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We present a discussion of the treatment of I/No-corrections in chiral perturbation theory for nonleptonic weak processes. We 
compare the approach with an explicit cutoff and dimensional regularization in chiral perturbation theory and present evidence 
that they are equivalent. The quadratic dependence on the cutoff can be subtracted consistently at each level of 1 ~No. We discuss 
the identification of the explicit cutoff and/tQCD and contrast our results with the recent calculation of Bardeen et al. 

Low-energy hadronic interactions and purely hadronic weak decays have so far not been accurately computed 
within quantum chromodynamics  ( Q C D ) .  Several features observed in the strong interactions are, however, 
qualitatively explained. Current algebra, isospin and SU (3)v have a natural foundation within QCD. One not- 
able exception is the A / =  1/2 rule observed in kaon decays. The corresponding rule in baryon decay can be 
understood on the basis o f  the wavefunction o f  the baryon. There are at present three main approaches to de- 
scribe nonleptonic decays: Lattice gauge theory calculations [ 1 ], QCD sum rules [ 2,3 ] and the 1/Nc expansion 
[4-7  ]. They all have in common  that they use chiral symmetry. In the first approach it is used to reduce the 
physical decays to decays involving only two mesons. In the second approach it is used to describe the phenom- 
enological part o f  the sum rule in a way that includes the chiral properties immediately ~. 

In the approach of  refs. [4 -7  ] chiral properties are used to extrapolate from the quark picture at some mo- 
mentum scale to the meson picture. In this letter we would like to clarify the claim made in ref. [ 6 ] that their 
approach is different f rom the standard chiral perturbation theory approach [8,9]. We will also argue that it is 
very difficult, if  not  impossible, to identify the physical cutoff  and the renormalization scale o f  QCD. 

First we give a short description o f  the chiral lagrangian including the 11' and we will argue that the T i' does 
not change the 1/Nc behaviour of  K ~ n n  nonleptonic decays. Then we present the chiral lagrangian to second 
order in m o m e n t u m  squared/quark  masses, only explicitly showing the terms relevant for the discussion of  F~, 
FK and the matrix elements o f  the currents involved in the calculation of  K decays and K ° - K  ° mixing. We 
calculate the physical meson decay constants F~ and FK in this approach paying special attention to regularizing 
and the treatment o f  divergences. We will show how the quadratic divergences arising can be consistently ab- 
sorbed so that the cutoff  approach and the dimensional regularization are equivalent. We will use a cutoff  in 
euclidean space as a regulator so that all divergences can be seen explicitly. The same will then be done for the 
B parameter  and the decay K ÷ - - .n+n ° to show how the same principle can be applied there. Unfortunately the 
exact treatment will introduce extra free parameters at the next to leading order in 1/Nc so that no clear predic- 
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tion can be made. We will not treat the A/= 1/2 case explicitly. There similar arguments can be made. 
In the last part of this letter we will argue that the large difference in chiral corrections between the K°-K ° and 

the K + decays makes it difficult to identify the cutoff used in the meson calculations with the renormalization 
scale of the operator product expansion of the effective weak lagrangian. 

At the low-energy end we describe the hadronic interactions via the chiral lagrangian. Since we are also inter- 
ested in the 1/Nc limit the lowest states are given by the ~, K, l], 1]' pseudoscalar nonet. 

In the large-No limit QCD is invariant under 

SU (3)L ×SU(3  )R × U (  1 )v × U (  1 )A ( 1 ) 

which is spontaneously broken to 

SU(3)v × U ( 1 ) v .  (2) 

The lagrangian up to second order in momenta invariant under ( 1 ) and describing the nine Goldstone bosons 
is 

~2 = ~f2 tr O~XOuX * + / 0 u r h  Ouq~ • ( 3 )  

In (3) Tll is the Goldstone boson associated with U ( 1 )g and X is a 3 × 3 special unitary matrix parametrized via 

27= exp [ (2i /f8)M] (4) 

and 

ttc-[~°~l~+n~15 ~+ K+ ) M=/" -  -.°I,/~+~.I4"G K ° . (5) 
K --6 - 2 x ~ n 8  

The fields transform under a chiral transformation (L,  R, e i") ~ S U  ( 3 ) L × S U  (3 )  R × U ( 1 )A as 

Z~LZR*, Th -~rh +fla. (6) 

The term in the QCD lagrangian that breaks ( 1 ) explicitly can to first order in the quark masses be described 
by 

~ =v  tr [m2~ exp (iTh/f~ ) + m*Z*exp( -il]1/f~ ) ] (7) 

with 

m=( mu md ms)" (8) 

Expanding (7) to second order in the meson fields leads to the U ( 1 ) problem because it implies three light mass 
eigenstates in the n °, Th, 118 system [ 10]. Up to this order in momenta and quark masses all other terms invariant 
under ( 1 ) can be reduced to the ones in (3) and ( 7 ). 

Including effects of U ( 1 )A breaking via the anomaly the lagrangian to this order in momenta is given by 

~ =F~ +F2tr  OuZOUZ*+F3Ourh 0/~1 "31- [F4tr m27 exp(i 'ql/fl )+h.c .  ] . (9) 

F~, F2, F3 are arbitrary real functions of Th/f~ and F4 a complex one. Parity invariance requires them to satisfy 
Fi(x) =Fi( -x)*. 

The 11 ~ has only a rather indirect effect on the processes considered in this letter. Apart from mixing it can be 
seen from (3) and (7) that there are no tree graph contributions involving the 1] 1. Loop contributions are also 
not present from (3) so they are suppressed by at least another factor of 1 ~No from explicit U(  1 )g breaking. 
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9 Fig. 1. One-loop Feynman diagrams for meson field renormali- 
zation and corrections to the decay constants. 

Cont r ibu t ions  f rom loops in (7 )  can also be descr ibed via  four th-order  terms in mome n ta  only involving 27. 
This  was the approach  taken in ref. [ 9 ]. Tha t  term has no cont r ibu t ion  to the processes considered here [ 7 ]. 

I f  we now try to go beyond  lowest o rder  in m o m e n t a / q u a r k  masses we have to add  more  terms to the lagran- 
gian. Including terms with only a single f lavour  trace and removing all those that  do not  contr ibute  to matr ix  
elements  with one or  two mesons in currents  der ived  f rom the lagrangian, leads to the following extra  terms ,2: 

~4=Cl trOuXOuSt(mt27* + X m )  + c 2 t r ( m X m X +  mtX*mtX*)  . (10) 

All these terms are leading in Arc so cl, c2, f  2 and  v are all o f  o rder  Arc in the large-N¢ limit.  The te rm propor t iona l  
to c2 does not  play any role in the further  analysis [ 7 ]. 

I f  we want  to include the next order  in 1/N~ there are two types of  contr ibut ions:  
( 1 ) tree level cont r ibut ions  f rom terms in the lagrangian with more  than one f lavour  trace, and  
(2)  loop contr ibut ions  with one meson loop f rom ~e2. 
The tree level term relevant  for the present  analysis  is 

~9~ = C 3 tr  (Ou27OuX t) t r  ( m S +  m'27~). ( 1 1 ) 

The loop d iagrams are subdominan t  in 1 ~No since loops are suppressed by factors p2/(4r~fs)2 [8 ] and  hence 
suppressed by 1/N¢. As an example  let us der ive F~ and FK in terms of  the lef t -handed current  ~3 der ived  from 
the lagrangian ( 3 ), ( 1 0)  and  ( 1 1 ): 

(Lu) a = - i ~f2 ( L--du27t ) 0 - ic, (XOuXtm t27t __ OuXm + m tOuXt -27mOu2727t ) ij 

- 2 i c 3  ( XOuX*)otr( m X  + m tX t )  . (12) 

We will work in the isospin l imi t  m,  = mo = rn in the r ema inde r  of  this letter. Including the d iagrams o f  fig. 1 
with a cu tof fA we get for the physical  decay constants  

F ~ = f s { l + ( 4 c , / f ~ ) Z m + ( 8 c 3 / f ~ 8 ) ( Z m + m s ) - ( 1 / f ] 8 ) [ Z I 2 ( m ~ ) + I a ( m ~ . ) ] } ,  (13)  

F ~ = f s { l + ( 4 c ~ / f ~ 8 ) ( m + m ~ ) + ( 8 c 3 / f ~ 8 ) ( Z m + m ~ ) - ( 3 / 4 f ~ 8 ) [ Z l z ( m Z ) + I 2 ( m Z ) + I 2 ( m 2 ) ] } ,  (14)  

where 

12 ( m ] )  = (1/16z~ 2) [ A 2 -  m~log(1  +A2/m2i ) ] .  (1 5) 

The cutoff  dependence  comes in several  places in the following way ~4: 
( 1 ) A possible A 4 cont r ibu t ion  is fo rb idden  due to chiral  symmetry.  
(2)  The A 2 te rms are by power  count ing and chiral  symmet ry  o f  the form A 2 X tree level f rom ~2. 
(3)  The log A 2 terms can always be wri t ten as log A 2 X tree level f rom &a4 [ 8 ]. 
As a consequence we can always absorb the cutoff  dependence.  We can define renormal ized  quanti t ies:  

f 8  R =f8 - 3 A 2 / 1 6 ~ z f s ,  c~ =c~ + (v/16~zf~8)310g(AZ/u2), c R =c3 + (v/16~2f~8)½10g(A2/l fl) . (16)  

Using these we can rewrite ( 1 3 ) and  ( 1 4)  as 

.2 The term proportional to c~ in (10) corresponds to the term used in refs. [ 6,7 ] via the lowest-order equation of motion. 
~ This current corresponds to (L u) ij = (bYu½ ( 1 -Ys)qi. 
~4 Using a A cut-off and naive Feynman rules the results are not chirally invariant [ 1 1 ]. However, adding a term to the lagrangian of the 

form -i84(0 ) log det gab(C), where gab is defined in the lagrangian via ~ =  ½gabOUOaOuq) b makes the results chirally invariant. This term 
corresponds to the difference between the naive measure and a chirally invariant one in the functional integral [ 12 ]. We have checked 
that this term does not contribute to any of the processes discussed in this letter. 
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F~ =fR(1  + [ 4 C ~ / ( f  R )212m+ [8c~/( fRs )21 ( 2 m +  ms ) 

+ [ 1 / (47rf s R )21 [m~log (112/m~) + 2m 2 log (#2/m 2 ) l} ,  (17) 

F~ =fR{ 1 + [4C R / ( f s  R)2] ( r e + m s )  + [8c R / ( fR)2]  ( 2 m +  ms) 

+ [ 3 / 4 ( 4 z c f R ) 2 ] [ 2 m 2 1 0 g ( # 2 / m 2 ) +  2 2 2 m~log(# /m,~ ) + m~log(#Z/m 2 ) ] ) (18)  

Changingfs t o f  R in the denominator in (17) and ( 18 ) is higher order in 1/Arc and thus allowed. We also used 
the Gell-Mann-Okubo relation 

m ~ = 8 v m / f f s ,  m ~ = 4 v ( m + m s ) / f f s ,  m 2 4 . 2  i...2 = ~ m ~  - ~ , n , ~  . ( 1 9 )  

The expressions on the right-hand side of( 17 ) and ( 18 ) are # independent. The dependence of the coefficients 
cR on # cancels the explicit # dependence of logarithmic terms. 

From this it is obvious that the approach with an explicit cutoff and the dimensional regularization approach 
are completely equivalent if all the relevant contributions are properly taken into account. 

We will now proceed with the same analysis including the effective weak lagrangian. The traditional four- 
quark lagrangian transforms as (8 L, 1 g) and (27 L, 1 R) under SU (3) L × SU (3) R and at the quark level all terms 
have a current × current structure: 

- 1 Oijkl = a ( # Q C D ) q j Y ~ ,  ~ ( 1 -75  )q~thYU½ ( 1 -75  )qk , (20) 

where a (#QcD)iS a Wilson coefficient. The full expression for the weak operator including its dependence on 
1/N¢ can be found in ref. [ 5 ]. 

At the leading level in 1/Nc there is no strong interaction connection between the two currents in (20). The 
form of the current in QCD can be derived from a left-handed chiral transformation of the QCD lagrangian. 
Performing the same left chiral transformation on (3), (10) and ( 11 ) leads to the left current in (12) and so 
(19) can be replaced by 

Oij~: = (L~,)o (LU)kl • (21) 

I f  we now include 1/N¢ corrections this one-to-one correspondence between (20) and (21) is not valid any- 
more. We then have to include in (21 ) all operators that have the correct SU (3) L × SU (3) R transformation 
properties up to the order in momentum that we are working: 

Ookt= (L~,)~j (L ~ )k~+tree level from other operators+loops in ( 2 1 ) .  (22) 

Other operators also includes subleading 1/Nc corrections of  the same form as (21 ) but with a different coeffi- 
cient. Unfortunately these other operators introduce new free parameters at the next to leading order in 1/Nc. 
This reflects the fact that the four-quark operator is not simply a product of  bare currents, but is a composite 
operator whose overall scale is unknown. Only the leading 1/N~ term is fixed in the nonlinear sigma model. As 
an example the operator relevant for K ° - K  ° mixing can be written as 

Osaka ( 1 a = - i~fs + g l  ) (XOuXt)sa  (XOu~Wt)sa 

u t t t ~ t ~ t t t 2 -(~c,/~+g2)(ZOuXtLa(SO £ m S -0 Zm+m 0 Z -£mo~S£ La 

- (f~c3 +g3 ) (SO~£*)~a (-~O"S~Latr(mS+ m~S*) -g~ (mtSt)e (m'St Ld + .... (23) 

In (23) the g~ are of  order N~ and these contributions have not been discussed in ref. [ 6 ]. The leading term is of  
order N 2 and the g~ are the nonfactorizable contributions to the decay process. Nonleading factorizable contri- 
butions are embedded in the term proportional to c3. The ... stand for other operators with the same transfor- 
mation under SU (3) L × SU ( 3 ) R- The complete list is rather long. The g~ in (23 ) allow to absorb the divergences 
in the loop contributions into renormalized g~ analogous to ( 15 ). In particular the quadratic divergence can be 
absorbed in g~. Using the diagrams of fig. 2 we obtain 
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Fig. 2. One-loop Feynman diagrams relevant for KO-5 mixing. 

A square is an insertion of the weak operator and a circle a strong 

interaction vertex. 

Fig. 3. One-loop Feynman diagrams relevant for K+ +?c+K’. 

- 

=(-if-i+b/A) m~+(8c,+16g,/~)(m+m,)m:+16(c~+g3/~~)(2m+m,)m:+(8g,/~))m,2+... 

-m~[~Z~(m~)+~ZZ(m~)+Z~(m~)]+m4,Z3(m~)+Z~(mZ,)-~Z~(m~)-$Z~(m~) , (24) 

where 

Z,(mf)=(1/16n2)[A2/(A2+m~)-log(l+A2/mf)], Z4(mf)=m,2Z2(mY)-tA4/16n2. (25) 

A A4 divergence would break chiral symmetry. As our results have to obey chiral symmetry (cf. footnote 4) 
there can be no A4 term. Inspection of (24) shows indeed that they cancel. If we collect all quadratically diver- 

gent terms and the terms second order in momenta 

(K”10SaS~(~)=(~+8g,/fi)m~-(/1’/16n2)5m~+..., (26) 

where as required by chiral symmetry there is no m $4 2 term. Using ( 16 ) and 

gp=g, - (n2f;/16n2)$ (27) 

this can be rewritten as 

(K”)OSa,aI??)=[+Cf,R)2+8g~/Cf~)2]m&+.... (28) 

Notice that g, is formally of order NC and that the quadratic divergence is of the same order in NC so that it can 
be subtracted consistently. 

Let us now show that the same gy also removes the quadratic divergence in K+ decay. We only show the 
quadratically divergent terms and the terms second order in momenta. The relevant operators here are 

OdDuu and O,,,, . 

Including field renormalization and the diagrams in fig. 3 we obtain 

(29) 

=(i/2JZ)[(~f,fg,/f~)(m: -m;)-(A2/16n2f8)$(m&-mz)]+.... (30) 

We see here that the subtractions ( 16) and (27 ) take care of the quadratic divergence. Both in (24) and (30) 
the logarithmic divergences can be absorbed analogously to ( 18 ) using all possible terms in (23 ). This has to be 
the case since our results obey chiral symmetry (cf. footnote 4) and have hence to be of the form log,42xp4- 
tree level in O,,,. 

Since we can renormalize away all divergences there is no need to introduce a physical cutoff. However, even 
if one wishes to keep an explicit cutoff dependence the finite part of the extra terms still has to be included 
because they are contributions at the same order of 1 /NC as the divergences. The terms proportional to g, are 
allowed in the nonlinear sigma model at the level of 1 /NC that we are considering. Finite parts of the g, may be 
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small or even vanish since the nonlinear sigma model is less restrictive than the full QCD theory. In ref. [ 6 ] 
these finite parts have been explicitly set to zero. The authors claim that these finite parts correspond to contri- 
butions either of higher resonances or of mesonic loops [ 13 ]. We cannot exclude this possibility, but we do not 
consider this proven. In at least one example these effects do not reproduce all next to leading 1/Nc terms. The 
~' mass cannot be generated in this way but has to be put in as an explicit subleading 1/Nc term [ 14 ]. So to 
recapitulate, there are two equivalent ways of going beyond leading 1/N¢ in the chiral lagrangian: 

( 1 ) Using the bare parametersfs, ci, gi . . . .  and an explicit cutoff A, or 
(2) using the renormalized parametersf  R, c R, gR, ... at a specified renormalization point #. 
The use of dimensional regularization as in the standard chiral perturbation theory [9 ] corresponds to im- 

plicitly usingf~ and gl g since the quadratic divergence is subtracted in the evaluation of integrals. 
The above shows that it is already interpretationally difficult to identify the cutoffA with the renormalization 

scale in QCD, #QCD- In ref. [ 6 ] it is claimed that this identification is meaningful and provides a good numerical 
matching with the #QCD dependence. We will now look at this matching in a little bit more detail setting the bare 
gi equal to zero. This corresponds to the method used in ref. [ 6 ]. As before we will only discuss the simpler case 
of the (27L, 1 R) operator because this operator is multiplicatively renormalized in QCD at the one loop level. 
The (8L, 1R) operators do however mix among themselves so that a simple discussion is not possible. In the 
leading logarithm approximation the dependence of (20) on #QCD for the 27L operator is 

a (PQcD) oc [as (/~cD) ] -3/, ,  (31) 

The exponent in (31 ) is the leading Arc part of the anomalous dimension. This is subleading in 1 ~No since it 
vanishes for Nc = oo. 

There are two processes of interest here, K°-K ° mixing and K + decay. They both have the same a(pQCD) 
dependence. To cancel this both matrix elements should depend on #QcD like 

<fl Oijkll i > oc [Or s (#~CD) ]3/,I (32) 

In ref. [ 6 ] it is claimed that this is exactly the behaviour produced by the dependence on the cutoffA. In partic- 
ular for the processes in question the A dependence is given by (24) [6] ~5 

FB = 1 - ( 1 / 16n2f18 ) [4A 2_ ~ m~log(A2/m 2 ) ] (33) 

for the K°-K ° case and by 

F3/2 = 1 - ( 1 / 16~r2fls ) [4./12- ½m21og(A2/m~¢ ) ] (34) 

for the K + decay case. Here we have set m 2 =0.  The A dependence in both cases is quite different due to the 
order of magnitude difference in the logarithmic terms. In ref. [6 ] it is claimed, however, that a good matching 
to (31 ) can be obtained for both cases, the A dependence in F3/2 is essentially purely quadratic while in FB the 
logarithmic terms significantly change the quadratic behaviour in the region 600-800 MeV. 

We have plotted both these functions in fig. 4 together with the dependence on #OCD expected (32). We have 
matched that dependence to the functions F at the scale of 800 MeV. It is obvious from fig. 4 that no matching 
is achieved for both cases simultaneously. 

One remark is in order here, the subleading logarithms produce a difference in #Qco dependence between the 
two cases. It is difficult, however, to imagine that the difference will be large enough to match the difference 
between (33) and (34). 

Taking the limit where m 2 becomes very small the behaviour of FB and F3/2 becomes identical and purely 
quadratic. This is actually the limit in which one should check the matching, since the coefficients a (#) are also 
calculated for massless quarks. We are then matching, however, a quadratic (A) and logarithmic (#QcD) depen- 
dence which is impossible over an extended region ~6. In view of this we expect the numerical matching of the 

#5 The logarithmic dependence was calculated first in ref. [ 15 ] with the use of dimensional regularization. 
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Fig. 4. A comparison of the A dependence for K°-K ° mixing and 
K+-*n+n° with the #QCD dependence. The full curves are the 
chiral behaviour (33) and (34) and the dotted curves are the 
expected QCD behaviour (32) normalized to the chiral curves 
at 800 MeV. 

more  complex A / =  1/2 case ob ta ined  in ref. [ 6 ] to be o f  accidental  nature.  The fact that  quadra t ic  A dependence  
matches  the logar i thmic  # dependence  at one po in t  is not  enough, in our  opinion,  to claim good matching.  
However,  addi t ional  corrections (as proposed in ref. [ 6 ] ) like vector  meson effects, could improve this matching. 

In conclusion,  we have shown that  the chiral  per tu rba t ion  theory approach  o f  ref. [ 6 ] and the s tandard  one 
[ 9 ] are equivalent ,  as long as one keeps the terms propor t iona l  to g,. We have also po in ted  out  some contr ibu-  
t ions at  the same level in 1/N~ that  were not  discussed in ref. [ 6 ]. We have also argued that  it  is rather  difficult  
both  from the in terpre ta t ional  poin t  o f  view, since the cutof f  dependence  can be consistently removed,  and  from 
the numer ica l  po in t  o f  view to ident i fy  the explici t  cutoff  in chiral  per turba t ion  theory and the renormal iza t ion  
scale in QCD.  

We would like to thank W.A. Bardeen,  A.J. Buras, J.-M. Gerard ,  R.D. Peccei and  M.A. Shifman for useful 
discussions.  One o f  us (B.G.)  acknowledges the f inancial  support  by the Bundesminis te r ium f'tir Forschung und 
Technologie,  Fed.  Rep. Germany ,  under  contract  No. 0234 M U  R and par t ia l  suppor t  by  the US N S F  under  
grants No. Y O R  83/078  and INT-85 09367. 

Note added. After  submit t ing  our  paper ,  we received a prepr in t  [ 16 ] where there is a different  cr i t ic ism of  ref. 
[6]. 

#6 Notice that there is almost a factor of 2 difference in F3/2 between 600 and 800 MeV. 
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