
Volume 198, number  1 PHYSICS LETTERS B 12 November  1987 

A STATISTICAL INTERPRETATION OF CHIRAL AND CONFORMAL ANOMALIES 

G. MONSTER 
IL Institut J~r Theoretische Physik der Universitdt Hamburg, Luruper Chaussee 149, D-2000 Hamburg 50, Fed. Rep. Germany 

and 

M. REUTER 
Deutsches Elektronen-Synchrotron DESY, Notkestrafle 85, D-2000 Hamburg 52, Fed. Rep. Germany 

Received 30 June 1987; revised manuscript  received 21 August 1987 

It is shown that the chiral and conformal anomalies of  fermions in 2n dimensions are related to a statistical mechanics system 
in 2n + 1 dimensions for which a magnetization-like quantity corresponding to the chiral anomaly density has a non-trivial infinite 
temperature limit. 

I. Introduction. In the past few years considerable 
progress has been made in the understanding of the 
algebraic and topological properties of  chiral and 
gravitational anomalies [1]. Nevertheless their 
physical origin remained obscure, since the only 
"reason" for their existence we know is that for cer- 
tain quantum field theories there does not exist any 
regularization scheme which simultaneously respects 
all symmetries present at the classical level. This is 
a rather formal statement and it would be desirable 
to understand the origin of anomalies in more phys- 
ical terms which are closer to one's intuition ~l. The 
major obstacle for any attempt in this direction is 
the fact that anomalies are effects due to regulari- 
zation which persist when the UV-regulator is 
removed. In this sense they can be thought of  as the 
collective effect of an infinite number of  field modes, 
all contributing on equal footing, irrespective of  their 
momentum or other quantum numbers. This is par- 
ticularly obvious in Fujikawa's treatment [3]. For 
the divergence of the axial vector current of  a 2n- 
dimensional massless Dirac fermion interacting with 
an external Yang-Mills potential he obtains the for- 
mal expression 

Ou ( 0 1  ~ 7 u 7 2 . ÷  1 ~ l O  ) ~ ~ 2 . ( X )  

= 2  Z ¢+(x)y2.+,¢,(x).  (1.1) 
i 

The sum runs over a complete set of basis functions 
~ of the space of spinor fields. In more physical terms 
this means that all fermionic vacuum fluctuations 
contribute with the same weight to d ( x ) .  The sum, 
however, is ill-defined. According to the general pro- 
cedure it is replaced by the well-behaved, gauge 
invariant expression 

d 2 , ( x )  = lim d2 , (x ;  M ) ,  (1.2) 
M ~  

where 

d2,(x;  M ) = 2  ~ ~)+(X)~2n+lf(l~2/MZ)Oi(x), (1.3) 
i 

and f i s  any smooth function, which obeys 

f (0 )  = 1 , l imf l" ) (s )  = 0 ,  for all n>_-0. (1.4) 
s ~ o o  

For example Fujikawa's choice [3] is 

f(s) = e  -~ (1.5) 

~ A semi-intuitive derivation using the Dirac sea concept is given 
in ref. [2], see also Jackiw in ref. [ l ]. 

We now assume the ¢i's to be eigenfunctions of  the 
Dirac operator: 1~=2i¢~. Effectively only vacuum 
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fluctuations with 2~< M contribute to the regularized 
anomaly. Using the well-known Seeley-De Witt ex- 
pansion [4] of the heat-kernel (xl exp( - I~2/M 2) Ix) 
it is easily seen that (1.2) reproduces the results of 
perturbation theory in all even dimensions. In par- 
ticular, the space integral of d ( x )  is twice the index 
of I~. (We assume 2n-dimensional spacetime to have 
euclidean signature.) 

Usually the insertion of the cutoff factorf(I~2/M 2) 
is considered a purely mathematical toot to render 
the sum (1.1) finite. The choice (1.5) however is 
reminiscent of the Boltzmann factor in statistical 
mechanics and suggests to interpret (1.3) as a ther- 
mal average within equilibrium thermodynamics, the 
r61e of temperature being played by M 2. In a sense 
which will be made precise below, this amounts to 
representing the vacuum fluctuations ¢~(x ~) by an 
ideal quantum gas of particles living in a (2n+ 1 )- 
dimensional (x u, t) world. The extra dimension is 
the time coordinate with respect to which the system 
is translational invariant in thermal equilibrium. In 
this picture the emergence of the anomaly as the col- 
lective effect of all vacuum fluctuations (for M ~  ~ )  
can be illustrated by looking at the high-temperature 
limit of a certain magnetization-like quantity ~2. Of 
course, this does not mean that anomalies can be 
explained completely in terms of statistical mechan- 
ics. One still has to use quantum field theory to derive 
(1.2), (1.3). But it means that there is an auxiliary 
system which can serve as a physical illustration of 
the behaviour of the field modes ~i(x) when the reg- 
ulator is removed. 

2. The case of  two dimensions." Pauli-electrons.We 
start the discussion with a seemingly unrelated 
Gedanken experiment. Assume we have a particle, 
which can be in two different energetically degen- 
erate states, and which can be converted freely from 
one state to the other. This degeneracy can be lifted 
by an external magnetic field B. Hereby the energy 
shift experienced in the two states is - a l B I  and 
+ o~ I B 1, respectively, where a is some real constant. 
Stated differently, the energy shift is given by the 
eigenvalues of H ~ , t = -  acr.B where tr are the Pauli 

~2 For a general discussion of  the application of  heat-kernel and 
zeta-function techniques to high temperature equations see, for 
instance ref. [5]. 

matrices. This is the quantum mechanical coupling 
of a non-relativistic (Pauli) electron to an external 
magnetic field via its magnetic moment. Let us con- 
sider the case of a time independent, constant mag- 
netic field, which is chosen to lie along the 3-axis. 
For a single electron the "magnetization" in the can- 
onical ensemble at temperature T=fl-~ is given by 

tr[a3 exp( afla3B) ] 
tr[exp(c~fl~3B)] 

=tanh( c~B/T) . (2.1) 

This expression vanishes in the infinite temperature 
limit. The same is also true for a fixed number N of 
non-interacting electrons in the canonical ensemble. 
If  we consider the case of Boltzmann statistics for a 
moment the total magnetization is 

M ( T , B ) = N ( a 3 )  , (2.2) 

and M as well as the susceptibility Z -  OM/OB become 
zero as T goes to infinity. 

Let us now try to modify the model so as to have 
a non-zero, but finite value of the magnetization and 
the susceptibility even for T~oo. To this end we 
assume that our system is allowed to exchange par- 
ticles with a reservoir so that N is no longer fixed, 
but is a function of temperature. This means that we 
replace the canonical ensemble by a grand canonical 
one. The particle number is now given by the deriv- 
ative of the grand canonical potential 

J(T, lt, V) = - T l n Z ( T , # ,  V), (2.3) 

with respect to the chemical potential #: 

( N )  = - OJ/O#. (2.4) 

S denotes the grand partition function given in terms 
of  the canonical partition functions Z by 

S ( T , I  t, V)= ~ exp(flldV)Z(T, V,N) . (2.5) 
N=0 

In the case of Boltzmann statistics for a gas of non- 
interacting particles we have the well-known result 

,E(T, It, V)=exp[exp( f l#)Z(T,  II, 1)] , (2.6) 

with the one-particle partition function 
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Z(T, V, 1 ) = T r e x p ( - f l H )  . . . .  

= V f  ddp exp(--flpZ/2m) + tr(exp(o~flo'3B)) 

/ --d/2 
= V (  mT] \ 2ztfl 2 cosh(aB/T). (2.7) 

Here d is the number of space dimensions, 

H=p2/2m - o~a3B , (2.8) 

is the one particle hamiltonian and Tr denotes the 
trace in the one particle state space. For the panicle 
number we obtain 

( N )  =exp(flp) Tr e x p ( - f i l l )  
/ - - d / 2  

= v ( m r ]  
\2~zJ  [1 + O ( 1 / T ) ] ,  (2.9) 

and the total magnetization per unit volume is 

1 0 M(T, lt, B)= - - - - l n 3  
Vail O B 

_ (N)  tanh(aB/T) 
V 

(m'~ d/2 
=\2-~nfl 2aBT(d-2)/2[I+O(1/T)]" (2.10) 

The temperature dependence is now modified sig- 
nificantly due to the factor ( N ) .  Note that the result 
crucially depends on the number of spatial dimen- 
sions. If we evaluate (2.10) for a planar gas in d = 2  
dimensions we obtain for T--,oo a finite non-zero 
magnetization 

lim M(T, It, B)= a--roB, (2.11) 
T ~  

and susceptibility 

O/ 
lim z(T,# ,B)= - -m.  (2.12) 
T~oo 7~ 

Boltzmann statistics is of course inappropriate for 
the treatment of electrons and the discussion above 
only serves to exhibit the essential points in the most 
simple way. The results, however, also hold for the 
case of Fermi-Dirac statistics as will be shown next. 
Eqs. (2.6), (2.7) are to be replaced by [6] 

In S(T,  g, V) =Tr ln [  1 + exp(flp) exp( -fill)] 

( m r )  a/2 
= V ~ trF(a+2)/2(exp(fll~)exp(afla3B)) , 

(2.13) 

with the Fermi integrals 

f(d+E)/2(Z) = ~ (--l)n+lznn-(d+2)/2. (2.14) 
n=l 

The panicle number and magnetization are 

( N )  =Tr(1 +exp( - f l# )exp( f lH) )  l 

(mT)  a/2 
=V ~ 2fd/2(l)[l+O(1/T)], (2.15) 

M(T,#,B) 

1 

= ~Tr[a3(1  +exp(-fllz)exp(flH)) -1 ] (2.16) 

( mT~ '~'2 B 
= \ -~ - , /  2f(a 2 ) / 2 ( 1 ) a ~ [ l + O ( 1 / T ) ]  

OL 
= 2--~mB[I+O(1/T)], f o r d = 2 .  (2.17) 

Although M i n  this case is not just given by the prod- 
uct of the one-particle magnetization and the par- 
ticle number ( N )  as in Boltzmann statistics (2.10), 
the high temperature behaviour again leads to a finite 
limit for M and Z as T ~  if the number of dimen- 
sions is d=  2. 

A finite result is obtained because the effect of the 
thermal fluctuations which tend to decrease the mag- 
netization for increasing temperature is compen- 
sated for by the increasing panicle number density. 
In the next section we will argue that this "fine tun- 
ing" is the basic mechanism leading to anomalies. 

At this point a remark about the hamiltonian is in 
order. The full one-particle hamiltonian for our 
model should properly be 

1 
H =  ~m (P+e '4 )2 - -OLO'3B  ' (2.18) 

instead of (2.8). The coupling to the vector potential 
A is important for the Landau diamagnetism. How- 
ever, for the average spin value which we define by 
(2.16) our previous results on the high temperature 
behaviour are unchanged. This is easily shown using 
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the well-known spectrum of H for a constant mag- 
netic field [ 7 ]. 

3. Chiral anomalies in 2n dimensions.What do our 
two-dimensional considerations have to do with 
anomalies? The connection comes through the fact 
that the expression for the magnetization in the grand 
canonical ensemble (2.16) is the same as for the 
regularized two-dimensional anomaly ~¢2(x; T), see 
(1.3), if  we choose the cutoff function to be 

f ( s ) = 2 ( l  +eS) - '  (3.1) 

and let /z=0 (in the limit T- - ,~  the quantities under 
consideration are independent of  g). In the follow- 
ing we shall make this connection explicit and extend 
the discussion to systems in all even dimensions. 
Working in 2n dimensions we consider an electron 
which can exist in 2" spin states which are energet- 
ically degenerate in field free space. (Recall that a 
2n-dimensional Dirac spinor has 2 ~ components.) 
An external magnetic field is described by the 2n- 
dimensional space part F~, g, u = 1, ..., 2n, of  the field 
strength tensor, which we assume to be constant. The 
generalization of the interaction term of the spin to 
the external field in higher dimensions is well known 
to be of  the form a,~F ~, where a~, is related to the 
Dirac matrices for 2n dimensions by 

a,,, = ½i[7~, y,,]. (3.2) 

Thus the single particle hamiltonian reads 

H=p2 / 2 m -  atr~,F ~" . (3.3) 

In the two-dimensional example magnetization was 
defined through the average value of a3, i.e. the spin 
component belonging to the fictitious time direction. 
In the general case this average will be formed using 
the analog of 75: 

2n 

Y2n+l = - i  "+j I-I Y~'. (3.4) 
,u=l  

The magnetization due to a single particle is given by 

(~'2,+ i ) = tr[~,2~+ j exp(fola~F"~)]  
t r [ exp ( f aau~F~) ]  

l ( a ~ "  1 
= n! k 2 J  T - -g t r [? : '+] (a~F~)~][ l+O(1 /T)]  " 

(3.5) 

Considering now a grand canonical ensemble with 
Fermi-Dirac statistics, the particle number density 
becomes 

1 1 T r ( l  +exp(  n(T,/z) - ~ ( N )  = - f l / t )  exp(flH)) - ] 

mT~ ~ 
= \ 2n J trf~(exp(fl/t) exp(afla~FU~)) (3.6) 

with the Fermi integralsf~ as in (2.14). Its high tem- 
perature limit is independent of  the chemical poten- 
tial/z and the field strength given by 

T ~ 
n( T) = ( - ~ - )  f~(1)[ l + O(1/T) ] . (3.7) 

This T ' -behaviour  is just what is needed to cancel 
the 1/T" fal l-offofthe magnetization due to a single 
particle. In fact for the magnetization per unit vol- 
ume we get a finite, but non-zero high temperature 
limit 

1 
M( T,/l) = ~Tr [72 ,+  ~ (1 + exp( - f l / t )  exp(flH)) -2] 

(mT~" 
= \2-d~] tr[ Y2.+ ,f~(exp(flg) e x p ( a f l a ~ f ~ ' ) ) ]  

=(mo~° l 
\ 2n I ~ ½tr[yE~+l(a~'F~')~][1 +O(1 /T) ] .  

(3.8) 

Next we show that the above model correctly 
describes the essential features of the vacuum fluc- 
tuations 0i(x) contributing to the anomaly (1.3) 
when the regulator is removed. Recall that the 
expression (1.3), which is essentially the trace of  the 
cutoff factor, can be evaluated by going to a plane 
wave basis ( x l p ) = e x p ( i p x )  and then imitating 
Dyson's expansion up to a certain order, which 
depends on n [ 3 ]. In this way one finds 

f d2np 
d 2 ~ = 2  lira tr(yE,+lf(I~2/M2)) (3.9) 

With Fujikawa's choice for f (1.5) the integral can 
be performed easily and one arrives at 

(-l)O 
~¢2,=2 (2n)~n ! \ 4 ]  tr[~2"+'(a~'F~)'] ' (3.10) 
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o r  

( - 1 ) ~  ~ ru,~, Fu ..... (3.11) 
d s n  - -  2 2  n _  I nnn! ~,~L...u,,~,,~ . . . . .  

The result, however, does not depend on this par- 
ticular choice o f f  Comparing (3.10) to (3.8) we see 
that the anomaly is precisely four times ~3 the high 
temperature limit of  the magnetization in the above 
model if one chooses a = - 1/4m: 

~2n ----4 lim M ( T ) .  (3.12) 
T ~  oo 

This is not an accident since if the cutoff factor 
F(I~2/M z) is considered a Fermi-Dirac weight fac- 
tor (3.1) the corresponding hamiltonian is given by ~4 

1 i~z= 1 1 
H=~-~m -2-mm (p~'-Au)2 +-4m ~,~FU" . (3.13) 

The mass scale m was introduced to ensure that H 
has the correct dimension. Apart from the A~-term 
appearing in the covariant derivative, the hamilton- 
ian (3.13) coincides with (3.3) for a = - l / 4 m .  
Straightforwardly applying Fujikawa's procedure to 
(1.2) one finds that all terms coming from the 
covariant derivative cancel and that it is the au,F u'- 
term alone which gives rise to the anomaly. 

The coincidence of the high temperature limit of 
(3.8) with (3.11 ) suggests that in a basis were the 
fermionic field modes O,(x u) are represented by plane 
waves exp(ik-x) there is a one-to-one correspond- 
ence between these field modes and the Pauli elec- 
trons with momentum k u populating a world with 2n 
spatial dimensions. In a (2n+  1 )-dimensional sense 
these particles are in thermal and diffusive contact 
with a reservoir, so that their energy and particle 
number density is a function of temperature. (This 
is analogous to the black body radiation in the case 
of the photon.) In this thermodynamic picture the 
existence of the anomaly is equivalent to a magne- 
tization which even in the infinite temperature limit 
is not completely destroyed by the thermal agitation. 
For this interpretation to be possible it is crucial to 
use non-relativistic particles with a kinetic term qua- 

~ One factor of 2 in ( 3.12 ) is due to the fact that q/and ~ inde- 
pendently contribute to the anomalous jacobian for a chiral 
rotation. The other factor of 2 is due to the normalization ( 3.1 ). 

~4 The gauge coupling is set equal to unity. 

dratic in pU. Using a relativistic kinetic term linear 
in p~' would yield a wrong answer. 

4. The trace anomaly. Also the trace (or confor- 
mal) anomaly of Dirac fermions can be interpreted 
in the above framework. In Fujikawa's treatment [ 8 ] 
the trace anomaly appears as an expression which is 
very similar to (1.2) with (1.3), viz., 

(0l  T~(x)10) m~ ~lr(X) 

= lim [ d t r ( x ; M ) - C ] ,  (4.1) 
M ~ o o  

where C denotes a field independent counter term 
(see below) and 

dtr(X; M) = Z ~+ (x)f(I~2/Me)fb~(x) • (4.2) 
i 

The only difference between (4.2) and (1.3) is the 
absence of the matrix ?2n+ 1. Restricting the discus- 
sion to four dimensions ( n = 2 ) ,  Fujikawa obtains 
for (4.2) 

Ma f + 1--L Fu~F"~ dtr(X; M) = (2~Z)4 dssf(s) 24zr 2 
0 

+ O ( 1 / M ) .  (4.3) 

Renormalizing ( T~ ) at vanishing background field, 
i.e., subtracting the divergent M 4 piece from (4.3), 
the renormalized anomaly is given by 
1/(24n2)F~,~F~L It is independent of the choice of  

f(s).  To make contact with statistical mechanics we 
use the form (3.1) corresponding to Fermi-Dirac 
statistics. Employing (3.6) with (3.13 ) we then find 

dtr  (x; M) = 2 1 Tr( 1 + exp( F/)2/M 2)) 1 

= 2n(M2/2m, O) . 

Obviously the unrenormalized trace anomaly (4.3) 
is equal to the particle number density for T=M2/2m. 
Its leading contribution (3.7) which corresponds to 
the M4-term in (4.3) is independent of Fu~ and hence 
is irrelevant for the renormalized anomaly. Thus the 
renormalized trace anomaly can be obtained as the 
temperature independent part of the particle num- 
ber density. 

5. Conclusion.We have shown that for a large, but 
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finite, value o f  the cutoff  M the field modes  ¢~(x ~) 
behave like a grand canonial  ensemble o f  Paul i  elec- 
trons. The regularized chiral anomaly ~¢2n(X; M )  can 
be ob ta ined  within this quan tum statist ical  mechan-  
ics system as the average o f  the general ized magne- 
t izat ion def ined above. A finite, but  non-zero, infi- 
nite tempera ture  l imit  is ob ta ined  because for high 
tempera tures  (i.e., for a large cutoff) the increasing 
part icle  number  densi ty  exactly compensates  for the 
decreasing magnet iza t ion  of  a single particle.  Simi- 
larly, the renormal ized  trace anomaly  is the temper-  
ature independent ,  but  field dependent ,  par t  o f  the 
part icle  number  density. 
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