2) cor rec t ions  than  the M M  
scheme,  where  the soft p a r t o n  is r e c o m b i n e d  accord-  
ing to  the  min ima l  i nva r i an t  mass.  A recent  O(a~) 
ca lcu la t ion  a p p l y i n g  inva r i an t  mass  ( y - )  cuts  has  
shown tha t  the th rus t  d i s t r i bu t ion  depends  on  the 
choice of  the  three- je t  var iables .  This  is s imi lar  to  
the  r e c o m b i n a t i o n  dependence  jus t  descr ibed.  Since 
no  c lear -cut  theore t ica l  r eason  can  be given to select 
e i ther  of  these schemes,  O (c~ if) p red ic t ions  for three- je t  
cross  sect ions are  no t  unique.  This  leads  to a system- 
at ic  unce r t a in ty  in the d e t e r m i n a t i o n  of  the s t rong  
coup l ing  cons t an t  as. 

Besides the dress ing  scheme dependence ,  however ,  
there  a re  o the r  aspects  tha t  influence the  de t e rmina -  
t ion  of  es f rom e+e  - ann ih i l a t i on  j e t  p roduc t ion .  
These  are, for example ,  the choice of  k inemat ica l  var i-  
ables  which  are  used for the c o m p a r i s o n  of  d a t a  wi th  
theore t i ca l  m o d e l  p red ic t ions  [11] a n d  in par t i cu la r ,  
as is well known,  the  way  the f r agmen ta t i on  of  the 

g luon is descr ibed,  i.e. i n d e p e n d e n t  f r a gme n ta t i o n  ver-  
sus s tr ing f r agmen ta t i on  [11, 14, 18]. 
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