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Abstract. In S U(2) gauge theory colour confinement 
occurs if the vacuum condenses into a coherent 
monopole plasma. To verify this picture, the first 
question to be answered is whether the vacuum 
supports monopoles at all. Since we expect the 
monopoles to be dilute and massive in the deconfine- 
ment phase, we begin the search there. The method 
relies on cooling equilibrium lattice gauge field 
configurations--which are generated at the appro- 
priate temperature--until the underlying semi- 
classical solutions emerge. We then pass to the 
confinement region and ask whether the monopoles 
condense. Finally, we repeat the procedure for gauge 
group S U(3). The results confirm our expectations. 

I Introduction 

The present paper continues previous efforts [1] to 
reach an intuitive understanding of the QCD vacuum 
and the dynamics that drives it using the lattice 
formulation and numerical simulations. 

A first step in this direction is to look for the 
underlying semi-classical structure. So far, we have 
learned [1, 2] that the vacuum of the pure S U (2) gauge 
theory at zero temperature carries instantons. This 
result is maybe not surprising, but we consider it the 
first proof that semi-classical ideas are indeed relevant 
for parameterizing the vacuum state. 

While instantons offer an intuitive understanding 
of topology (as described by the Pontryagin index) 
and its implication for QCD, they (alone) cannot give 
confinement. 't Hooft I-3] and Mandelstam 1-4] have 
argued that the confinement phase is a coherent 
plasma of colour-magnetic monopoles, just as the 
superconducting phase is a coherent plasma of charges. 
In this picture colour-electric flux cannot spread out 
unless it is squeezed into tubes of quantized flux, which 

ensures quark confinement. Similar ideas have also 
been formulated by Mack [5]. 

In pure Yang-Mills theories colour-magnetic 
monopoles (can) arise in the presence of dynamically 
generated Higgs fields as time-independent (particle- 
like) solutions of finite energy to the classical field 
equations. In the confinement phase the monopoles 
must become very light, formally even 

M 2 < 0 (1) 

(M: monopole mass), in order to induce a colour- 
magnetic Higgs mechanism, which is the condition for 
colour-magnetic superconductivity. In the deconfine- 
ment phase, on the other hand, we may expect the 
monopoles to be massive and dilute. 

This picture can be tested by cooling [1] equilibrium 
lattice gauge field configurations. If it is correct, we 
should find monopoles accompanied by a plateau in 
the action in the deconfinement phase, whereas in the 
confinement phase the action should decay rapidly to 
zero, modulo instanton configurations, due to the 
effectively vanishing monopole mass. 

The purpose of the present paper is to carry out 
this test. The paper is organized as follows. In Sect. 
II we briefly review the characteristic features of S U(2) 
monopoles. Section III presents evidence that the 
S U(2) lattice vacuum carries colour-magnetic 
monopoles in the deconfinement phase. In Sect. IV we 
ask whether the monopoles condense to a coherent 
plasma when we pass to the confinement phase. 
Section V repeats the search for monopoles for gauge 
group S U(3). Finally, in Sect. VI we draw the 
conclusion. 

II A profile of SU(2) monopoles 

Consider a S U(2) Yang-Mills field coupled to an 
adjoint Higgs field in the continuum. The Lagrangian 
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density for the model is 

1 
L~ = Tr { - 2~- F~vF.~ - D~O +D.4) 

- ~ ( ~  + ~ - �89  ~, 
J 

(2) 

where 

0 -a o-a 
Duq~ = auq~ + [Au, ~b], A u = --2i A~, ~ = ~ ~b a. (3) 

We are looking for finite energy solutions. The energy 
of a field configuration is 

I dax {~--~2 [E~E'I+ B~B~]+ E =  l (Oi(o)a(oi(o)a 

Finiteness of (4) requires that 

Ir = rr(~ b+ (~)1/2 = (~a~)a) l /2  ) 1A, (5)  
Ixl~c~ 

(D,~b) ~ ,0. (6) 
Ix[~oo 

Equation (5) implies that ] 4~1 = v at each point on the 
2-sphere at spatial infinity, S~, but it places no 
restriction on the orientation of ~b. The space of 
possible orientations is isomorphic to the 2-sphere S 2. 
Thus, associated with every finite-energy field con- 
figuration is a mapping 

~:S~-- ,S 2, ~ = 1r162 (7) 

This mapping has a winding number q. Because it is 
an integer, it is preserved by smooth deformations of 
the fields within a finite energy sector. Hence, it is a 
topological invariant. 

Define now the conserved magnetic current [6] 

Ju = ~uvo~avL~ , (8) 

where fu, is 't Hooft's Abelian electromagnetic field 
tensor [7] which refers to fields in the gauge a3/2i = 
V~V -a [8], i.e. where (~ is diagonal, 

f~v = 0uav - Ova,, a u = - i Tr {a a V(A~, + ~,)V- 1}. 
(9) 

Then one can write 

1 . 3 1 . q=~jd xjo=~ Jsid2x,b i, b,=�89 (10a) 

_ 1 j. d=~,~,j, T r { ~ [ a f i ,  a,5]}.  00b) 
4n s~ 

It is readily checked that the rhs of (10b) equals the 
number of times the vector ~ covers the unit sphere 
[(p[ = 1. The rhs of (10a) is the magnetic flux through 
S~. Hence, q counts the magnetic charge in 3-space. 
Since Ju vanishes everywhere except at the zeros of the 

O X 

Fig. 1. Sketch of Higgs field [qSI 2 and  colour  magne t ic  field [BII 2 in 
a monopo le  field conf igura t ion 

Higgs field ~b, Xo, (10) can be written 

= ! (11) 
S~ 

where S~(xo) is the infinitesimal sphere surrounding 
X 0 �9 

Equation (6) implies that the gauge field at spatial 
infinity must be a pure gauge. A classical field configur- 
ation with unit magnetic charge, a monopole, will 
therefore be of the form shown in Fig. 1. It consists 
of a central region, in which the magnetic field is 
concentrated and the Higgs field ~b has a zero, and an 
outside region with asymptotically vanishing magnetic 
field and constant Higgs field. The simplest such field 
configuration, where ~b is the identity map, is the 
famous 't Hooft-Polyakov monopole [7, 9]. 

A non-vanishing magnetic charge q is followed by 
zero modes in the spectrum of the 3-dimensional Dirac 
operator [10] 

7i(~i + iAi) + p49. (12) 

The index theorem due to Callias [1 1] states that 

q = n + - n _ ,  (13) 

where n+(n_) is the number of right-handed (left- 
handed) zero modes. The operator (12) describes the 
motion of a fermion in the background of a static field 
configuration. The index is independent of/~. 

In the pure Yang-Mills theory there is no 
elementary Higgs field. At finite temperature we may 
take the time component of the gauge field, Ao, in the 
gauge doAo--0 as dynamically generated adjoint 
Higgs field. This is feasible because Ao cannot be 
gauge transformed to zero. 

On the lattice the Abelian field tensor f~v is related 
to the Abelian parallel transport around a plaquette, 

b!x,#v = Ux,,uUx + t~,vUx + ~,t~blx,v, 

u~,u = exp {i arg (Vx U~,~, V2+1;,) }, (14) 

where Ux, u is the usual SU(2) link matrix, so that the 



magnetic charge inside a spatial cube c(x) is [8] 

1 
q(c(x)) = ~.x,~(~)__ arg u~, u- (15) 

The phases are restricted to largu~,ul < n ,  and Ux, u 
has the orientation of &(x). The sum of q(c(x)) over 
all cubes is zero. 

The index theorem (13) holds naturally only on open 
spaces. But we believe that a well separated monopole- 
antimonopole pair on the lattice will give rise to two 
zero modes and, what we will encounter in this paper, 
that a monopole and a "spurious" antimonopole will 
give rise to one zero mode. 

III Search for monopoles  at finite temperature 

Our first question is: does the SU(2) vacuum in the 
finite temperature deconfinement phase have an 
underlying monopole structure? To answer this 
question we proceed in two steps. First, we generate 
equilibrium lattice gauge field configurations at the 
desired temperature. Then, we cool these configur- 
ations by a suitable relaxation method such that after 
a number of sweeps through the lattice we are left with 
the underlying solutions to the classical field equations. 

We use Wilson's action 

S = fl X (1 - �89 Ux,.0 
x 

, a < v  

-~Tr(Ux,uUx+~,vUx+~,~U~,~)] (16) 
x 

/ t < v  

with periodic boundary conditions for equilibration. 
To relax the quantum fluctuations we replace each 
link matrix U~, u successively by 

c ~  U + + [ ~,~U~+~,~Ux+~,~+ U x ~,vUx_~,~U~+~_~,v] , (17) 
v#,u 

where c is a normalization factor such that (17) is a 

Table 1. The sample of SU(2) gauge field configurations investigated 
in the course of this work 

fl Lattice size # Configurations 

83'4 100 
2.4 103"4 100 

143"4 20 

2.2 40 
2.25 40 
2.3 40 

83.4 
2.325 50 
2.35 55 

2.4 60 
2.45 12a'6 60 
2.5 60 
2.56 60 

103"2 20 
2.3 

10 3"3 20 
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Fig. 2. S/fl as a function of the number of cooling sweeps for 3 
typical SU(2) gauge field configurations 

SU(2) matrix. This means that each link matrix is 
replaced by the sum of all parallel transporters which 

+ 
form a plaquette with Ux,.. When all link matrices 
have been replaced we call this one sweep. Experience 
has shown [1] that after a number of sweeps the action 
either goes to zero, in which case the field configuration 
has decayed into the trivial vacuum, or it ends up in 
a plateau. On the plateau 

5S 
- 0, (18) 

5 Ux,, 

which is the lattice analogue of the classical field 
equations. 

In the course of this work we have investigated a 
large sample of lattice gauge field configurations, each 
of which contains at least about a thousand sweeps 
for equilibration, and individual gauge field configur- 
ations in the sample are separated by a further 50 
sweeps. The sample is listed in Table 1. 

We begin our search by cooling gauge field configur- 
ations on 103.4 lattices, which were equilibrated at 
fl = 2.4. This corresponds to a temperature that lies 
well above the deconfinement phase transition 
temperature [12]. In Fig. 2 we show the history of 3 
typical such field configurations as a function of the 
number of cooling sweeps. Configuration A decays 
into the trivial vacuum. Configuration B shows a 
plateau at 

S ~ fl2rc 2, (19) 

which suggests that it carries an (anti)instanton. Upon 
a closer look--i.e, by computing the energy density, 
the topological charge and the eigenvalues of the 
fermion matrix for staggered fermions I l l - - t h i s  
proves indeed to be the case. Instanton configurations 
are, however, rare. More often we find configurations 
of type C, which show a plateau of about half the 
height of an (anti)instanton configuration. On the 
plateau the topological charge is zero, and we also 
observe no approximate zero mode in the eigenvalue 
spectrum of the fermion matrix. This indicates that 
the solutions to the classical field equations we have 
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Fig. 3. The colour electric and magnetic field strengths shown 
separately for configuration C 

found are something new. In the following we shall 
show that they are (anti)monopoles. 

To qualify as monopoles, the field configurations 
must be static modulo gauge transformations, their 
energy density must be localized in space, they must 
have a magnetic charge and give rise to zero modes 
in the spectrum of the 3-dimensional Dirac operator. 

(a) Static solution 

Defining the colour electric and magnetic fields 

EZ(x) ~,(1 - �89 Ux, o,) (20) 
i 

and 

B2(x) = • (1 - �89 Ux, u), (21) 
i < j  

respectively, we can write 

fl- 'S = E(E2(x) + B2(x)). (22) 
x 

In Fig. 3 we have shown both contributions separately 
for configuration C. On the plateau we find 

E2(X) "~ 0. (23) 

This is a sufficient condition for the configuration to 
be static. Equation (23) indicates furthermore that the 
configuration is not self-dual. 

(b) Energy 

To see whether the energy is localized in space, we 
have computed the energy density 

D(x) = �89 ~ (1 - �89 U~,u) = �89 (24) 
i < l  

On the plateaus we find that the energy is concentrated 
in "lumps". In Fig. 4 we show the energy density for 
a 2-dimensional cross section through the center of 
such a "lump". The units are [10 D(x)]. It is striking 
that the energy density falls off much slower than the 
action density does in case of an instanton [1]. This 
is what we expect for an (anti)monopole configuration. 
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section through the center of the "monopole" 
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Fig. 5. Comparison of the "monopole" act/on on 83-4, 103-4 and 
143.4 lattices 

The total energy seems also to be roughly indepen- 
dent of the spatial size of the lattice as it should be 
for a genuine monopole: in Fig. 5 we compare f l - tS  
for 3 typical configurations on 83"4, 103"4 and 143"4 
lattices, respectively, which were equilibrated at 
fl = 2.4. The height of the plateau is about the same. 
Later on we shall argue that the energy scale is given 
by the temperature. 

(c) Magnetic charge 

A necessary condition for the configuration in Fig. 4 
to carry a magnetic charge is that the Higgs field, in 
our case Ao, has a zero. We have transformed the 
gauge field configuration to the gauge O0Ao = 0 and 
computed A o from the Polyakov loop 

Lt-- i 

L(x) = Tr I~ Ux+,o,o = TreFt'% = Trer IA~ (25) 
n = O  
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Fig. 8. A time slice of the "monopole" configuration of Fig. 4. The 
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Fig. 9. The eigenvalue density of the 3-dimensional Dirac operator 
in the background of configuration A after 30 cooling sweeps 

where L t is the number of time slices and T denotes 
the temperature. The result is shown in Fig. 6, where 
we have plotted Tr (T- tA0)  2 and B2(x) for a 1- 
dimensional cross section through the center of the 
"lump". The section is indicated by the dashed line in 
Fig. 7. We see that A o is indeed approximately zero 
at the peak of B2(x). We also find close resemblance 
to the monopole configuration sketched in Fig. 1. 

Now we turn to the quantitative analysis. Using the 
algorithm developed in [8], we have computed q(c(x)) 
for all spatial cubes c(x) for the configuration in Fig. 4. 
Since the field configuration is static, we can restrict 
ourselves to a single time slice. We find that q(c(x)) is 
zero except for two cubes, for which q = + 1 and 
q = - 1, respectively. The position of these cubes is 
marked by circles in Fig. 8. The plane at the bottom 
is the plane shown in Fig. 4, and the area encircled is 
the central region ([10 D(x)] > 5). This indicates that 

p (h) J 

1.0 

0.8 

0.6 

0.2 ~ - 

i " - " 1  I I I I 

1 2 3 /+ 

Fig. 10. The eigenvalue density of the 3-dimensional Dirac operator 
in the background of the "monopole" configuration C after 30 
cooling sweeps 
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the "lump" carries one unit of magnetic charge in the 
central region. The other cube lies in the region where 
B2(x) ~ 0. It is associated with a second zero of the 
Higgs field A0, which has to appear somewhere as a 
consequence of the periodic boundary conditions. 
Note that this "spurious" charge costs practically no 
energy. 

(d)  Zero modes 

We shall now investigate the eigenvalue spectrum of 
the latticized 3-dimensional Dirac operator (12) in the 
limit/~-~ 0. We choose staggered fermions for obvious 
reasons. The corresponding matrix connecting the 
lattice sites is 

Mxx+~ = ( -  1)~+'"+~,-~U Mx+r, x = _ Mx++r. 
(26) 

The boundary conditions are taken to be antiperiodic. 
To compute the eigenvalues of (26) we use the Lanczos 
algorithm [13]. 

We start by computing the eigenvalue spectrum in 
the background of configuration A (cf. Fig. 1) after 30 
cooling sweeps, where it has decayed into the trivial 
vacuum. We expect no small eigenvalues. The result 
is shown in Fig. 9, which confirms that. Next we 
compute the eigenvalue spectrum in the background 
of configuration C after 30 cooling sweeps. The result 
is shown in Fig. 10. In accord with the index theorem 
(13) we find "one" approximate zero mode, which 
in fact is twofold degenerate due to the flavour 
degeneracy of the staggered fermions. The result is 
typical of many other configurations. 

This finishes the "proof" that the new objects we 
have found are indeed (anti)monopoles. 

Before we continue with the next subject we like to 
report one more result on zero modes. A 3-dimensional 
section of an instanton through its center is a dyon 
[14], which carries one unit of magnetic charge. We 
therefore expect the 3-dimensional Dirac operator to 
have one zero mode on this section and none else. In 
Table 2 we list the lowest eigenvalue of the instanton 
configuration B (cf. Fig. 1) after 30 cooling sweeps for 
each time slice. The instanton sits on the fourth time 
slice. This confirms our expectation. 

(e)  Stability 

We have studied in detail [1] what causes the instanton 
configurations to decay to the trivial vacuum: as we 

Table 2. Smallest eigenvalues of the 3-dimensional Dirac operator 
in the background of a 3-dimensional section of an instanton at 
fixed times 

Time slice Smallest eigenvalue 

1 0.449 
2 0.614 
3 0.395 
4 0.065 

s/13 

601 z4s 
2..3 \ __ 83.L 

50 / i '  ___ 1236 

aO !35t2"5~6 i 

,A/\i 
',!:2".... 

10 --~ -=-'--~ . . . . . . . . . . . . . . . .  

I 1 I I I I I I I n 

10 20 30 40 50 60 70 80 sweeps 
Fig. 11. Comparison of the "monopole" action at varying temper- 
atures: fl = 2.3, 2.35, 2.4 on 83'4 lattices and fl = 2.4, 2.5, 2.56 on 
123-6 lattices 

approach the end of the plateau, the instantons shrink, 
become a dislocation [15] and finally are annihilated. 
The situation is different for the monopole configur- 
ations. At the end of the plateau we observe that 
the cubes, which carry the magnetic charge of the 
"genuine" (say) monopole and the "spurious" anti- 
monopole (cf. Fig. 8), respectively, move towards each 
other until they coincide and all local charges are zero. 
This means that the "genuine" monopole and the 
"spurious" antimonopole annihilate each other. The 
annihilation process starts rather abruptly and takes 
only a few cooling sweeps to complete. 

We have checked that the monopole configurations 
are to some extent stable against quantum fluctuations. 
This was done by heating the configurations with 
about 30 Monte Carlo sweeps and then cooling them 
again. We got the monopole configurations back. They 
moved, however, in 3-space. 

( f )  Monopole mass 

Monopoles are solutions of finite energy and hence 
carry a scale, the monopole mass. A priori there is no 
reason why the mass should be quantized. But this 
seems to be the case: above we have seen that the 
action of the monopole configurations on L t - -4  
lattices at fl = 2.4 clustered around half the instanton 
action. We shall investigate this circumstance in more 
detail now. 

To do so we cool configurations on lattices of 
various temporal extents and couplings--and hence 
of varying temperatures T =  1/Lta (a: lattice spacing). 
The results are shown in Fig. 11 for a few representative 
configurations. They are on 83.4 lattices at fl = 2.3, 
2.35 and 2,4 and on 12a'6 lattices at fl = 2.45, 2.5 and 
2.56. We find that the height of the plateaus is roughly 
the same in all cases: 

r - t S  = E / T =  M / T  ~ const. (27) 



(E(M): monopole energy (mass)). This requires 

M ~ T. (28) 

If we take only those plateaus into account where 
#-aS changes by less than 1 over at least 20 cooling 
sweeps, we obtain furthermore 

/~- tS  = 9 - 10 (29) 

and the monopole mass 

M = (9 - 10)T. (30) 

This result is not really surprising. It reflects that the 
physics of the spatial degrees of freedom at finite 
temperature is determined by the dynamics of the 
corresponding 3-dimensional theory at zero temper- 
ature with coupling O2Trl6]. 

IV The transition region 

What happens now to the monopoles when we pass 
to the confinement region? Do they condense? To 
try to answer this question we have computed the 
"density" of monopoles as a function of the temper- 
ature. The result is compiled in Figs. 12 and 13 for 
two lattice sizes: 83.4 and 123"6. In Fig. 12 we show 
the frequency vM of finding an (anti)monopole con- 
figuration (basically a plateau). Each entry is based on 
40-60 equilibrium gauge field configurations. In 
Fig. 13 we show the density 

PM = vM/(Lsa) 3, (31) 

where L, is the spatial extent of the lattice. For the 
lattice spacing we have assumed the 2-loop formula 

a /6722  \ s a / a 2 1  
a = A ~  ~ # )  e -(3~2/la)#. (32) 

The units are A 3. The shaded area indicates the 
location of the deconfinement phase transition. Note 
that the values at the lowest temperature have errors. 
This is due to the fact that the plateaus become by 
and large shorter and sometimes are not unambi- 
guously identifiable as monopole configurations. We 
find that the monopole "density" decreases rapidly 
as we enter the confinement region. The "density" 
reported here should not be confused with the genuine 
monopole density computed in [8]. Rather, it should 
be noted that a very light monopole or a coherent 
plasma of them will not show a plateau and hence will 
not be counted. 

We shall compare this result now with the equivalent 
quantities for instantons. Based upon the same sample 
of gauge field configurations we have computed the 
frequency vz of finding an (anti)instanton and the 
instanton "density" 

Pz = vz/L3 Lt a4. (33) 

The quantities v~ and p~ are shown in Figs. 12 and 
13, respectively. In this case we find the opposite 
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Fig. 13a, b. The "density" PMu) of monopole (instanton) configur- 
ations on a 83'4 and b 123.6 lattices 

picture: the instanton "density" drops sharply as we 
enter the deconfinement region. 

In [8] it was found that the genuine monopole 
density is large in the confinement phase and small in 
the deconfinement phase. For an update see also [17]. 
Not answered was the question whether the mono- 
poles condense. The present work indicates that this 
is the case, because the only explanation we can think 
of which is consistent with both results is that the 
monopoles become very light and coherent as we enter 
the confinement region. 

v sv(3) 

We shall extend the search for monopoles now to the 
gauge group SU(3). We use Wilson's action 
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S = fl ~, (1 - � 8 9  U~,,~) (34) 
x 

/t<v 

with periodic boundary conditions for equilibration. 
To relax the quantum fluctuations we follow Cabibbo 
and Marinari [8] and write the new link matrix 

(o (o 0)(1 0"~ U(2) 0 
g(2)" = 1// ~"~' = 1 0 o~ 2 -x '"  

= ( ; 3  ) (  0 ' ( ~ 1 1  0 ~ 2 t S x , # ,  o 1 ) / o  1 (35) 
1 o o 

where ~,~2,~3 are SU(2) matrices and U~,. is the 
old SU(3) link matrix. We compute ~ first. Let us write 

P Re Ux,~, ~ + = (U~,~ U~+~,~ U~+~,~ 
v## 

+ U~+_o,~U~_~,uU~+p ~,~). (36) 

We then choose 

P~I -~- P 3 3  - -  P13 + P~I~ (37) 
~ 1 = c  __p31 + p .  3 P*3+P11 j 
where c is a normalization factor such that the rhs is 
a SU(2) matrix. Next we compute e2. For that we 
replace U~,u in equ. (36) by -~,u/~(1) and call the result 
p(1). We then choose 

p(a), n(\) 
a 22 -~- /"3,5 

~2  = C /9(1) p ( 1 ) *  
- -  ~ 3 2  "q- ~t 23 

Finally we compute 
p ( 2 ) ,  ._L p ( 2 )  
~ I  1 ~ ~ t22  

(X 3 = C D(2) A_ P ( 2 ) *  
- -  ~ 2 1  T ~ 1 2  

pO)  J_ p ( 1 ) , \  
- - x 2 3  " a 3 2  ] (38) 

p ( 1 ) ,  • 0 ( 1 ) / "  
~t33 T ~t22 / 

p ( 2 )  _L p ( 2 ) * \  
- - 1  1 2 " ~ t  21 ] (39) 

P(2)* A_ O(2)/ '  
a 2 2  t a i l /  

where p(2) is given by (36) with Ux,  replaced by rr(2) , I"/X,/~" 
The choices (37), (38) and (39) minimize the action (34). 
When all link matrices U~,, have been exchanged by 
U(~)# we call this one cooling sweep. In order to 
avoid getting trapped in metastable states we found 
it necessary to update the three SU(2) submatrices in 
random order. 

We have investigated 84 and 83 "4 lattices at fl = 5.7. 
The 84 lattices are in the confinement phase, whereas 
the 83.4 lattices are in the deconfinement phase. Both 
sets of lattices have been equilibrated by about a 
thousand sweeps. In Fig. 14 we show 3 typical 84 
lattice configurations as a function of the number of 
cooling sweeps. Configurations A, B and C show 
plateaus at fl-1S ~ 13, 26 and 39, respectively. This is 
what we expect for a 1-, 2-, and 3-(anti)instanton 
configuration: 

-4~zZN N = 1, 2, 3. (40) 3-1S=3 
We have not gone through all the tests to prove that 
they are indeed (anti)instantons. But we have checked 
that the action is localized. Now we turn to the 83-4 
lattices in the deconfinement phase. In Fig. 15 we show 
a typical configuration. It shows a plateau at about 

s/p 
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40 

20 

.~ 

"'.::~ ........................ 
".~ ................ ",~ 

"~ ............................. 

,; 2; 3o 
#sweeps 

Fig.  14. S/fl as a func t ion  o f  the  n u m b e r  of  coo l i ng  sweeps  for  3 
typ ica l  SU(3) g a u g e  field c o n f i g u r a t i o n  in the  c o n f i n e m e n t  p h a s e  
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Fig.  15, S/fl as a func t ion  of  the  n u m b e r  of  coo l ing  sweeps  for  a 
typica l  m o n o p o l e  c o n f i g u r a t i o n  in the d e c o n f i n e m e n t  p h a s e  

half the instanton action, i.e. fl- 18 ~ 6. This configur- 
ation is a monopole configuration. Thus, we obtain 
the same picture as before also in SU(3). 

VI Conclusions 

This work provides first evidence that SU(2) and SU(3) 
gauge theories support indeed an underlying mono- 
pole structure. The next step is to turn this picture 
into quantitative calculations. First promising results 
are already available [8, 17]. 



T h e  conc lu s ions  so far  a re  t h a t  the  d e c o n f i n e m e n t  
phase  is a d i lu te  gas  o f  m o n o p o l e s ,  w h e r e a s  ev idence  
is m o u n t i n g  tha t  the  c o n f i n e m e n t  phase  can  be  u n d e r -  
s t o o d  as a c o h e r e n t  m o n o p o l e  p la sma .  
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