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The effect of the finite lattice size on physical quantities, like masses and coupling constants, 
is numerically investigated in the ,l-dimensional Ising model. The feasibility to obtain numerical 
information about low energy scattering from finite volume effects in a lattice Monte Carlo 
calculation is demonstrated. 

1. Introduction 

The numerical investigation of relativistic quantum field dynamics is based on the 
approximation of the space-time continuum by a 4-dimensional discrete lattice. This 
approximation becomes good if the physical length scale is much larger than the 
lattice spacing. Since the number of lattice points is limited by the available 
computing power, the need to minimize the influence of the space-time discretiza- 
tion necessarily drives the numerical investigations into regions where the lattice 
extension is not much larger than the characteristic physical length scale. In this 
respect the number of dimensions plays a rather negative r~)le, because a mere 
doubling of the linear extensions implies a drastic factor of 16 increase in the 
number of lattice points. As a consequence, the knowledge and control of finite 
lattice size effects is very important in every numerical lattice calculation. In fact, an 
optimal calculation turns the tables and uses the calculated finite size effects to 
obtain additional dynamical information on the infinite volume system. 

Although the question of the finite size effects on masses or coupling constants 
was considered in many of the numerical investigations of 4-dimensional quantum 
field systems, the earlier theoretical studies of the finite size effects were mainly 
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oriented by statistical physics considerations, such as phase transitions etc. (see, for 
instance, refs. [1 3]). From the point of view of the 4-dimensional numerical 
simulations a very important question is the influence of the finite lattice size on the 
calculated particle masses. A systematic theoretical study of the finite volume 
problem was performed in the recent papers by Liischer [4, 5]. In ref. [4] the volume 
dependence of single-particle states was considered, whereas ref. [5] is devoted to 

the question of 2-particle scattering states in finite volumes. An interesting outcome 
of these investigations was the relation between the energy shifts of the 2-particle 
states in a finite box to the elastic scattering amplitude in infinite volume. This 
relation allows one, in principle, to obtain numerical information on the low energy 
scattering from an accurate study of the volume dependence of 2-particle energy 

levels. 
The main motivation of the present work is to study the feasibility of the 

numerical calculation of the scattering length by Lfischer's formula [5]. The choice 
of the particular quantum field theory, where our numerical simulation has been 
performed, was also influenced by a possible future application to SU(2) Higgs 
systems, which are physically important for the understanding of the Higgs-sector of 
the standard model. (For recent numerical studies of the standard SU(2) Higgs 
model see refs. [6,7] and references therein.) The 4-dimensional Ising model is a 
limiting case of the 1-component ~4 model for infinitely strong self-coupling, 
therefore it has some similar qualitative features as the standard Higgs sector (which 
is based on a 4-component (/)4 model). The infinite scalar self-coupling (X ~ ~ )  
limit is, in fact, also characteristic of the behaviour at X--O(1), even after the 
introduction of the SU(2) gauge coupling in the Higgs system [6]. From the point of 
view of our present problems, the triviality of the continuum limit of the ~4 model is 
not relevant. We take the non-trivial finite cut-off model as a representative of 
quantum field systems on a finite 4-dimensional lattice. (For questions of the 
continuum limit see ref. [8], where also a detailed list of references to earlier work 
can be found.) Concerning the physical application to the standard Higgs-sector, the 
finite cut-off lattice models can be considered as approximations to the effective 
quantum field theory which has, for some physical reasons, also a finite cut-off. The 
choice of the 4-dimensional Ising model as a testing ground for numerical simula- 
tion methods is, of course, also advantageous because of simplicity. We could 
perform a large number of sweeps (in the order of 106-107) on a variety of lattices 
within a reasonable amount of computer time. This allowed an accurate determina- 
tion of the physical quantities of interest. A last piece of motivation of our 
investigation of the 4-dimensional 1-component ~4 model is the fact that, up to 
now, this simple model received relatively little attention in the numerical simula- 
tions. The previous numerical works we are aware of were concerned mainly with 
the questions related to the triviality of the continuum limit [9 11] and with the 
Monte Carlo renormalization group behaviour [12,13]. The masses and couplings 
were calculated in most cases, by present standards, only with moderate accuracy. 
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The 4-dimensional Ising model has a critical point at the critical hopping 

parameter  value ~¢or -- 0.0748. For J¢ > ~cr the symmetry G--+ -g '~ of the action gets 
spontaneously broken. In the vicinity of the critical point the correlation length 
(which is the inverse of the mass in lattice units: ~ =  ( a m )  - I )  is very large. The 
lattice size becomes infinitesimal on the scale of the infinite volume correlation 
length, therefore near the critical point the finite size effects have to become 
infinitely large. As a function of K this happens rather suddenly, because ~ is a "fine 
tuning parameter"  (near ~¢c~, am behaves as -~ ~/'~c~ - K ). 

The consequence of the critical behaviour near ~ r  is: 
* For the study of finite size effects on physical quantities, like masses or coupling 

constants, one has to stay in the region where zL = - L m ~ - - O ( 1 ) .  (Here L is the 
linear extension of the lattice and m~ is the mass in lattice units in an infinite 

volume.) 
• The region with zt, -- O(1) has a very sharp boundary in ~ due to the fine tuning 

nature of to. 

According to this, in our numerical calculations on L 3 - T lattices we kept z L in the 
range z L = 2 -6  and z r  = Tmo~ near z r =  5-6. This was achieved by the fine tuning 
of ~ in shorter Monte Carlo runs. 

The organization of this paper is as follows: in the next section the lattice 

definitions of the variables and of the physical quantities are collected. The general 
formulae for the volume dependence are given in sect. 3. In this section also some 
analytical calculations of the finite lattice size effects in lattice perturbation theory 
are summarized. In sect. 4 the Monte Carlo calculations are described in detail and 
compared  to the theoretical expectations. The last section contains a short summary 
and a few concluding remarks. 

2. Lattice definition of physical quantities 

The euclidean lattice action of the 4-dimensional Ising model is defined by 

S = - ~  Y', q~bx+ a . (1) 

Here g,~ = _+ 1 is the field variable at the lattice site x, and the summation ~ ,  goes 
over pt = + 1, _+ 2, + 3, + 4. x +/2 is the neighbouring site to x in the direction /,. 
The only bare  parameter  in the action is the (positive) hopping parame ter  ~. The 
other parameter  of the 1-component ~4 model, the bare self-coupling X, is infinite 
in the Ising limit. We will work on finite L 3- T hypercubic lattices with periodic 
boundary  conditions in all directions. 

2.1. CORRELATION FUNCTIONS 

Let Y denote the transfer matrix in direction 4. J -  is positive definite and 
commutes  with the translations q / (a )  in the spatial directions. For a range of K 
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around the critical point, the theory is thought to describe the interactions of a 
massive scalar particle. Thus we expect the lowest eigenstates of J -  above the 
ground state* to be single particle states with quantized momenta  (due to the 
periodic boundary conditions) k = (2~r/L)n, n = (n 1, n 2, n3), (n, = integer) and 
energy o0(k), 

aY(a)lk ) = e ' "k l k  ) , (2) 

J I k )  = e  (3) 

The physical single particle mass m ( L )  is given by 

m ( L )  = 00(0). (4) 

The energies co(k) are determined in the numerical calculations from the 2-point 
correlations 

C 1 ( t  1 - t2; k )  -.~ ~Sc(I1; k)Sc ( / -2 ;  k) or- S~(tl; k)Ss(g2; k ) )  c (5)  

of "t ime-sl ice" variables with spatial momentum k 

1 
Sc( t; k )  = 

X 

1 
S,(t; k)  -- ~ Y'.~xtsin(kx). (6) 

X 

t is the euclidean time t - x 4 and (xl, x2, x3) - x are the spatial components of the 
site vector x. In eq. (5), ( . . . ) c  denotes the connected expectation value with respect 
to the Boltzmann-distribution e s with the action S. 

The spectrum of 3"- also contains states corresponding to scattering 2-particle 
states with definite total momentum and relative momentum q. To numerically 
investigate these channels it would, in principle, also be possible to use local 
2-particle variables like e.g. ~x 2, but these would couple only weakly. In order to 
have a strong overlap with 2-particle states one has to consider variables which are 
" smeared"  in space for fixed time. Good operators, projecting on states with total 
momen tum zero, can be obtained simply by squaring the 1-particle time-slices**: 

s2(t; q)  = s (t; q) 2 + q)  2 (7) 

* g ' -  is n o r m a l i z e d  so tha t  its largest  e igenvalue  is 1, i.e. the g r o u n d  s ta te  energy  E 0 ~ O. 
**  T o  p ro j ec t  ou t  the spin-O p a r t  one  should  sum over  ro t a t ions  of  q; b u t  we d id  no t  d o  this in ou r  

n l e a s u r e m e n t s .  
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The corresponding correlations are denoted by 

c2(t ,  - ,2),,,e =- <s~(,~. q , )S2( t2  q~) ) . .  (s) 

In the unbroken-symmetry phase, where our Monte Carlo calculations will be 
performed, there is no mixing between 1-particle and 2-particle states, This is due to 
the exact symmetry ~ + - $ , .  There is, however, no exactly conserved quantum 
number which would forbid the mixing of 2-particle operators with different relative 
momenta q. Consequently, although the various 2-particle states have a large 
projection in the corresponding diagonal correlations, the off-diagonal correlations 
with ql ~ q2 are also non-vanishing. An energy estimate for the different 2-particle 
states can be obtained by computing the matrix C2(t)q,q, and diagonalizing in qlq2- 

We denote the lowest 2-particle energy by M o ( L ) ,  the first excited 2-particle energy 
with unit relative momentum by M~(L). 

2.2. MASSES 

The determination of the low-lying spectrum from the correlation functions 
would be trivial if the time extension T of the lattice and the statistics would be 
infinitely large. In real life, for finite T and finite statistics, the situation however is 
more complicated. Denoting the eigenvectors of the transfer matrix by In> and E ,  

the corresponding eigenvalues, the two-point correlation function of an operator 
(,0(t) defined on one time slice, and its expectation value are given by, 

< e ( t ) o ( 0 ) * > = z '  E e ,:,,T .,:,,, ':,,')A ..... )2  
m ,  i1 

(9) 

where 

and 

( o ( t ) >  = z - ' E e  <TA ..... (10) 

Z =  • e  ,c,,r (11) 
11 

A .... = ( m [ ( 9 ( O ) l n  > . (12) 

The dominant t-dependent contributions for large t comes from the lowest state r 
for which A0,. 4= 0. We first note that, due to the periodic boundary conditions, there 
are also states propagating over the boundary in negative time direction and 
therefore the exponential time dependence of the correlation functions is modified 
to a cosh-behaviour. Our main purpose however of recalling the well-known 
relations above is to stress the fact that if (_O has non-vanishing expectation value 
then its connected 2-point function has in general l-independent contributions. In 
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particular for large T the dominant t-independent contribution is given by 

IAoo _ A11 [ 2e- m(L)r. 

Therefore the generic behaviour of the correlation functions one has to consider for 
large T and t is: 

c (t) -- coe ,E, + ,)E,).  (13) 

Sometimes the t-independent term is known to be absent, e.g. for the 1-particle 
correlation in the symmetric phase. But for the 2-particle correlations c 0 :~ 0. 
Despite the fact that the t-independent terms vanish exponentially for large T, their 
omission in fits can considerably disturb the determination of the mass: the 
apparent  masses obtained from the logarithmic slope at large t seem to be smaller 
on the finite-T lattice than for T ~ ~ .  

The behaviour in eq. (13) is, of course, only the asymptotic form because above 
the lowest state with energy E r there are also states with higher energies. In practical 
calculations one has to extract somehow the lowest contribution, for instance, by 
fits a n d / o r  by some extrapolation procedure. For an accurate calculation the 
uncertainty of this extrapolation may be comparable to the statistical errors. 
Therefore it is better to separate this problem from the other sources of errors by 
defining effective masses t~t: =- am~2 for given pairs (&, t2) of time-slices. In the 
case of c o = 0 (no t-independent contribution) a simple way to do this is to assume a 
cosh-behaviour between the two time-slices. The ratio of the correlation function at 

t I and t 2 is then 

e {1~'1'2 Jl- e (T ll)tltl,2 

r12  = e t2tL'l'2 -I- e { r  t~). . . . .  • (14) 

The value of/~,,,~ can be obtained, for instance, by numerically solving the equation 

+ x ,2) = ( s ,  + (15) 

with % - ( ~ T - t , )  for x -exp( - /~ ,~ ,~) .  In the case of c0:~0 one can proceed 
similarly after eliminating the t-independent term by subtraction. For instance, for 
(t 2 - tl) >/2 one can take an intermediate time-slice at t o = ½(t 2 + &) (t, integer) 

and solve the equation 

F12(X'r2-H X--T2-- X~{}-- X "%) = (X  "rl ~- X TI - - X  . . . .  X -r{}). (16) 

The third time-slice t o can, of course, also be chosen differently, but from the 
practical point of view it is better to take some definite function of t~ and &, 
otherwise the effective mass will already depend on 3 variables (to&t2). 
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Another possible way to introduce an effective mass /*,,t, is to fit the correlation 
function in the interval t l -%< t -%< t 2 by the asymptotic form in eq. (13). This assumes 
that an error estimate of the correlation function is also available and then it is 
possible to define/,,,,~ by the minimum of X 2 (sum of quadratic deviations weighted 
by the inverse error squares). In our case it turned out that both methods are 
practicable and give comparable results. Solving eqs. (15) or (16) is, however, 
simpler. The fit procedure is more cumbersome and numerically more delicate, 

especially in the case c 0 ~ 0. 
The question of extrapolating/*,~r~ to the limiting value/~ is, of course, still there. 

In general they provide upper bounds and in an ideal case/~ can be deduced from 
the set of obtained /.t,,,, values together with an estimate of the error of this 
extrapolation. 

2.3. OFF-SHELL COUPLINGS 

Information on the physical couplings can be obtained in the symmetric phase 
from the connected 4-, 6-, etc. point functions. The simplest possibility is to consider 
the couplings at zero four-momenta, which can be numerically obtained from the 
generalized susceptibilities 

1 
X,, -  L3T ~_, ('b~]...~,,},,. (17) 

~ 1  • - -  A ' n  

The 2-point susceptibility X2 plays a special r61e since it defines a dimensionless 
field renormalization factor z through 

L, T )  - ( a,,,( L ( 1 8 )  

The multiplicative field renormalization factors in the susceptibilities can be 
cancelled by taking ratios [7]: 

4 2 . . . .  x , ,  ( 1 9 )  
a A n ~ [ ~ n /2  " 

tX2) 

Here the dimension is indicated by the explicit power of the lattice spacing a, 
therefore a convenient dimensionless combination is: 

X , , ( L , T ) ~ m  2n 4 A , , .  {20) 

It is also possible to consider off-shell couplings for non-zero euclidean momenta. 
In the special case of space-like momentum pairs in the 4-point coupling the 
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appropriate generalisation of eq. (17) is 

1 
x 4 ( k , ,  k2) ~- L3T Z eikl( . . . .  )+"k2( . . . .  )< I~)A'/ " " " ~.¥4 >L" 

XI .... :(4 

L 9 

=TE 
[1 " " " 14 

< [Sc ( t l ;  k l ) S c ( t 2 ;  k l )  q- Ss ( l l ;  k l ) S s ( / 2 ;  k l ) ]  

X [ (Sc( /3 ;  k 2 ) S c ( t 4 ;  k2)  -1- S~(/3; k2)Ss(~'4;  k2 )  ] )c-  (21)  

In the present paper we shall consider only two cases, namely kl = 1, k 2 = 0 and 
kl  = 11, k2 = ]2" Here 1 and 11 =~ 12 denote one of the three possible space-like 
momenta  with length (2~r)/L. The corresponding dimensionless couplings can be 
defined in analogy to eqs. (19), (20), for instance, as 

aE1)4X.4 O) ~k4(1,0 ) = ( E 1 ) 4 A 4 ( 1 , 0 )  = ( 

(E , )  s (aE1) s X4(I, ,  12) 
X 4 ( l ' l )  rn4 A4(1 '1)  (am)  4 X22 (22) 

Here E t is the energy of the 1-particle state with lowest non-zero momentum, Near 
the continuum limit and for large volumes it has to satisfy Lorentz-invariance, 
therefore 

~/ 4~2 
a& (am) 2 + L- w (23) 

The non-zero momentum couplings could also be made dimensionless just by the 
powers of the mass. The advantage of choosing the above combinations of the 
energy and the mass is that for these definitions the contribution of the I-particle 
pole is the same for X 4, X4(1,0) and X4(1,1 ). Therefore, the comparison of these 
couplings directly tells how strong the dominance of the 1-particle pole in the 
4-point function is. If ~k4, )k4(1,0), )t4(1,1) are nearly the same, the common value 
can also be considered as a good estimate for the on shell coupling. 

3. Theoretical aspects 

3.1. FURTHER DEFINITIONS 

In this section we collect some definitions which are required in order to compare 
the Monte Carlo results with analytic calculations*. For perturbative and other 

* We set the lattice spacing a = 1 throughout this section. 
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analytic studies it is convenient to work in the T---, ac limit. The one-particle 
energies {o(k) then manifest themselves as poles of the qb-propagator G(k, k 4 )  in the 
complex k4-plane. Near the pole we have 

z(k) 
G ( k ,  k4) - k 2 + ~(k) 2 + O(1). (24) 

A renormalized mass parameter mR(L ) and a wave function renormalization 
constant ZR(L)  are usually defined through the behaviour of the inverse propagator 
for small momenta by* 

G(0, k4) 1= 2~¢ZR(L) ' (m 2 + k 2 + O(k44)). (25) 

The zero momentum wave function renormalization factor Z R above is related to 
that defined in eq. (18) by 

Z R ( L ) = 2~r( L)2z (L,  ac), (26) 

where 

mR(L) 
r ( L ) -  m ( L )  " (27) 

The n-point zero momentum couplings in renormalized perturbation theory are 
conventionally defined [8] by appropriate factors of ZR(L)  times the susceptibilities 
eq. (17) and hence are simply related to the dimensionless couplings X,, in eq. (20) 
measured in the numerical simulation. In particular for the 4-point coupling gR and 
6-point coupling hR we have 

g a ( L ) = - r ( L ) 4 h 4 ( L , ~ ) ,  (28) 

hR(L  ) = r (L)SX6(L,  ec). (29) 

Finally in the infinite volume limit the spectrum becomes continuous and a 
scattering amplitude can be defined by analytic continuation of the connected 
amputated 4-point function F, 

T(p ' ,q ' lp ,q )  = ( Z ( p ' ) Z ( q ' ) Z ( p ) Z ( q ) )  ~/2 lim F(/5', c7' , - / 5 , - ~ ) ,  (30) 
e ~ 0  

* The Z a defined here differs from that defined in ref. [8] by a factor 2~. 
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£= 

and energy-momentum conservation holds: 

p + q = p '  + q '  ( m o d 2 ~ ) ,  

~o(p) + ~ ( q )  = w ( p ' )  + w(q ' ) .  

We can now define an on-shell coupling g by the value of the scattering amplitude 
at threshold, 

g =  -T(O,010 ,O ).  (31) 

In terms of this the S-wave scattering length a 0 is given by 

m , g  

32vrm2 , (32) a 0 

where m ,  is the kinetic mass defined in 

k 2 

o~(k) = m + - -  + O ( k 4 )  . (33) 
2 m .  

Here we have denoted the L = oc mass m(oc) simply by m and this convention will 
be adopted for other quantities in the following. 

3.1.1.  L = ~ pred ic t ions .  The predictions from the K-expansion and renormal- 
ization group equation analysis [8] for the main ~ values measured in our Monte 
Carlo runs are as follows: 

for x = 0.07102: 

m R = 0 . 4 9 ( 2  ) ,  

g a = 4 1 ( 8 ) ,  

for • = 0.07400: 

zR= 6.85(7); (34) 

mR=0.21(4 ), 

ga=24(3), 

ZR= 6.59(8). (35) 
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Some 2-loop perturbative results ( L =  ~c) for the quantities defined in the 
previous subsection are as follows [8], with aR -= gR/(16~r2): 

h R = 1 0 g ~ ( 1 - 3  9 2 + + o(  ga, ) ) , (36) 

m 2 
g =  ~,-, gR(1 - c~R + 0-927a~+ O(g~,  m2gR)) ,  (37) 

1 2)1/2 l mR)( 1 0.0013c~ 2 + O ( g ~ , m 2 g R ) )  (38) m = 2log((1 + area + _ - 

1 2 ~ 1 / 2 [ 1  ") m . = m , ( l +  amR) D - 0 . 0 0 1 3 c ~ ) + O ( g ~ , m 2 g R ) ) .  (39) 

We see that the mass ratio r(~c) defined in eq. (27) is approximately 1.01 for 
m R --0.5 (the deviation from 1 coming mainly from O ( a  2) effects), and approxi- 
mately 1.002 for m R --0.2. 

3.2. F I N I T E  V O L U M E  E F F E C T S  

Formulae for the leading finite volume effects for continuum theories in a box 
with periodic boundary conditions have been derived by Liischer for both stable 
particle masses [4] and for 2-particle masses [5]*. Analogous formulae can be 
derived for the theory with lattice cut-off [14]** and also to other quantities such as 
gR(L)  and ZR(L).  In the following we merely summarize these results together with 
simple calculations in leading order renormalized perturbation theory in the 0 4 

model which, according to the picture elucidated in ref. [8], should suffice to give a 
good quantitative description when the bare parameters are such that the model is 
"in the scaling region" where the renormalized coupling is sufficiently small. 

3.2.1. Stable particle mass. The volume dependence of the physical mass re(L) 
is due to vacuum polarization effects [4], and is, in the symmetric phase where there 
is no 3-point coupling, given by 

3 ,~ d3q 
m ( L ) - m -  2mf ,,(27r)320a(q) e ' ° (q ) "T(p 'q lP 'q )+  "'" (40) 

where the momentum p is given by 

p =  ( im,0 ,0) .  (41) 

The expression (40) neglects higher exponentially damped contributions (indicated 

* The fo rmulae  are proven to all  orders  of pe r tu rba t ion  theory, but  are thought  to be of more general  
val idi ty .  

**  We  are of course  p r imar i ly  interested in the l imi t  L >> ( >> a.  
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by the dots), but includes all lattice artifacts. Extracting the leading behaviour of the 
integral, by expanding around the saddle point, shows that re(L) approaches its 
asymptotic value exponentially, with pre-factor proportional to the forward scatter- 
ing amplitude analytically continued to an unphysical point, 

m,)3/2 e mL(l O ( L  1 3 T(p,O[p,O) + )) .  
m ( L ) - m -  4rn2 ~ - £  (42) 

We see that, due to the repulsive nature of the interaction, in the symmetric phase, 
the limit is approached from above. 

Expanding all quantities occurring in (40) in leading order renormalized perturba- 
tion theory one obtains 

rn( L ) - m 3gRm '~ d3q e ~,,(q,t, + O( g2 ) + . . .  
- m* 2 f-~(2vr)32¢00(q) 

(43) 

with wo(q) given by 

sinh(~%(q)) (m 2 ^, , l /2 = +q~)  , (44) 

where we have introduced the usual notation ~, = 2 sin ~2G. The mass difference can 
of course be directly calculated in renormalized perturbation theory giving 

mR 
m ( L ) - m =  ( m R ( L ) - - m R ) + O ( g 2 ) ,  

where 

gR 

4m. 
- - - - ( J I ( m R ,  L) - - J I (mR,oO))+O(gR)  , 

1 /-,, dk4  _,, 
J,,(rnR, L ) =  ~73 ~ j , ,  (2vr)(/~2 + rn2) 

(45) 

(46) 

In the latter expression the sum over k goes over one Brillouin zone. The formula 
(45), which can easily be evaluated numerically, is manifestly consistent with (43) 
and gives an indication of the magnitude of higher exponentially damped terms 
omitted in the latter. 

3.2.2. Coupling constant, gR(L) also approaches its asymptotic value exponen- 
tially, however, from below. A formula obtained using similar methods to those 
used to derive (40), giving the leading behaviour to all orders of perturbation theory, 
is 

r'~ d3q Z(q)2 e '°(o~'T(O,q,O,-q) 2 + - - - ( 4 7 )  
g R ( L ) - g R = - 9 L L ~ ( ~ ) 3  4°° ( q ) ~  q~=i,~(q) 
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and hence 

9 2 x,2[ m, ~3/2 
g R ( L ) - - g R - -  4mRZ(0) F(0, p , - 0 ,  p)~-2--~} e-roLL(1 + O ( L  1)), (48) 

where the momentum p is given by 

p = (0, im). (49) 

This in leading order perturbation theory becomes 

9g2 ( 1 ) 3 / 2  
g a ( L ) - - g R - -  4mi,/2 - ~  e mLL(I+O(L 1 ) ) + O ( g 3 ) .  (50) 

In comparison, the full result to leading order is 

3 2 gR (L) - -gR  = 5gR[J2(mR, L)--J2(mR,oo)] + O(g3) .  (51) 

Typically one finds that the finite volume effects for gR(L) are percentually larger 
than for re(L) and again just including the leading behaviour (50) underestimates 
the effects. 

3.2.3. Wave function renormalization constant. The volume dependence of ZR(L ) 
is very weak for moderately large m(L)L in the scaling region. In 2-loop renormal- 
ized perturbation theory we find 

ZR(L) l 2 , 1 = ggR(I (0, m R, L) - I'(0, m R , o0)) + O(g3) ,  (52) 
ZR 

with I '  defined by 

[ , ,  dq4 /-~ dq~ 
" ( p ,  mR, L ) =  ~ q  q~, j w ~ d  ~ r (2~ ) (02+m2)  l ( q ' 2 + m 2 )  1 

d 2 1 
× 2dp2 [ (q+  q; + p ) 2 + m 2 ]  (53) 

I '  can be calculated numerically and it can readily be seen that ZR(L ) attains its 
asymptotic value from below. 

3.2.4. 2-Particle mass shift. The shift in the 2-particle mass is due to scattering 
effects [5] and is given by* 

M ° ( L ) - a m ( L ) -  m,L 34~ra°( L , L [a°'2) I q- CI~- -1- C2| ~ -  ~ q - O ( L  6), (54) 

* We cite here only the formula for zero relative momentum. For other cases see ref. [5]. 
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with constants c x and c 2 given by 

c 1 = - 2.837297, 

c2 = 6.375183. 

(55) 
(56) 

A study of the volume dependence of this shift thus provides direct quantitative 

information on the physical scattering length a0, the situation being extremely 

favourable due to the notable feature in eq. (54) that up to O(L 6) only a o appears. 

As stated above, for the q~4 theory in the symmetric phase the interaction is 

repulsive, hence a 0 < 0 and then from (54) follows M o ( L  ) - 2 m ( L )  > 0. 

4. The Monte Carlo calculation 

4.1. THE MONTE CARLO RUNS 

The numerical Monte Carlo calculations were performed partly on a serial 

computer (IBM 3084) and partly on a vector machine (CYBER 205 at the Karlsruhe 

University). Consequently, we had two rather different versions of almost all of our 

programs. This turned out quite useful for checking possible programming errors. 

During the updating we stored the spin variables in single bits and used multi-spin 
coding. However, for the Metropolis hits separate random numbers were generated 

for every spin, in order to avoid the systematic errors due to the multiple use of 

random numbers [15]. By comparing the results of the first CYBER run on a 
163 • 24 lattice to previous IBM runs we realized the danger of the correlations in the 

pseudo-random generator in a dramatic way. As it was observed previously [16 18], 

the correlations present in the commonly used pseudo-random number generators 

can influence the Monte Carlo results considerably if the number of sites is a 

multiple of a high power of 2, and if in a program the number of generated 

pseudo-random numbers is an integer multiple of the number of sites. (In a serial 

program this usually does not happen, because the total number of pseudo-random 
numbers depends on the acceptance of the hits and hence also on the configuration.) 

In the first version of our vectorized program we ignored the warning of refs. 

[16 18], and received wrong results (e.g. the 1-particle mass was about 10% smaller 
than the value given in table 2a). After realizing the source of the discrepancy we 
changed the vectorized program according to the suggestion of ref. [18]: we left out 

1 pseudo-random number after every sweep. In the CYBER program we used most 
of the time the fast generator of ref. [19], in the IBM program the NAGLIB routine 

G05CAE. 
In order to fix the K-value in the final runs we performed a series of shorter runs 

on a 12  4 lattice. The aim was to tune K in the unbroken symmetry phase in such a 

way that the infinite volume mass be near 0.5, respectively, 0.2. This tuning lead to 

- Kl2 = 0.07102 for a m  ---- 0.5, respectively, to K -- ~24 = 0.074 for a m  ---- 0.2. (Actu- 
ally ~ = 0.071 would be as good as our ~12, but after having made already some 
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TABLE la  
The number of sweeps M s  (in units of 106) and the results for the masses 

at ~ = 0.07102 on L 3 - 12 lattices 
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L M s  a m  a E  1 a M  o a M  o - 2 a m  a M  l X2 z 

4 10.1 0.5621(5) 1.414(2) 1.330(7) 0.206(8) 3.0(3) 20.90(2) 6.60(2) 
6 5.2 0.5000(12) 1.070(2) 1.096(6) 0.096(7) 2.2(2) 26.47(3) 6.62(4) 
8 5.0 0.4918(7) 0.8814(12) 1.020(7) 0.036(8) 1.81(8) 27.77(4) 6.72(3) 

10 14.5 0.4883(4) 0.7720(5) 0.997(4) 0.020(5) 1.59(2) 28.10(2) 6.70(2) 
12 10.1 0.4875(5) 0.7011(4) 0.983(4) 0.008(5) 1.43(5) 28.20(3) 6.70(2) 

The statistical error estimates in the last numerals are given in parentheses. The error estimates for the 
masses were obtained from fits with the asymptotic behaviour eq. (13) by assuming that the measured 
statistical errors of the time-slice correlations at different distances are uncorrelated. The statistical error 
of X2 was determined directly by binning. For z the error of X2 and a m  were taken as uncorrelated. 

TABLE lb 
The results for the off-shell couplings at ~ = 0.07102 on L 3 - 12 lattices 

L a 4A 4 -~k 4 (/ 4 A 4 ( 1 , 0  ) - ~ 4 ( 1 , 0 )  a 4A4(1.1) ) t 4 (1 ,1 )  ~ 6 . 1 0  3 

4 279(2) 27.9(2) 8.30(8) 33.2(3) 0.17(1) 26.7(1.6) 5.08(8) 
6 543(10) 33.9(6) 29.4(6) 38.5(8) 0.65(9) 17.9(2.5) 8.78(5) 
8 629(25) 36.8(1.5) 66.0(2.1) 39.8(1.3) 6.3(5) 39(3) 13(3) 

10 655(30) 37.2(1.7) 114(3) 40.5(1.0) 18(1) 40.4(2.2) 21(11) 
12 748(75) 42.2(4.3) 169(9) 40.8(2.2) 41(3) 43(4) 30(20) 

The statistical error estimates in the last numerals are given in parentheses. The error estimates for 
a 4 2"A, ,  were obtained directly by binning. Those for the X's were calculated from the error of the A's 
alone, by neglecting the errors of the mass (or energy). Otherwise the errors of the X's would be strongly 
overestimated due to the obvious correlations between these quantities. 

l o n g e r  r u n s  we  d i d  no t  w a n t  to  c h a n g e  K aga in . )  T h e  t i m e  e x t e n s i o n  T of  the  l a t t i ce s  

w a s  c h o s e n  in such  a way  t h a t  the  s y s t e m a t i c  e r r o r  of  t he  m a s s  d e t e r m i n a t i o n  d u e  to  

T < oc c o u l d  b e  m a d e  su f f i c i en t ly  sma l l  ( s m a l l e r  t h a n  t he  s t a t i s t i ca l  e r rors ) .  In  a 

se r i e s  of  r u n s  for  f ixed  ~ o n  12 4, 123 .  24 a n d  123.  36 l a t t i ces  the  m a s s e s  we re  

d e t e r m i n e d  a n d  c o m p a r e d  w i t h  e a c h  o the r .  T h e  c o n c l u s i o n  was  t h a t  T =  12 is 

e n o u g h  fo r  ~ = ~q2 a n d  T =  24 for  ~ =/£24 ( h e n c e  the  i nd ices  of  K). T h i s  m e a n s  

z .  I = T m =  6, r e spec t ive ly ,  z r = 5. F o r  the  s p a t i a l  e x t e n s i o n  we h a v e  c h o s e n  L = 

4 , 6 , 8 , 1 0 , 1 2  in  t he  f i rs t  case  a n d  L = 8 , 1 0 , 1 2 , 1 4 , 1 6 , 1 8 , 2 0  in the  s e c o n d  case* .  

T h e  m a s s e s  a n d  c o u p l i n g s  we re  c a l c u l a t e d  a l w a y s  a f t e r  eve ry  5 th  sweep.  T h e  to t a l  

n u m b e r  o f  s w e e p s  p e r  l a t t i ce  r a n g e d  b e t w e e n  10 6 a n d  10 v (see t a b l e s  l a ,  2a  fo r  

de t a i l s ) .  T h e  e s t i m a t e  of  the  s t a t i s t i c a l  e r r o r s  was  d i r e c t l y  d o n e  for  the  t ime- s l i ce  

* Originally a 244 run was also planned but, unfortunately, this did not fit in our computer budget. 
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TABLE 2a 
The same  as table la ,  for ~ = 0.074 on L 3 . 24 lattices 

L Ms  am aE 1 a M  o a M  o 2 a m  a M  1 X2 z 

8 3.1 0.2452(8) 0.786(2) 0.586(4) 0.096(5) 1.7(1) 105.7(3) 6.36(6) 
10 3.0 0.2293(7) 0.649(2) 0.520(3) 0.061(4) 1.34(3) 122.5(31 6.44(6) 
12 4.8 0.2231(6) 0.557(11 0.479(3) 0.033(4) 1.16(51 131.8(4) 6.56(6) 
14 5.2 0.2168(5) 0.491(1) 0.460(3) 0.026(4) 1.03(41 137.7(3) 6.47(5) 
16 2.4 0.2142(7) 0.4427(5) 0.452(4) 0.024(5) 0.9i(3) 140.1(3) 6.43(7) 
18 4.9 0.2144(5) 0.4063(6) 0.440(3) 0.011(4) 0.84(3) 141.1(41 6.48(5) 
20 1.6 0.2125(10) 0.374(1) 0.432(5) 0.007(6) 0.78(4) 142.6(8) 6.44(10) 

TABLE 2b 
The same  as table 2a, for ~ = 0.074 on L 3 - 24 lattices 

k (J 4.~4-S --~k 4 (d 4A4(1,0 ) ~4(1,0) - a  4~.4(1,1 ) -~4 (1 ,1 )  ~ 6 - S  

8 4.61(81 16.7(3) 64.7(1.6) 24.8(6) 0.56(131 23(5) 1.83(6) 
10 7.1(21 19.6(61 144(41 25.4(7) 2.8(5) 32(6) 2.8(2) 
12 9.1(21 22.5(5) 276(8) 26.6(8) 7.5(9) 28(3) 4.0(2) 
14 10.2(41 22.5(9) 483(16) 28.0(9) 18.6(2.21 28(3) 4.3(5) 
16 12.6(1.0) 26.5(2.11 713(48) 27.4(1.81 49(7) 34(5) 7(2) 
18 10.8(1.01 22.8(2.11 1026(56) 28.0(1.51 92(10) 32(4) 4(2) 
211 18(21 36(5) 1370(1601 27(3) 119(351 23(7) 15(81 

Here the values in the second and last co lumns  are muhip l i ed  by a scale factor S = 10 3. 

correlation functions (see eqs. (5)-(8))  and for the off-shell couplings as defined in 
eqs. (20), (22). This means that these "primary" quantities were calculated in every 
bin of  the data sequence for the bin lengths 2 k ( k =  0 ,1 ,2  . . . .  ) and the statistical 
errors were estimated by the resulting estimates of the standard deviations. For 
every other quantity (as, for instance, the mass) the statistical error estimates were 
obtained indirectly by assuming, as a rule, that the directly measured statistical 
errors are uncorrelated. By this procedure the indirectly calculated errors are most 
probably overestimated, because the different quantities (like the correlations at 
different distances or a m  and a 4 2"A,,) are obviously correlated. Therefore in some 
cases the errors of some quantities were neglected in the calculation of the errors of 
some function of these quantities. (The way of the statistical error estimate will 
always be explicitly stated in the tables and figures containing the results.) One way 
to avoid the uncertainties of the indirect error estimates would be to determine 
every quantity of interest in every data bin. Another possibility would be to measure 
also the correlations between the primary quantities and take it into account in the 
error estimates. (This method was shown to work for the functions of Wilson-loops 
in the SU(2) Higgs model [20].) Both these ways of improved error estimates are, 



r e l a t i v e  e r r o r  

(a) 

0 0 0 2  

0001 

I. Monmav, P. Weisz / lsing model 

[ I I I [ I I I T I I 

343  

18 ~ 3 ~ 2 4  l a t t i c e  
kappa = 007& 
t= 2 c o r r e l a t i o n  

J i h L i i i I i ~ i I i i i 
0 4 8 12 k 16 

F i g .  l a .  The dependence of the error estimate on the bin length 2 k t for the 1-particle correlation at 
time-slice distance t = 2. The lattice is 183 • 2 4  a t  x = 0 .074 .  

r e l a t i v e  e r r o r  

0010 , 

(b) 

0.008 

0.0O6 

0004 

0002 

r l r ] ] , l l l , i i  

• 18 ~ 3*  24 l a t t i c e  
k a p p a  = 0 075 
t : lO c o r r e l a t i o n  

J i J I I i i J J i i I i i 
4 8 12 k 

F i g .  l b .  The same as fig. la.  for t = 10. 

I 

16 

however,  rather cumbersome and require a large amount of additional data han- 
dling. Therefore, we decided to pursue our simple method which involves some 
uncertainty, but it is probably always on the safe side of  overestimating rather than 
underestimating the errors. 

Observing the dependence of the error estimates on the bin length it is possible to 
obtain information on the autocorrelation time for different quantities. As repre- 
sentative examples,  the errors of  three different quantities at K = K24 and of two 
quantities at ~ = K12 are shown in figs. l a - e  as a function of bin length (2 k -a in this 
case). The saturation of the errors occurs on the 183 • 24 lattice (figs. l a  c) for a bin 
length b - - 2  9 =  512, whereas on the smaller lattice (124, in fig. ld,  e) for b = 2 7 =  
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Fig. ld .  The same as fig. l a ,  for the 1-particle corre la t ion  at dis tance t = 4 on 124 lat t ice at ~ = 0.07102. 

128". Since the measurements were done only after every fifth sweep, the number of 
sweeps is 5-times more. This gives for the ratio of the autocorrelation times a factor 
-- 4, which is not far away from the expected proportionality to the squares of the 
correlation lengths (i.e. - 25). 

* N o t e  that ,  cont ra ry  to naive expectat ion,  the bin length  at which the errors  sa tura te  for a given 
cor re la t ion  is prac t ica l ly  independen t  of the t ime separa t ion  (for fixed ~ and volume);  compare  e.g. 
figs. l a ,  b. 



relative error 

020 , 

(el 

0~5 

03C 

0.05 

I 

I. Montuay, P. Weisz / lsing model 345 

I I I I l l J l J l l l  

0 0 0 0  

1 2 ~ L  latt ice 
kappa = 007102 
L-point coupling 

L 8 12 k 16 

Fig.  le .  The  same as fig. l a ,  for the 4-point  coupl ing  at zero m o m e n t u m  on 124 lat t ice at  K = 0.07102. 

4.2. R E S U L T S  A N D  C O M P A R I S O N  TO T H E  T H E O R Y  

The time-slice correlations and off-shell couplings were calculated in the Monte 
Carlo runs according to the definitions in sect. 2. All the correlations could be 
determined to a good precision, in most cases for every considered time-distance. As 

a sample case, we include in table 3 the correlations at K24 on the 18 ~. 24 lattice. 
(There are similar tables for every lattice. They are available upon request from the 

authors.) The masses were determined from the correlations in two different ways: 
by fitting with the asymptotic form in eq. (13) for a variety of time intervals and 
also by solving eqs. (15)-(16) for different time-slice pairs. Both procedures allow a 
reliable and consistent mass estimate because the time dependence for larger 
time-distances is small (smaller than the quoted statistical error). As an illustration 
of the second method we show the obtained mass estimates on the 183 • 24 lattice in 
fig. 2a, b, respectively, for the l-particle and 2-particle mass. The errors on these 

figures were obtained by considering only the error of the more distant time-slice. In 
this way the correlation between the different time-slices can be approximately 
taken into account. As it can be seen from figs. 2a, b, the mass estimates are 

practically independent from the chosen distance pair. The summary of the final 
results for the masses is contained in tables la  and 2a. The notations are as follows: 
a is the lattice spacing, m the 1-particle mass, E~ the l-particle energy with lowest 
lattice space-like momentum, M o the 2-particle mass with zero relative momentum 
and M 1 the 2-particle mass with unit relative momentum. The definition of z and 
X2 is given in eqs. (17), (18). The values of the mass and renormalization constant 
are in good agreement with the theoretical estimates eqs. (34), (35). 

The volume dependence of the l-particle mass is shown in fig. 3a, b. Also 
included in these figures are the asymptotic formula in eq. (43) and the exact l- loop 
expression in eq. (45), for which we used the theoretical estimate gR = 41 and an 
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TABLE 3 
Time-slice correlations on 183 - 24 lattice at ~ = 0.074 

0 2.617E 03 1.326E 05 5.197E 06 6168E-  07 1.344E 03 1.327E 05 5.185E- 06 
+3.4E 06 +3.5E 08 +_3.1E 09 +_5.2E 09 !5.5E 07 ± 3 . 6 E - 0 8  +3.6E 08 

1 2.117E 03 8.570E- 06 2.256E 06 4.994E 07 8.953E 04 8.580E- 06 2.246E 06 
+3.4E 06 +3.5E 08 + 3 i E  09 ±5.2E 09 +_5.5E 07 +_3.6E 08 + 3 . 6 E - 0 8  

2 1.716E 03 5.561E- 06 9.815E 07 3.659E- 07 5.966E 04 5.568E 06 9.742E- 07 
+3.3E 06 _+2.3E 08 _+1.7E 09 _+3.8E 09 ±5.0E 07 +_2.3E 08 +2.3E 08 

3 1.394E 03 3.628E- 06 4.277E- 07 -2.558E 07 3.978E 04 3.633E 06 4.226E- 07 
+3.3E 06 _+2.3E 08 +l.7E 09 + 3 . 8 E - 0 9  + 5 . 0 E - 0 7  +2.3E 08 _+2.3E 08 

4 1.130E- 03 2.392E 06 1.867E 07 1.733E 07 2.652E 04 2.395E 06 1.833E 07 
i3 .1E 06 _+l.5E 08 + 1 . 4 E - 0 9  + 3 . 5 E - 0 9  + 4 . 3 E - 0 7  + 1 . 6 E - 0 8  +1.6E 08 

5 9.311E- 04 1.595E- 06 8.178E- 08 1.171E 07 1.770E- 04 1.597E- 06 7.952E- 08 
+3.1E 06 _+1.5E 08 ±l .4E 09 +_3.5E 09 !4.3E 07 ±1.6E 08 i l . 6 E  08 

6 7.721E 04 1.084E 06 3.535E 08 7.717E 08 1.184E 04 1.085E 06 3.393E 08 
+ 2 . 9 E - 0 6  ±I.0E 08 ±1.4E 09 + 3 . 7 E - 0 9  +3.8E 07 +_I.IE 08 +I . IE  08 

7 6.515E- 04 7.565E- 07 1.608E- 08 5.299E 08 7.966E 05 7.574E 07 1.513E 08 
+2.9E 06 +I.0E 08 _+1.4E-09 ±3.7E 09 _+3.8E 07 +I . IE  08 +I . IE  08 

8 5.529E 04 5.459E- 07 8.044E 09 3.694E 08 5.418E- 05 5.465E- 07 7.410E- 09 
+ 2 . 8 E - 0 6  _+9.0E 09 +l.3E 09 +3.5E 09 ±4.0E 07 ±9.7E 09 +9.7E 09 

9 4.784E 04 4.154E- 07 3.651E 09 2.755E 08 3.777E- 05 4.159E- 07 3.191E 09 
+ 2 . 8 E - 0 6  +9.0E 09 + 1 . 3 E - 0 9  +3.5E 09 _+4.0E-07 !9.7E 09 _+9.7E 09 

10 4.334E 04 3.377E 07 2.770E 09 -2.174E 08 2.758E 05 3.381E 07 2.418E- 09 
+2.8E 06 +_9.1E-09 +I.4E 09 i4 .0E 09 + 4 . 6 E - 0 7  +I.0E 08 +I.0E 08 

11 4.078E- 04 2.940E 07 3.499E- 09 -1.914E 08 2.212E 05 2.943E- 07 3.184E 09 
+2.8E 06 ±9.1E 09 ! 1 . 4 E - 0 9  +4.0E 09 +_4.6E 07 + I . 0 E - 0 8  +I.0E 08 

12 3.987E 04 2.803E 07 4.061E- 09 1.929E 08 2.040E- 05 2.806E 07 3.725E 09 
+ 2 . 9 E - 0 6  i l . 0 E  08 + 1 . 7 E - 0 9  _+4.5E 09 + 5 . 0 E - 0 7  +I . IE  08 +1.1E 08 

The first column is the time-slice distance t. The second column is the 1-particle correlation, the third 
and fourth are, respectively, the two-particle correlations with relative momentum 0 and 1, the fifth 
column is the off-diagonal correlation of two-particle states and the sixth one is the 1-particle correlation 
with lowest non-zero lattice momentum. The last two columns are obtained from columns 3-5 by 
diagonalization. 

e x t r a p o l a t e d  va lue  a m ~  = 0.4877 for  ~ = 0.07102 and ,  respec t ive ly ,  the  set  o f  va lues  

gR = 24, a m ~  = 0.2130 for  ~ = 0.07400. As  o n e  can  see, b o t h  f o r m u l a e  w o r k  well  

fo r  t he  l a rges t  vo lum es .  F o r  the  sma l l e r  la t t ices  l - l o o p  la t t ice  p e r t u r b a t i o n  t h e o r y  is 

s o m e w h a t  b e t t e r :  the  a s y m p t o t i c  f o r m u l a  is u n d e r e s t i m a t i n g  the  f in i te  size ef fec ts ,  

t he  l - l o o p  f o r m u l a  is s l ight ly  o v e r e s t i m a t i n g .  T h e  t heo re t i c a l  cu rves  are  on  sa fe r  

g r o u n d s  fo r  g:24 t h a n  for  ~m b e c a u s e  b o t h  the  h ighe r  o r d e r  p e r t u r b a t i v e  c o r r e c t i o n s  

a n d  the  l a t t i ce  a r t i f ac t s  are  smal l e r  if  K is c loser  to  the  cr i t ica l  po in t .  Bes ides  h ighe r  

o r d e r s  a n d  la t t i ce  a r t i f ac t s  the re  is also an  u n c e r t a i n t y  in the  va lues  of  the  

p a r a m e t e r s  o f  t he  curves ,  m a i n l y  in the  case  of  the  r e n o r m a l i z e d  c o u p l i n g  gR. F o r  

th is  we  t o o k  the  theo re t i ca l  va lues  f r o m  eq. (34), (35) w h i c h  are  c o n s i s t e n t  w i th  the  

M o n t e  C a r l o  resul ts ,  b u t  gR va lues  d i f f e r ing  by  1 0 - 1 5 %  w o u l d  also be  poss ib le .  

T h i s  l eads  to  a s imi la r  re la t ive  u n c e r t a i n t y  for  the  p r e d i c t i o n s  of  the  m a s s  shi f t  

m ( L )  - m ( o e ) .  In  view of  this  the  a g r e e m e n t  in  figs. 3a, b is qu i t e  sa t i s fac to ry .  



1. Monmqv, P. Weisz / lsing model 347 

mass 
024 

023 

022 

0.21 

0.20 

I I I I I I I (a) 
1 8 ~ 3 ~ 2 4  lattice 

01g I I I 1 I I ] 
3 4 5 (5 7 8 9 10 11 12 

first t ime-sl ice 
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Fig. 2b. The 2-particle mass estimates on 183. 24 lattice obtained by solving eq. (16) for different 
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time-slice distance is given. Identical symbols belong to same differences of the time-slice distance. The 

horizontal line is the final mass estimate. 

The mass extracted from the data on E 1 using eq. (23) is consistent with re(L) 
for large L. We expect that the observed discrepancies at small L are due to finite 
a 2 effects. 

As mentioned already in subsect. 3.2.3, the volume dependence of the wave 
function renormalization constant is very small for the x values we studied. For 

example for the values g g =  24, amoo = 0.2130 in eq. (52) we obtain the results 
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Fig. 3a. The dependence of the 1-particle mass on the spatial extension L of the L 3- 12 lattice at 
= 0.07102. The Monte Carlo results are the open circles with error-bars. The dotted horizontal line is 

the asymptotic  value for infinite volume. The full line is the asymptotic formula for z L >> 1 in the form 
eq. (42), the dashed line is the l - loop  asymptotic form eq. (43). The full dots give the full i- loop 

perturbative result in eq. (45). 

- 0.01, - 0.001, - 0.0005 if, respectively, L = 10,14,16. There is an indication of the 

expected few percent shift at L = 8, but  the errors are not small enough. Apar t  f rom 
that  our  results are consistent with volume insensitivity when M ( L ) L  > 2. 

For  the difference of the lowest 2-particle mass minus twice the 1-particle mass 
the results are shown by figs. 4a, b. The continuous curve in these figures is 
Ltischer 's  formula  eq. (54), using the same sets of values of gR and a m  which were 

quoted  above (and used for figs. 3a, b). The corresponding values of the infinite 

volume scattering length are: a 0 = -0 .64 ,  respectively, a 0 = - 0 . 9 6 .  The agreement 
between the theoretical curve and the Monte  Carlo results is impressive. Since 
M 0 ( L )  - 2m ( L )  is roughly proport ional  to the scattering length, its L-dependence 

can be used to determine a 0 and the relative error of  the result will be essentially 
given by the relative error of the last points for M o ( L  ) - 2 m ( L )  where the formula 
is still valid. With  our present errors we could obtain in this way the value of a 0 

with an error of  about  10-15%. 
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Unfortunately, the data on the mass difference for the excited 2-particle state 
M I ( L  ) - 2 E x ( L  ) is not precise enough to make any useful comparison with the 
theoretical prediction. 

The results for the off-shell couplings are collected in tables lb  and 2b. For the 
notations see eqs. (17)-(22). Besides the 4-point couplings ~4, 2~4( 1, 0) and 2~4(1,1) 
the 6-point coupling ~k 6 could also be determined in most of the cases. The errors of 
the off-shell couplings are, in general, considerably smaller on the small lattices. 
This is, of course, to be expected, because the difficulty comes from the large 
cancellations involved in the calculation of connected parts. If the lattice extension 
is much larger than the correlation length, there are many uncorrelated pieces of the 
lattice. This makes the required cancellations problematic. Among the 4-point 
couplings ~4(1, 0) seems to be the best from this point of view: it has usually smaller 
errors, and even the finite size effects are smaller in it than in the other two 4-point 
couplings. This is the result of a partial cancellation between the finite size effects 
for the quantity A4(1 , 0) defined in analogy with eq. (19) and for the energy E 1. 

Again for large L there is good agreement with the predictions of eqs. (34), (35) 
(the L = 20 result, which is based on comparatively low statistics, is presumably an 
unfavourable statistical fluctuation). In ?~4 there are rather strong finite size effects: 
its value is considerably smaller on the small lattices than the large volume limit. 
The data is in good semi-quantitative agreement with the perturbative discussion in 
subsect. 3.2.2. For example from eq. (51) we expect for am -- 0.5 and gR = 41 that 
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Fig. 4a. The difference of the 2-particle mass minus twice the 1-particle mass as a function of the spatial 
extension L of the L 3 . 12 lattice at ~ = 0.07102. The line is Liischer's formula eq. (54) for a scattering 

length a 0 = - 0.64. 

g R ( L ) - - g R ( o C )  takes  the va lues  - - - 3 ,  -- - 1 ,  - - - 0 . 3  for  L = 8 , 1 0 , 1 2  respec-  

t ively.  F o r  a m  = 0.2 and  gR = 24 we expec t  g R ( L )  -- gR(oO) = -- 5, ---- -- 3, = -- 1.7 

if  L = 14, 16, 18. 

F i n a l l y  t he  resul ts  on  the 6 -po in t  c o u p l i n g  are  of  the  s a m e  o r d e r  o f  m a g n i t u d e  as 

t ha t  o b t a i n e d  f r o m  the p e r t u r b a t i v e  ca l cu l a t i on  eq. (36); however ,  the  la rge  s ta t is t i -  

cal  e r ro r s  d o  n o t  p e r m i t  a m o r e  prec ise  s t a t emen t .  

4.3. A SHORT EXCURSION IN THE CRITICAL REGION 

As  d i s cus sed  in the  i n t roduc t i on ,  s l ight ly b e y o n d  the  h o p p i n g  p a r a m e t e r  va lues  

we  c o n s i d e r e d  up  to n o w  the  f in i te  la t t ice  size effects  b e c o m e  ve ry  large.  O f  course ,  

in  a n u m e r i c a l  a p p r o a c h  one  can  i gno re  this a n d  p e r f o r m  ca l cu l a t ions  in the  cr i t ica l  

r e g i o n  w i t h  a f ixed  la t t ice  size. In  o rde r  to see w h a t  h a p p e n s  we d id  a series o f  runs  

in  the  c r i t i ca l  r eg ion  on  a 10 4 lat t ice,  s ince this la t t ice  size was  c o m m o n  to severa l  

ea r l i e r  M o n t e  C a r l o  ca l cu la t ions  [9-11] .  In  pa r t i cu la r ,  we saw the p a p e r  [11] d u r i n g  

the  c o u r s e  o f  this work.  In  this p a p e r  the  poss ib i l i ty  of  a v a n i s h i n g  w a v e  f u n c t i o n  

r e n o r m a l i z a t i o n  fac to r  Z R ~ 0 was  a d v o c a t e d  nea r  the  cr i t ical  po in t .  If  t aken  at 
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Fig. 4b. The  dif ference of the 2-part icle mass  minus  twice the 1-part icle mass  as a funct ion of the spat ia l  

ex tens ion  L of the L 3- 24 lat t ice at • = 0.074. The l ine is Lfischer 's  formula  eq. (54) for a sca t ter ing 

length a 0 = 0.96. 

face value, this would be in contradiction to our previous results and also to the 
analysis in ref. [8]. 

The theory of the critical behaviour on finite lattices is formulated in [1-3, 21]. 
We do not intend to do a complete finite size scaling analysis here, since our main 
goal is to obtain information on the physical quantities of the infinite volume 

theory. (For a very recent finite size scaling study see ref. [22].) 
Our 104 runs were performed near the infinite volume critical point Kcr = 0.0748, 

namely for 0.0745 ~< x~<0.0753. Besides 104 also 103. 16 or 164 lattices were 
considered in a few points. The number of sweeps was between 2.5 to 3.0.10 6 per 

point. The results confirmed that the wave function renormalization factor z '  - 2xz 
is decreasing in this x-interval. At x = 0.0753 we obtained a m  = 0.1101(19) and 
z ' =  0.827(32). The gentle decrease of z '  is probably a finite size effect. This 
expectation is strengthened by the 164 result z '  = 0.957(16) at K = 0.0745, compared 
to the ] 0  4 number  at the same K, namely z '  = 0.935(17). However, in this x-region 
there might be a substantial difference between z'  and Z R. In addition, the time 
extension of the lattice is by far too small to project out the lowest eigenvalue of the 
transfer matrix, therefore the result obtained from a fit by the asymptotic formula 
(13) cannot really be considered to be the "mass" .  

At x = 0.0753 we stopped our systematic runs, because this point is already in the 
region dominated by the finite volume dynamics of the constant field mode [3, 21]. 
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This means that on the finite lattice, for increasing ~, the correlation length is 
further increasing due to the oscillation between the two degenerate minima of the 
effective potential. The field expectation value in a long enough run still averages 
out to zero. The critical dynamics is characterized by an autocorrelation time which 
is proportional to the square of the finite volume correlation length [21]: ~-i~--(~. 
This behaviour was roughly verified by 104 runs at K = 0.0755 and ~ = 0.0760. In 
this latter point the "mass", obtained from a fit by the large-t asymptotic form, was 
a m  = 0.068(11) and the wave function renormalization factor z' -- 0.63(21). 

In summary, o u r  10 4 calculations are in agreement with the decrease of z' in the 
critical region on this finite lattice. This cannot, however, be interpreted as the 
vanishing of the infinite volume Z R and as the failure of the expected l-loop 
renormalization group behaviour Z R ~ 0.97(1) [8]. On the contrary, in the region of 
zl. = O ( 1 ) -  O(10) the renormalization group scaling behaviour and l-loop renor- 
malized perturbation theory do describe the finite size effects quite well (see figs. 
3a, b, 4a, b). Note that our results are at infinite bare self-coupling ~, whereas the 
calculations in ref. [11] were performed at finite ~. However, as we mentioned 
before, the behaviour at ~ = m is qualitatively rather similar to the situation for 

= 0(1). 

5. Summary and conclusions 

The control of finite cutoff and finite volume effects is essential in order to 
extract relevant physical information from any numerical lattice field theory simula- 
tion. With respect to the finite volume effects we are potentially in a good situation 
since for these universal asymptotic formulae are available (for periodic boundary 
conditions) [4, 5]. Although these results are thought to be of general validity, they 
are so far only proven in the framework of renormalized perturbation theory. The 
present numerical simulation in the 4-dimensional Ising model is in good agreement 
with the asymptotic formulae. In particular, the measurement of the finite volume 
2-particle energy levels demonstrates the feasibility to obtain valuable numerical 
information on low energy scattering from the study of finite volume effects. 

The Ising model is a limiting case of the ~4 field theory. The analysis in ref. [8] of 
the 0 a model in the symmetric phase supported the previous conjectures that close 
to the critical line it describes an effective continuum theory: there exists a "scaling 
region", roughly characterized by a m  < ½, where cutoff effects are small. The latter 
analysis required as input the validity of renormalized perturbation theory in the 
scaling region which, despite shown to be self-consistent, remains an assumption to 
be substantiated. 

A short summary of our conclusions from the numerical Monte Carlo calcula- 
tions is as follows: 

• The 1-particle mass can be measured with sufficient accuracy to exhibit its 
expected exponential approach to the asymptotic L--* ~ limit, the asymptotic 
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behaviour setting in for z L > 2-3. The absolute magnitude of the effect requires the 
knowledge of some forward scattering amplitude. Calculations of this in renormal- 
ized perturbation theory yield good agreement with the data. 

• The extrapolated L = ov values of various quantities are all consistent with the 
quantitative results of ref. [8]. In particular, our data at ~=0.074,  where 
the correlation length is approximately 5 lattice units, gives added confidence to the 
validity of the analysis in ref. [8] for an extreme value of the bare self-coupling at 

which one might be most suspect. 
• The volume dependence of the lowest 2-particle mass is in remarkable agree- 

ment with Lfischer's formula. The hope is that, indeed, information on pion-pion 
scattering lengths can eventually be obtained by measuring the analogous quantity 
in QCD [5], once the enormous hurdle of finding an efficient fermion simulation 
method is overcome. For the two measured points the value of the scattering length 
times the mass was aom-- - 0 . 3  and, respectively, aom = -0 .2 .  Estimates of the 
physical pion S-wave I = 0 scattering length, on the other hand, give a°m~--0.2 
[23]. Therefore the percentual effects for a given value of zt. are expected to be 
quantitatively similar in our simulation and in the physical pion case, the difference 
being that the asymptotic limit is approached from below in the latter. 

• In the Ising model, as mentioned above, finite size effects are reasonably small 
provided z L > 2 3. However, when the correlation length is approximately equal to 
the size of the lattice enormous finite size effects are known to occur. In particular, 
the observed decrease [11] of the wave function renormalization constant for fixed 
lattice size in the critical region can be understood as a finite size effect, and no 
significant conclusion about the behaviour of this quantity in the continuum and 
infinite volume limit can be made therefrom. 

It is plausible that the finite volume behaviour in other O4-related models, as e.g. 
Higgs models, are qualitatively similar to the present case. Nevertheless a numerical 
study of these related models would also be desirable, in particular also in the 
broken phase where the interaction is attractive and the 3-particle coupling is 
non-vanishing. 
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