
Volume 195, number 3 PHYSICS LETTERS B 10 September 1987 

SCALE INVARIANCE AND SPONTANEOUS SYMMETRY BREAKING 

W. BUCHMOLLER a,b and N. DRAGON a 
a lnstitutfiirTheoretischePhysik, UniversitdtHannover, D-3OOOHannover, Fed.Rep.Germany 
b Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg, Fed. Rep. Germany 

Received 3 June 1987 

Spontaneous breaking of gauge symmetries is studied in theories with nonlinearly realized scale invariance. The classically 
sliding vacuum expectation values are fixed throug h quantum corrections. The anomaly of the dilatation current determines the 
vacuum energy density as well as the dilaton mass. The coupling of gravity to matter is modified in such a way that the cosmolog- 
ical constant vanishes. 

One of the most remarkable properties of the standard model of strong and electroweak interactions is that 
all masses of elementary panicles are tied to the spontaneous breaking of the electroweak gauge group. A direct 
consequence of  this face is the classical scale invariance of the standard model lagrangian which is only broken 
by the mass term in the Higgs potential and a possible "constant term related to the vacuum energy density. 

Theories with mass parameters may still have "hidden", i.e., nonlinearly realized scale invariance ~. This 
requires the presence of a Goldstone boson, the dilaton, which couples in a universal way to all mass terms. 
Motivated by the approximate scale invariance of the standard model we investigate in the following its min- 
imal extension with "hidden" scale invariance, and especially the effect of the dilaton on the spontaneous sym- 
metry breaking of the electroweak gauge group. We will see that quantum corrections to the effective potential 
[ 2 ] play an essential role. They break the classical scale invariance and determine the vacuum energy density 
as well as the dilaton mass. 

In a recent paper Peccei, Sol/l and Wetterich [ 3 ] have considered the possibility that anomalous "hidden" 
scale invariance may lead to a vanishing cosmological constant. Furthermore they have studied the pheno- 
menology of the pseudo-Goldstone boson of broken scale invariance with a small mass arising from the anom- 
aly. From our investigation of the standard model with "hidden" scale invariance we will obtain the electroweak 
contribution to the dilaton mass. We will also see that quantum corrections modify the coupling of gravity to 
matter in such a way that the cosmological constant, which is no longer the vacuum energy density, vanishes. 

Let us now consider the scale invariance extension [ 1 ] of the scalar sector of the standard model: 

~ =  ½exp(2a/f) OuaOUa- 1 ' '  I z P - -  WI I/Vlllt: - -  lj~.u~B.ttp _[_ (DMo)t(DU~o) _ Vo(~O, a ) ,  (1) 

where 

Vo(f, a ) =  a4 +/i2~0'~0 + ½k(~0*~0) 2, 

d4=a4exp(4tr/f), /i2=/z2exp(2a/f), 2 > 0 .  (2) 

Here a is the dilaton field, f i t s  "decay" constant, ~0 is the scalar Higgs doublet, Du= 0 u -  ½ i g r ' l ~ -  ½ig'Bu the 
SU(2)w×U(1  ) r  gauge covariant derivative, and l~v and Bu, are the corresponding field strengths. Due to 
the specific couplings of the Goldstone field a the action is invariant under dilatations: 

~J For a review and references see ref. [ I ]. 
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8a=Sa(f+xuOua), 8~o=Sa(~o+xUOu~o), 

which leads to a conserved dilatation current su: 

8I=6 fd4xLp=6afd4xO~s~,, O~s~=O. 

The classical equations of motion for the scalar fields read 

DuD~ ~0 +/~2 ~0 +,%((0*(0)(0 = 0 ,  

(3) 

(4) 

(5a) 

exp(2a/f)(rTa+ (2/f)O~,aOF'a) + (2/f)f12~o*~0 + (4 / f )a  4 = 0 .  (5b) 

The existence of non-trivial constant solutions ao and ~o o constrains the allowed parameters ,%, #2 and a 4. For 
/t2> 0 one has a4= 0. The only stationary point is ~Oo = 0, ao remains undetermined. As pointed out in ref. [ 3 ], 
for/t2< 0 the constant is given by a 4 =/t4/2,%. Now the symmetry breaking vacuum expectation value is unde- 
termined and ao is given by 

exp(2ao/f) = -,%~0~0o/# 2 . (6) 

For different relations between a 4,/~2 and ,% (/z4< 22a 4) eq. (5b) yields exp (ao/f) = 0, i.e., a=/~= 0. In this case 
the coupling between the fields a and ~0 vanishes and one has the familiar situation of linearly realized scale 
invariance [2]. The consistency requirements for the couplings a 4,/t 2 and ,1 imply that the classical energy 
density vanishes at the stationary points, and the potential takes the special form 

Vo(cp, e) = ½ [(#2/2)exp(2a/f)  + (ff~'~0] 2 • (7) 

In the quantum theory scale invariance is anomalous [4]. Hence one expects that the special features of the 
classical theory with "hidden" scale invariance, the sliding of q'o and the vanishing of the vacuum energy den- 
sity, disappear in the quantum theory. In order to study this point we consider the one-loop corrections to the 
effective potential. Since the dilaton interactions are not manifestly renormalizable we treat a as a classical 
background field and evaluate the one-loop contribution to the effective potential with a cutoff A = O ( f ) .  A 
straightforward calculation yields (z=~0*~0, cf. ref. [2]): 

(8~[  '-4/3" (]~2 +,%Z)2 ( -2 + 3,%Z)2 ~ 
V~A1)(~O,a)= AZ[8122+(9g2+3g'2+122)z]±l~ ~Tm ~ t-½ ln/z  ~-7 j 

( -2 +2z)2 2z) 2 ~z 2 g z +g,2)2 +fi zz 3,%1n /z A 4 +321n(f12 2 2 ,2 + -  3g 4 In 2 ~  +~(g2 2A2 ~- 3)'2 ln(# A 4 

ln(fl 2 + 3,%Z) 2 7 
+922 A 4 ]-][g4+½(g2+g'Z)Z]zZ-~(f12+2z)Z-½(lYz+32z)2+O(1/A2)j . (8) 

Obviously the presence of the cutoff A breaks scale invariance. Also the renormalized effective potential can 
not be scale invariant since the renormalization conditions require the choice of a renormalization mass M. 
There is, however, a class of renormalization conditions which violate scale invariance minimally. They can 
be defined by the requirement that in the renormalized effective potential all mass parameters have the same 
coupling to the dilaton field as in the classical lagrangian. This specifies the counter terms 

418 



Volume 195, number 3 PHYSICS LETTERS B 10 September 1987 

V~ ~ ) =Aft 2 + B~0* ~o + C ~  4 + 3 ] 2  2 ~o~ ~0 n t- ½E(~o* (o) 2 , (9) 

up to irrelevant constants for C, D and E. A convenient choice of these constants yields the renormalized one- 
loop effective potential (z=fp*(0): 

v(~0, a) = Vo(~0, a) + v~'~(e, a) + v~l ~(~o, or) 

4 2 1" 2 1 [-3 -2 2// (]'LZ"~'~Z)2 =a +fl z+~gz +(--~)2L~(# +2z) ~ln M4 

+ ( ~ g  4Z2 In 2g~2 -- ½) 3(g2 g ~ 2 M 2 +  +-,2)2z2{ln(g2- +g'2)z 

1)1  2+3 z,2(1° -  2÷M43 z'2 

1)1, 

1) 
(lO) 

where a*, lz 2 and 2 are now renormalized parameters which depend on the renormalization mass M. Their M- 
dependence can be read off from eq. (10): 

M~a4(M) =#4(M)yt  (2(M)),  71 (2) = 8/(8n) 2 , (! 1 ) 

M~lt2(M)=fl2(M))J2(2(M)), y2(2)=242/(870 2 , (12) 

M 0 ~ 2 ( M  ) =fl(2(M)),  f l (2)= (~n)214822 +6g  4 + 3(g 2 +g,2)2] .  (13) 

The constraint for a 4, ~t 2 and 2 of  the classical theory in the case/t 2 < 0 can also be imposed on the renormalized 
quantities: 

22(M) a4(M) =/ t4 (M) .  (14) 

Since the scale dependence of 2a 4 and p4 is different, eq. (14) fixes a renorrnalization mass M. 
It is instructive to compute the change of the effective potential under an infinitesimal scale transformation. 

One easily finds (cf. eqs. (11 )-(13))  

8 V=aOL{OI . t (X  p l/r ) -t- ~ 1 ( ~ ) ~  4 "~-]/2(X)2[~2 ~0~" ~0 "31- [ f l ( ~ ) / Z ]  1 ( ~  f0)2} . (15) 

From eqs. (4) and (15) one obtains, up to derivative terms, for the divergence of  the dilatation current (cf. 
ref. [51) 

O#S# = --  {~t (/~)fi4 .~_ ~2 (/~)fi2 ~0"~ ~0 .]_ [ f l ( ~ ) / 2 ]  12~0]'~0 } -~-z~(~0, 0") . (16) 

The effective potential (10) yields for stationary points the extremum conditions (/Yo=¢toexp(ao/f), 
ao=aexp(ao/f), Zo= ~0;~o): 

2-2 - _ 
-2 ]'LO -2 + 32zo)ln(/t~ ' -"~Zo) 2 / = 0 4d~ + 2/ZoZo + ( - ~ ) z  (3(/to +2z°)ln(/t~ m 1-~4'Z0) 2 "~ (f12 M 4  ] , (17a) 

d-2~ \ 

1 . ~ (  . . . .  (f12 +,~Zo) 2 -2 
fi2 +ZZo + (8z02 ~ ,3A(fi2o -emo)m- ~-g ~- 3)~(fi 2 + 3Azo)ln .(/t° M4 + 3)]'0)2 

2 Z 4 g 0 3 2 - -  ,2x2 " (g2+g'2)go'~ ^ 
+ 3g zoln2M 2 + 7 (g - -  ± g  ) Zorn ~ ) = o  (17b) 
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Eqs. (17) have the non-trivial solution 

22(M~ I -  In , exp (2ao / f )=  2/ t~(M),  (18a,b) 

3g41n(g2/42) + ~ (gZ +g,2)2 ln[(g2 +g,2) /42]  ) 
K = e x p  3g4 + ~ (g2 +g,2)2 +822 _ , (18c) 

which determine the vacuum expectation values ao and ~Oo in terms of the renormalization mass M and the 
couplings 2, g and g ' .  By a redefinition of the field tr and the pa ramete r s f  a,/t, 2 one can - even in the presence 
o f  the anomaly - absorb a finite vacuum expectation value ao. We assume, without loss of generality that this 
is already done and  work with parameters such that tro =0.  We note that for 2 = O (g2, g! 2) one has In K =  O (1). 

As the quantum corrections break scale invariance the dilaton acquires a mass which is determined by the 
vacuum expectation value of the anomaly (16). To lowest order in (v2/f 2) [v= (2x/~Gv) -~/2] one obtains 

m2  - 4 (A)o  8 
f2 - (8n)2f2( 6m4 +3m4 +m4H), (19) 

where m ,  is the Higgs boson mass, which depends in the usual way on 2, g and g ' ,  and satisfies the Weinberg 
-Linde bound [ 6 ] 

2 3w/2Gv 4 
mH >_- 1--]--~5-2 (2mw + m47) . (20) 

A charged spin-1/2 fermion with mass my adds inside the bracket of  (19) the term - 4 m  4. The stability of  the 
effective dilaton potential therefore excludes a top-quark mass above the W-mass unless there are further heavy 
bosons such as a heavy Higgs scalar. Finally, the vacuum energy density is also determined by the vacuum 
expectation value of the anomaly: 

1 
( V )  o = ¼ (A)  o = - 2(8zc)2 (6 rn4 + 3m 4 + m 4) • (21) 

The "decay"  constant f of the dilaton field is the mass scale at which dilatation invariance is spontaneously 
broken. Hence f i s  expected to be large, possibly of  order of  the Planck mass Mw. In this case the dilaton mass 
lies in the range usually considered for invisible axions. Its couplings to matter are of gravitational strength, 
as discussed in ref. [3]. The dilaton fermion couplings are proportional to the Higgs boson couplings, 
gDer = (v/f)gnfr, furthermore the dilaton couples directly to the complete anomalous divergence of the dila- 
tation current. This is analogous to axion coupfings ~2 and follows, as in the axion case, from a redefinition of 
fields. 

What is the cosmological constant corresponding to the vacuum energy density (21 ) ? Let us express the effec- 
tive potential in terms of the fields 0 = e x p ( - a / f ) ~ o  and a. From eqs. (10) and (16) one obtains 

V(~0, a) =exp(4a / f ) [  Vo(•, 0 ) +  V(')(~, 0 ) - A ( 0 ,  0) (a / f ) ]  . (22) 

This decomposition shows that (21 ) ;results from the minimization with respect to a irrespective of  the detailed 
dependence of Vo and V ~) on ~. 

The coupling of cr to the potential is familiar from the coupling of the metric tensor gu,, to matter. The clas- 
sical action for the fields ~, a and g~, reads 

~2 For a recent discussion, see ref. [ 7 ]. 
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I =  f d4xx/ / -g  exp(4a/f)  { (M~.tl 16n) exp( - 2a/f)R + ½gU,, exp( - 2a/f) 0 u aO ~ a 

+gU~ exp( -2a/ f )[O u + (l/f)0~,a] ~* [0~ + (1 / f )0~a]0-  V0(0, 0)},  (23) 

where R is the curvature scalar. The action is invariant under global dilatations and local coordinate trans- 
formations. Since the metric decouples to ¢ only in the form g~ exp (2a/f ) ,  we can read off from eq. (22) the 
one-loop effective potential for O, a and constant, Lorentz-invariant metric gu.=crlv: 

I ~l) = f d 4 x ~ - g e x p ( 4 a / f ) [ -  V")((~, O)+A(O, O)(a/f+ k l n v / ~ ) ] .  (24) 

This is a puzzling result as it seems to imply that, contrary to common belief, the dilatation anomaly also breaks 
general coordinate invariance! 

The anomalous gravitational coupling (24) to the divergence of the dilatation current, 

1 4 u ,~,=lfd'x~--}s,'.~,ln~--}=--~fd x.f2~s~r.~, (25, 

is not excluced by previous calculations. It is absent for free scalar fields in curved space [ 8 ], and it can also 
not be obtained from the determination of the ultraviolet counter terms of an interacting theory in a gravi- 
tational background field [ 9], since it arises from a summation of ultraviolet finite contributions to the effec- 
tive potential. From eq. (24) one cannot conclude that the dilatation anomaly generates a gravitational anomaly, 
like the one which can arise from fermion loops [ 10]. In order to study this question one would have to con- 
sider energy-momentum conservation which requires the complete effective action and not just the effective 
potential (24). 

What is the effect of the anomalous gravitational coupling (24) on the cosmological constant? The field equa- 
tions for the metric become 

Ru~- ~g~.R=l _ (8n/Mr.~)T~,.2 , (26) 

with 

Tu,, = f'~,. -- kgu,,A( ~o, a ) ( l n x / / ~ +  l ) ,  (27) 

~ , . =  2 8 (28) ~g m'IM , 

where IM is the matter part of the action without I~ ) (25). Hence we obtain for the "cosmological constant" 

( r"u )o = ( f'uu )o - (d((o, a ) ( l n x / / ~ +  1 ) ) o ,  (29) 

which vanishes for flat space (gu. = r/u.), 

< TU~, > =4< V)o - <A>o = 0 ,  (30) 

since the vacuum energy density (21) is given by the anomaly! 
This result is surprising. In scale invariant theories, the vacuum energy density is given by the anomaly of 

the dilatation current and does not vanish. However, the coupling of gravity to matter is modified precisely 
such that the cosmological constant vanishes! As the effective potential depends only on a/f+ ¼1nx/~ ,  a sta- 
tionary point for a automatically implies that flat space-time is a solution o f  the coupled, non-linear system 
of equations of motion. 

The standard model of strong and electroweak interactions offers no explanation as to why the cosmological 
constant is so small [ 11 ]. A remarkable feature of  the standard model is its classical scale invariance, which 
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is only broken by a single mass parameter  in the Higgs potential.  If  scale invariance is realized non-l inearly 
for the complete lagrangian by means of a Goldstone field, the dilaton, the classical vacuum has a flat direction 
and the cosmological constant  vanishes. Q u a n t u m  corrections fix the scale of spontaneous symmetry breaking 

without changing the cosmological constant. Reversing the argument,  the observed smallness of the cosmo- 
logical constant  suggests the existence of a dilaton, which is expected to have a mass in the invisible axion range 
[ 12] and to interact with gravitational strength. 

We would like to thank M. Liischer, R.D. Peccei, J. Wess and C. Wetterich for helpful and stimulating 
discussions. 
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