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Abstract. We apply perturbation theory to the gauge 
invariant version of the chiral Schwinger model. The 
cancellation of anomalies is shown explicitly in terms 
of Feynman diagrams. We calculate the exact propa- 
gators for the gauge field, for the Wess-Zumino field 
and for the mixing between these fields. Using these 
propagators, we demonstrate the existence of a massive 
state. 

I Introduction 

Since it has been shown that the chiral Schwinger 
model [1] leads to a consistent quantum theory [2], 
this model attracted a lot of attention [3-17]. Another 
reason for this renewed interest is the general develop- 
ment in the field of anomalous gauge theories, namely 
the discovery that a gauge invariant formulation is 
possible in spite of an apparent anomaly [12, 18, t9]. 
This development might give rise to the hope that 
even anomalous gauge theories can be quantized 
consistently, which has also been expressed in [20 22]. 
The chiral Schwinger model served as a playground 
to demonstrate how an apparently anomalous theory 
can be formulated gauge invariantly. This gauge 
invariant formulation is extremely useful in order to 
establish that there are no genuine anomalies which 
could spoil gauge invariance. The reason for this 
freedom of anomalies is the fact that the anomalous 
contributions of the fermionic sector are cancelled by 
those of the Wess Zumino scalars, which are auto- 
matically present in the gauge invariant formulation 
of the quantum theory [12, 18, 19]. The mechanism 
of anomaly cancellation has been investigated using 
nonperturbative methods like bosonization or solving 
the equations of motion [2-5, 10-15]. Most of these 
works use the 0 = 0 gauge (0 is the Wess-Zumino 
scalar), which is identical to the earlier "anomalous" 
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formulation without gauge invariance. It has been 
claimed that perturbation theory can not be applied 
since the exact photon propagator contains inverse 
powers of the gauge coupling constant [2, 3]. This 
feature, however, is a gauge artefact, which can be 
avoided in other gauges. 

In the present work we want to develop the perturb- 
ative approach to the chiral Schwinger model in two 
different gauges: i) the Lorentz gauge and ii) the 
so-called Jackiw-Rajaraman (JR) gauge. For  these 
gauges there exist operator solutions [13] such that 
it is possible to compare the exact photon propagators. 
Besides these we are going to calculate the 0 - 0 and 
the photon-0 mixing propagators to all orders in the 
coupling constant. Furthermore we show the anomaly 
cancellation in terms of Feynman diagrams and we 
present the effective action of the gauge field which 
results from integrating out both, the fermion and the 
Wess-Zumino scalar. Our motivation to consider the 
perturbative approach is twofold: Firstly, the Feynman 
diagram calculation shows us explicitly how the 
cancellation of anomalies occurs and therefore might 
be more convincing than formal arguments. Secondly, 
it seems that the above mentioned nonperturbative 
methods are not available in a realistic four (or higher?) 
dimensional world so that perturbation theory is the 
only possible approach. 

In Sect. 2 we calculate the vacuum polarization 
diagrams, using a modified dimensional regularization 
for the fermion loop. Here the cancellation of the 
anomalous contributions coming from the fermionic 
and the bosonic sectors is explicitly shown. In Sect. 3 
we sum up the perturbation series in order to obtain 
the completely corrected propagators for the boson 
fields. To this aim we use two different methods, 
namely the explicit summation of Feynman diagrams 
and a simple inversion of the kinetic operator in the 
effective action after integrating out the fermion fields. 
In Sect. 4 we indicate how the spectrum can be read 
off from the full propagators, and we discuss the special 
case of the covariant anomaly. 
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II Vacuum polarization 

Our starting point is the Lagrangian density 

2P = - �88 u~ + 67" [ i a ,  + e , , / ~ A u ( 1  + i75)]0 

a - 1  
- ~ 0 ' [ ]  O' + eO'~u[ (a  - 1)g "~ 

+ eU~]A~ + 5Pay, (1) 

where the following notation is used: 

goo= g~l 1, s ~ =1 ,  - -  ~ ~ - -  C O 1  

(2) 
?5 = i?o71 ~ i ? ,75  = su~? ~. 

~ v  is the (unspecified) gauge fixing term, which 
is assumed to depend on the gauge ficld only. Thc 
action (1) is the so-called standard action [10, 12] of 
the chira| Schwinger model with gauge fixing term. 
Integration over thc fermion fields yields the action of 
[5, 10,12], provided that the regularization of thc 
fermion detcrminant is taken into account appro- 
priately by the parameter "a" [8,9, 12]. It is one of 
our aims to see how the regularization dcpendent 
parameters of the fermionic and bosonic sectors are 
related to each other in perturbation theory. In order 
to have a conventional kinetic term for the Wess 
Zumino scalar, we rescale 0 = x / a - 1 0 ' .  This is 
possible for a > 1, only; a = 1 is a special case to be 
treated separately (cf. Sect. 4), and for a < 10 becomes 
a complex field with kinetic term +10+  IS]0, which 
has the wrong sign. Hence for the moment we restrict 
ourselves to a > 1, then the action reads: 

= ~ d Z x {  - �88 u~ + Iffyu[iO, + e ~ A u ( 1  + iys)J~k S 

- � 8 9  O. a 1 

+ 5r (3) 

From here the Feynman rules may be read off: the 
free fermion and scalar propagators are as usual: 

i 
D~ - (4) 

?uk"' 

i D o = ~ ,  (5) 

and the A - 0 vertex is given by 

i V  u = - e  k .  a l e~'~'k~' " (6) 

For the time being we leave the photon propagator 
unspecified, since it depends on the choice of gauge. 
Finally, there is a speciality concerning the AOO 
vertex for the following reason. We want to use 

p 

Fig. 1. Fermion loop diagram 

dimensional regularization and, additionally, we 
would like to exhibit the full regularization arbitrari- 
ness. Since dimensional regularization is gauge 
invariant, it necessarily leads to the covariant anomaly 
[23], which corresponds to a = 1 (see (18), below) and 
does not reflect the regularization arbitrariness. Hence 
one is led to modify the fermion photon vertex in d 
dimensions to [16]: 

r u = ie , ,~( rTu + isOu~7*?5)( 1 + iys), (7) 

where 

r + s =  1 + O ( 2 - d ) ,  (8) 

Ou~ = - 0,, u = eu~ + 0(2 - d), (9) 

such that in two dimensions the usual vertex is 
recovered 

rYu + isOu~7~75 = 7u + 0(2 - d). (10) 

Usual dimensional regularization corresponds to 
r = 1, s = 0, any deviation from these values means an 
unequal treatment of the light-cone components of the 
gauge field, i.e. a violation of gauge invariance, which 
is necessary to avoid the covariant anomaly. 

The contribution H,~v of the fermion loop to the 
vacuum polarization tensor is shown in Fig. 1. It is 
given by the following expression in d dimensions: 

ddp 1 
HVu~(k) ~e2 j (~)~)dr (k - p)Zp2" 

�9 Tr  {(rTu + is0,~7~75)( 1 + i75)[7"(P - k)]. 

"(r7~ + isO~YP?5)(1 + i75)[-7"P] }. (11) 

Using standard integrals in d dimensions with 
integrands po/p2(p - k) 2 and p~pp/p2(p _ k)2 reported 
in [24] we obtain for (11) 

ie2~ 1-d/2 2 d 2 d 

Hou~(k ) _ 2 a ( _  k2)d/2 - 2 1-'(e) 

�9 { F u ~ o k ~ k O - F u ~ o g ~ P ~ } ,  (12) 

where 

F,#,: = Tr {(r?, + is0, ,7~75)(1 + i?5)?~ 

�9 (r?~ + isO~pTP75)(1 + i75)70}- (13) 

In (12) only the second term has a pole in ( 2 -  d). 
Therefore we can evaluate the trace of the first term 
directly in two dimensions with the result [25] 



k" kP Fu,~p = 8kuk ~ - 4k2 gu~ 

+ 4e,~k=k~ + 4G, Uk u. (14) 

In the second term we have to calculate the trace of 
the ? matrices in d dimensions. This is problematic in 
the terms which involve 75 linearly. In these terms one 
cannot assume the anticommutativity of 75 with the 
7 matrices. General schemes to do the evaluation 
correctly have been developed by several authors 
[26, 27]. These schemes are not needed here since we 
need not anticommute 75 with 7 in the trace with one 
single 75. We use the cyclic commutativity of the trace 
instead. Then we obtain [25] 

9~PFu~,p = 4(r 2 - 52)(2 - d)guv (15) 

where the (2 - d) factor comes from 7~7~7 ~ = (2 - d)7 ~. 
Substituting (14) and (15) into (12) and performing the 
limit d ~ 2 yields the fermion loop contribution 

ie2 2 
//u0~ = ~ - { ( r  -- s 2 + 1)k29u~ -- 2kuk~ 

- ~u~k~k~ - G~Uk,}. (16) 

This implies the effective action: 

e 2 

WO[A] = ~ ~ dZx { aAuA" 

0 = 0 ~  ~ ) A " } .  - A " ( g . =  + 

By making the identification 

(17) 

r 2 - -  S 2 = 1 -- 2s = 2r -- 1 = a (18) 

we establish the desired relation between the regulariz- 
ation parameter  of the fermionic sector (since r + s = 1 
there is only one such parameter) and the regulariz- 
ation parameter  of the Wess-Zumino  sector. It is 
motivated by the definition of the 1-cocycle, which 
gives the action for the Wess-Zumino  field 0 as [10, 12] 

S~ W ~  ~ O ~ -  W~[A]. (19) 
e x / a - 1  I 

The coincidence of (17) with the result of the fermion 
integration in the path integral [2, 8, 9] exhibits the 
well known fact that in two dimensions the one-loop 
polarization diagram is the only fermionic contri- 
bution to the polarization tensor. 

The contribution H~ of the 0-exchange to H.~ is 
shown in Fig. 2, a simple calculation gives 

k2 k2guv + a -  1 + kuk~ 

~.~k~k~ - G=Uku]. (20) 

So the complete one loop polarization tensor reads 
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iv~ -iVv 
~ o  . . . .  e ~  

la v 
Fig. 2. 0-exchange diagram 

im2 2 
fI.~ = II~ + FI~ = k2 (k g.~ - k.k~), (21) 

with 

e2 a 2 
m z - (22) 

a - l "  

From here it is clear that the anomalous contributions 
from the fermion and from the scalar sector cancel each 
other: 

k~Fl~ = ie 2 [(a - 1)k~ - G~k ~] (23) 

but 

k" H.~ = 0. (24) 

In this way we recover the most important  result of 
the nonperturbative treatment within perturbation 
theory, namely that there is no genuine anomaly. As 
mentioned above, ordinary dimensional regularization 
of the fermion loop corresponds to a = 1, i.e. to the 
covariant anomaly ( ~ , ~ F U ~ e , ~ A " ) .  The case 
a = 1, however, is excluded in our procedure since in 
this case the 0' field does not propagate, hence the 
0-exchange does not exist. This again elucidates 
the necessity to deviate from ordinary dimensional 
regularization in order to exhibit anomaly cancellation 
perturbatively. In Sect. 4 we also discuss a = 1. 

Equation (21) may be used to integrate out both 
the fermion and Wess Zumino field, this results in the 
complete effective action: 

Equation (25) coincides with the result of the path 
integral treatment of [12], it contains a complete 
summation of the perturbation series for the photon 
propagator.  We shall make this summation more 
explicit in the next section. 

III Boson propagators 

In this section we are going to calculate the completely 
corrected propagators  of the boson fields A u and 0. 
This can be done using two different methods: The 
first one consists of summing up all Feynman diagrams 
built out of Figs. 1 and 2. The second method relies 
on the fact that the effective action after fermion 
integration is purely quadratic in the boson fields. 
Then the corrected boson propagators  may be 
obtained by simply inverting the matrix between the 
fields. We want to present both procedures for two 
gauge choices, namely the Lorentz gauge O,A u = 0 and 
the so-called JR gauge [13] ~u(# u~ + (1/(a - 1))eUV)A~ = O. 
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The first one is the most popular  gauge, the second 
one is motivated by the fact that, classically, 0 and A. 
decouple in this gauge. At this point we want to stress 
that it is not possible to use the 0 = 0 gauge within 
perturbation theory since this gauge does not allow 
to define a free photon propagator.  

IIIa)  Summation of Feynman diagrams 

i) In the Lorentz gauge the gauge fixing term in the 
Lagrangian reads: 

- 1  2 
5for = ~ (~?,A u) (26) 

with ~ being the gauge parameter. This implies the free 
photon propagator  

k 2i ( kuk~\ D~ - g,~ - (I -- e) ~ - ) .  (27) 

The full A ~ propagator  is given by (cf. Fig. 3) 

_ o.  ~ [(H.DO),3,. (28) 
n = 0  

Using (21) for H.~, we find 

(H'D~ = ~ -  k 2 I (29) 

which may be inserted into (28) to yield 

O~..- ~ k , k . - ~  gu. k 2 ] . ~ o \ k 2  ] 

k 2 m 2 k 2 / J  k 2 J '  

which agrees with the result of the operator solution 
/-13]. The Wess-Zumino  propagator  is shown in Fig. 4, 
here no iteration is necessary since the full photon 
propagator  is used: 

D o = D o + D~ i Vu)DU~(i V~)D ~ 

- _ _ _  a2--  1 +c~ 
k2(k22-m 2) k2 a 2 

Finally, the full A - 0 propagator  is (cf. Fig. 5) 

Du = D.~i WD ~ 

- ex/a - 1 m 2 eu.k~]" 
a 1 

(31) 

(32) 

This completes our diagrammatic calculation of the 
exact boson propagators,  the results may be collected 
in the matrix: 

/ DU~ 
\ - D  ~ 

i 

Do = kZ(k 2 -  m 2) 

/__ k2 gUV 

a -  1 ~ k ~  

m 2 

_ _ _  k II k2) 
a -  1 eU~k" 

m2[ 
m m  a 2 k 2 

k 2  - -  1 

(33) 

n = 0  

Fig.  3. full A - A - - p r o p a g a t o r  

__D_~__+ D~-% D ~V iVv O~ 
Fig. 4. full 0 - 0--propagator 

I~v iV v D~ 

Ix 
Fig. 5, full A - 0--propagator 

ii) In the JR gauge the gauge fixing term is given by: 

~ F =  ~ 8u gU~ + a _  l e "~ A~ . (34) 

In order to calculate the free photon propagator,  the 
quadratic term in A contained in the action has to be 
written in the form x a .  nAro a~ the free propagator  2xx *r*/,vz* , 

is i times the inverse of M~ In the present case M ~ 
is of the form 

m~ = aguv + bkuk~ + c(~u~k~k~ + e~k~ku), (35) 

then (M ~ * can be parametrized as 

((m~ u) (36) 



with 

a + b k  2 - b  
x - a(a + bk 2) + e2k 4' Y = a(a + bk 2) + c2k 4' 

m C  

z = a(a + bk 2) + c2k 4" (37) 

This may be used to derive the free photon propagator: 

_ - i  2 1_ / 
D ~  y u v + ( e - - 1  (a 1) 2 k.k~ 

/ 

+ a--~(euak'kv + ewUk.) 1. (38) 

Precisely as in the case of the Lorentz gauge, the full 
propagator is given by the diagram of Fig. 3 (we 
employ an obvious index free notation): 

D = D o. ~ (llD~ ~. (39) 
n = O  

The sum can be performed, if one observes that 

DOHD o = ( D  O k k \  [I o o+,4) 
�9 kk 

This implies 

(40) 

D = - i ~ g +  D~ (41) 

Reinserting indices, we find for the full photon 
propagator: 

- e l [  1 Du~ - k 2 Z-m2 guy-- 1 4 (a--  1) 2 

- 0 ~ ( 1 - - ~ ) ]  kuk~k z 

1 } 
(a -- 1)k ~-(e"=k k~ + G~k~ku) . (42) 

Again, this agrees with the result of the operator 
solution [13]. The full 0 -  0 and A -  0 propagators 
are given in Fig. 4 and 5, respectively, the calculation 
yields the complete propagator matrix 
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We note that the A - 0 propagator is proportional to 
the gauge parameter, it can be eliminated by choosing 

= 0. This is the quantum analogue of the classical 
statement that A. and 0 decouple in this gauge. 

As promised in the preceding section, we want to 
clarify the procedure of integrating out the fermion 
and the scalar field�9 The resulting; effective action may 
be achieved by inverting the full photon propagator�9 
Let D~ be the free photon propagator in any gauge, 
then the inverse of the full photon propagator is: 

[~176 '1' D-1 = .D O ,, 

= [30.(4 -- H O O ) - l ] - I  

= D ~  - -  17= iM ~ - 1 7  (44) 

M ~ gives the free action for the gauge field w h i l e / /  
leads to -�88 ~ such that (25) is valid for 
any gauge which depends only on the gauge field. The 
restriction to these gauges is necessary since otherwise 
the vacuum polarization tensor would become gauge 
dependent which is out of the ,;cope of the present 
work. Equation (25) can also be verified in the Lorentz 
and JR gauge by explicitly inverting the full photon 
propagators of (30) and (42), respectively. 

IIIb)  Full propagators via matrix inversion 

When the fermion field is integrated out, the fermionic 
part of the action is replaced by W*[A] (cf. (17)), then 
the Lagrangian is quadratic in (Au, O) and may be 
written according to: 

/ M#v ~e = �89 A., o)~ 
v~ M~ ) 

(45) 

where 

M ~ = k 2 (46) 

V. is given by (6), and M.v contains the contributions 
of the classical gauge field action, of We[A] and of 
the gauge fixing term. Now we define ~ to be i times 
the inverse of rig, we use the parametrization: 

i 

~ J R  - -  k 2 ( k 2 m 2 )  

[ m 2 k2gU v 
--  L (a 1)2 

- ~ ( e J ' ~ k ~ k  ~ + d~k~k ") 
a ~ l  

m 2 
m _ _  k v ,e (, k2) 

- - _ _  k u ::) 
ct 1 2m2 (k 2 - m 2 ) I I - ~ - ( a -  ) ~ - 1  

(43) 
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i 
MO + -iV iV 

. . . . . . . .  o ~ e  . . . .  + - - - o - - o - - - o ~ o - - -  

Fig. 6. diagrammatic representation of id ( ~ contains fermion 
loops) 

iM I iV -iV 
+ �9 �9 + �9 �9 �9 �9 

_L 
Me +" 

Fig. 7. diagrammaticrepresentationifiaU~(~ contains fermion 
loops) 

c-I)-1 .............. +--- }.. .... 
V 

+~ t - - - o ~  + . -  �9 ) o - - - -  =Iv v 
Fig. 8. diagrammatic representation ofib ~ ( ~  contains fermion 
loops) 

a" v bd" ) 
~ = i Jg  - 1 =  i _ b ~ 

with 

(47) 

d = [ M  ~ + Vu(M- 1),. V.] - 1  (48) 

1 
(a -  1),~ = M , .  + V u ~ V~ (49) 

1 
b ~ = - d V u ( M -  ~)"~ = -- a TM V u MO (50) 

Equations (48) and (49) can be rewritten in terms of 
geometric series: 

i ~o 

i'a"~=(iM-1)""~oll_(iV)Mo(-iV)(iM l ' J )  a 

(52) 

which may be represented diagrammatically (Figs. 6 
and 7, respectively), where the photon lines already 
include all fermionic corrections. Hence id is the full 
0 - 0  propagator D o and i .a u~ is the full A - A  
propagator D"L Inserting some factors of i into (50), 
i. b ~ is recognized as the full A -- 0 propagator Dr: 

i 
i 'b ~ = - ( i d ) ( -  i V u ) ( i M - 1 )  u~ = ia~u(iV,) MO. (53) 

This is shown diagrammatically in Fig. 8. 
Hence we may conclude: the completely corrected 

propagators, containing all powers of the gauge 
coupling, can be achieved by simply inverting the 
matrix ~/. We also performed this calculation of the 
exact propagators in the Lorentz and JR gauge, and 
the results are identical to ~ L  and ~sR, respectively. 
There is only one point worth to be mentioned in this 

calculation, namely the inverse of Muv. This is given by: 
Lorentz gauge: 

1 
(M-  1).~ = 

_ e2( a _ 1)(k 2 _ m2 ) + 1_ k2(k 2 _ e2(a + 1)) 
O~ 

c~ + e2(a - 

- [ ( 1 - ~ ) k 2 - 2 e 2 ] k ~  v 

k2 (e"~k~k ~ + ~ k ~ k " )  , 

JR gauge: 

(M- 1).v __ k2(k 2 - m 2) k2gU~ - a - ~  

�9 (~U~k~k ~ + d ' k . k  ") 

(54) 

k 2 a  2 ( 1 + - -  1 ) - ~  } 
( a -  1) 2 k.k~ 

k2a 2 _ am2(a -- 1) 2 

(55) 

In both cases the limit ~-~ oo (i.e. no gauge fixing) 
reproduces - i G  "~ of [2], which is the exact photon 
propagator in the 0 = 0 gauge: 

{ 1 [ (  k2 ) 
i - 9"~ + - 2 k"k  ~ 

- e U ' k ~ k  ~ - e ~ ' k , k " ; } .  (56) 

G u~ has a pole for e ~ 0. This is related to the fact that 
in the 0 = 0 gauge a free photon propagator does not 
exist and therefore a perturbative treatment is not 
possible. Finite values for a allow for a free photon 
propagator (cf. (27) and (28)) and hence remove 
the pole for e ~ 0, thus allowing for a perturbative 
approach. 

I V  Di scus s ion  and conclus ions  

The propagator matrices can be used to establish the 
presence of a massive state perturbatively. To this aim 
we study the residue matrix of ~ at the pole k 2 = m2: 

Res [~L, k2 = m2] 

I -- ie ~"~k I 
-- m2 gU~ + kUkV x / a  1 

i 
m 2 

| ie ~," m 2 

(,/a--1 a2 

(57) 



Res [~JR, k2 = m2] 

1 ] kl, k ~ - m2g uv + [ l -t (a - -  1) 2 0 

1 (58) 

0 0 

In both gauges, the residue matrices of - i ~  have 
three eigenvalues, two of them vanish and the third 
one is positive for m 2 > 0, exhibiting one physical state 
of mass m. Unfortunately, it is not so easy to count 
the massless modes by looking at - i Res [~ ,  k e = 0], 
since one is accustomed to find more nonvanishing 
eigenvalues than physical states. We found two non- 
zero eigenvalues with different sign. If the usual 
procedure [28] can be transcribed to our case, 
too, this means that there is no massless state in the 
boson sector. Then the massless state, found in the 
bosonized version [2, 3, 15], has to be interpreted as 
the translation of the fermionic pair of left and right 
moving states. Making these statements more precise, 
however, would require a detailed investigation of the 
physical subspace of the Hilbert space like in the 
Gupta-Bleuler quantization [29, 30], this we did not 
intend to do. 

Our final item is the case a =  1. As we already 
pointed out, this case is achieved by ordinary dimen- 
sional regularization which implies the covariant 
anomaly. For  a = 1 the Lagrangian reads 

= -- �88 ,F~'~ + tP7~'[iO~, + e x ~ A u ( 1  + i~5)]~P 

+ eO'~ue~'VA~ + Lear. (59) 

Here anomaly cancellation can not be exhibited dia- 
grammatically, since the 0-exchange (Fig. 2) does not 
exist because 0' does not propagate. Functional 
integration over 0' gives 6(~,eUVA~), this means that 
this case is anomaly-free, too, since the covariant 
anomaly is proportional to eu~F u~ with F "~ = 0 due to 
the f-function. The latter can be exponentiated as usual 
to give 

l 2 - - 1  
Leo' =~(0ueU~A~) = ~ F ~ , ~  U'~ (60) 

with ~ ~ 0 in order to reproduce the 6-function. This 
implies the free photon propagator in the Lorentz 
gauge: 

- i I kuk~ ] 
D~ - (r _-l-)k 2 ~ ~ g " ~ - ( ~ -  ar + ~ ) ~ - J  

- - i ~  
- -  k k, (61) 

r k 4 u �9 

There are no loop corrections since: 

D~176 ~ = 0. (62) 

This means D,v = D~ which vanishes in the Landau 
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gauge (e = 0). Hence the quantum system, defined by 
(59) together with the prescription to regularize gauge 
invariantly, does not contain any degree of freedom 
in the boson sector. Again the massless boson, which 
has been found in earlier works [2, 3, 10], has to be 
construed as the bosonized version of the fermionic 
degree of freedom. 

In conclusion, we have studied the perturbative 
approach to the gauge invariant version of the chiral 
Schwinger model. Precisely as in the nonperturbative 
treatment it is the Wess Zumino scalar field which 
makes the absence of anomalies transparent. Gauge 
invariance, which is not a feature of the action, can 
be read off from conservation of the vacuum polariz- 
ation tensor Fluv. Hence in this case we have just the 
contrary of the usual approach to anomalous gauge 
theories: there the action is gauge invariant and the 
corresponding quantum theory is not, here the action 
is not gauge invariant but the quantum theory is. This 
feature, which is astonishing at first sight, can be 
understood in the path integral approach: there the 
gauge variation of the classical action cancels that of 
the fermion measure [12, 18, 19]. 
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