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Monopole condensation 1s responsible for confinement 1n U(1) lattice gauge theory Using numerical simulations and the
abelian projection, we demonstrate that this mechanism persists in SU(2) nonabelian gauge theonies Our results support the

picture of the QCD vacuum as a dual superconductor

The lattice formulation of quantum chromodyn-
amics (QCD) provides a tool for exploring the
dynamics of the QCD vacuum. In particular, 1t en-
ables us to test current 1deas on color confinement
’t Hooft {1] and Mandelstam [1] have conjectured
that this phenomenon can be understood 1n terms of
a color magnetic superconductor, in which color
magnetic monopoles condense and color electric
charges are confined Thas picture 1s dual to the or-
dinary superconductor [2], in which electric charges
condense and magnetic monopoles would be con-
fined through the Meissner effect

These 1deas have been successful in understanding
the mechamsm of confinement and the deconfine-
ment phase transition 1n four-dimensional compact
U(1) gauge theory, which contains monopoles [3,4].
To extend this to nonabelian gauge theories, 1t 1s cru-
cial to formulate the theory 1n terms of 1ts relevant
abelian degrees of freedom, which are color mag-
netic monopoles, color electric charges and “pho-
tons” This can be achieved by fixing to a gauge such
that the gauge freedom of the maximal abehan
(Cartan) subgroup remains This gauge fixing 1s
called the abelian projection [5-7] Also, one should
choose a gauge which 1s renormalizable [5], and 1n
which the abehan degrees of freedom describe the
long-distance properties of the vacuum

In a recent paper [7] we provided the framework
for quantitative analysis by constructing the abehan

projection on the lattice. We also presented resuits of
a Monte Carlo calculation of monopole densities at
various couplings  (and temperatures) for gauge
groups SU(2) and SU(3) However, these calcula-
tions were restricted to nonrenormalizable gauges
which are contaminated by unphysical short-dis-
tance artefacts *!

In this letter we test the above picture of confine-
ment quantitatively in four-dimensional SU(2) gauge
theory. To relate the SU(2) theory to the better
understood U(l) theory, we study the
Georgi—Glashow model, which interpolates between
the two.

The action on an (L2 X L,) lattice 1s

S=Bc 2. [1~4Tr U(p)]

+Pu (1= 4Tr(a(s)U(s, Dg(s+a) Ut (s, )],
(1)

where U(p) 1s the product of parallel transporters
U(s, i) around a plaquette p and ¢(s) =¢“(s)o, 18
the fixed length (¢“(s)¢*(s) =1) adjoint Higgs field
For By=0e¢q (1) reduces to the pure SU(2) theory
For fy=0c0 eq (1) reduces to the U(1) theory, which

# The nonrenormalizable gauges are easier to implement
numerically
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can be seen most easily in the unitary gauge ¢(s) =03,
a finmite action then requires U(s, i) to be diagonal
and hence abehan.

A renormalizable, maximally abelian gauge 15 ob-
tained by performing a local gauge transformation
U(s, i) = V(s)U(s, i) V(s+4) =" such that

R=YTr(o;U(s, £)o; U (5, 2)) (2)

1s maximized V(s) 1s only determined up to
left multiplication by d=diag(exp[1a(s)], exp[ —1
X a(s)]), which represents the residual U(1) gauge
invanance. Following ref [7] we perform the abe-
lian projection 1n this gauge, 1 ¢ we decompose the
parallel transporters

U(s, )
<(1—IC(S,/2)|2)”2 —c*(s. 1) )
c(s, i) (I=le(s, ) [*)"?

u(s,ff) 0
x(o u*(s,ﬁ))’ )

where u(s, i) =exp[1arg U, (s,f1)] are abehan
parallel transporters, and the coset fields
c(s, 1)eSU(2)/U(1) represent color electric charges
Under a general SU(2) gauge transformation of the
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original gauge field, u(s, 4) and c(s, ) transform 1n
the desired fashion.

w (s, @) =expra(s)] u(s, ) exp[ —1a(s+4)] ,
c'(s, ) =c(s, ) exp[ —21(s)] . (4)

The color magnetic monopoles of the theory man-
ifest themselves as half-integer valued magnetic cur-
rents on the dual lattice.

f’)’l(*.S',,li):L Z

argu(p)=0, +4, , 5
87 o= gu(p 2 (5)

where u(p) 1s the product of abelian parallel trans-
porters u(s, ft) around a plaquette p, and f(s+4, 1)
1s the three-cube with origin s+ perpendicular to
the yu-direction, dual to the link from *s to *s+/ on
the dual lattice The monopole current 1s topologi-
cally conserved on the dual sites *s > [m(*s, ) —
m(*s—f, )] =0 Consequently, the monopole cur-
rents form closed loops on the dual lattice

To understand confinement in terms of the i1deas
cited at the outset of this letter, 1t 1s helpful to in-
vestigate the different phases of the theory and the
nature of the accompanying transitions The phase
diagram at finite temperature (7= (L,a) ~") 1s shown
in fig 1 The theory has a deconfinement phase tran-
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Fig | Phase diagram of the Georgi-Glashow model at finite temperature
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sition extending from U(l) (Su=o0) to SU(2)
(fu=0), and the Polyakov loop

Li—1

P={Tr [ Us+14,4) (6)
=0

1s the order parameter of the transition At finite S8y
and large S, there 1s also a transition to a decon-
fined Higgs phase We use numerical simuiations on
a 10% X 5 lattice at various values of B, Ay to analyze
the properties of the monopoles 1n the three phases
(Simulations on 5* lattices yield similar results.) We
generate the configurations according to standard
methods, and then maximize R 1 eq (2) 1itera-
tively #2 for the configurations in the Monte Carlo
ensemble In all cases the statistical errors are smaller
than the symbols plotted

The U(1) theory indicates that the confined phase

2 In principle this procedure 1s critically slowed down, but this
can be alleviated by Fourier acceleration See ref [8]

[(']‘
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1s a coherent monopole plasma, characterized by a
high density of long, entangled monopole loops In
the deconfined phase monopoles are dilute and their
loops are small In fig 2 we show a two-dimensional
projection of the monopole currents for typical gauge
field configurations at #,;=8, which corresponds es-
sentially to U(1), and at 3=0, which 1s SU(2)
Consider first the U(1) case depicted 1n figs 2a., 2b
In the confined phase (85=1 1) the monopole loops
are so entangled that 1t 1s difficult to distinguish 1n-
dividual loops However, we have verified that the
dominant portion of the magnetic currents 1s in long,
intersecting loops In the deconfined phase (S¢,=1 3)
the monopole loops are small and have almost dis-
appeared Now consider the SU(2) case depicted in
figs 2c¢, 2d Remarkably, the behavior of the mon-
opoles 1n the two phases 1s just as before

To quantify this picture we consider the perimeter
density of monopole loops

)

8

Fig 2 Two-dimensional perspective projection of the color magnetic monopole currents Apparently open loops are 1n fact closed due
to the periodic boundary conditions The empty regions are 1llusory because we try to show long loops 1n their entirety and thereby
occastonally leave the lattice (a) Confined phase close to the U(1) mit =1 1, 8y=8. (b) deconfined phase close to the U (1) himit
B=13,Bu=8 (c) Confined phase of the pure SU(2) theory f,=2 2, Bu=0, (d) deconfined phase of the pure SU(2) theory f,=2 6,

ﬂH:O
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Fig 3 Perimeter density In(/) of color magnetic monopoles as a
function of B, for ((J) £1:=8, (V) fu=2. (A) fu=1and (O)
Bu=0 The solid lines indicate exponential fall-off with slope —z°

1
ap Zims)l (7
su

=3
and the number density p,. of mono-
pole—antimonopole pairs 1n adjacent spatial cubes
Having seen fig 2 one expects the physics of the
monopoles in SU(2) to be similar to the U(1) case
In particular, the deconfined phase 1s characterized
by lecexp(~7n2Bg) and pamocexp(—~n2Bc,) mn the
Villain form of the U(1) theory [4)

In fig 3 we present Monte Carlo data for In(/) as
a function of f; for f3=0, 1, 2 and 8 They clearly
indicate the deconfinement phase transition This
occurs at the same critical S, where the Polyakov
loop gets a nonvanishing vacuum expectation value
Our data suggest that the transition 1s first order at
Bu=38, 2, 1 and second order at fy=0 In the de-
confined phase the exponential fall-off of / shows that
the monopoles form a dilute gas, as 1in the U(1) the-
ory The slope 1s compatible with — x> independent
of By, as indicated by the solid lines in fig 3% The
same 1s true for p., also Thus the dilute gas ap-
proximation of the U(1) theory correctly describes
the physics of the monopoles in the deconfined phase
of the SU(2) theory as well The abelian Polyakov
loop, composed as in eq (6) from abelian parallel
transporters, 1s also an order parameter of the de-

¥% Thus 1s also 1n agreement with results of a recent study of the
SU(2) vacuum at finite temperature which yielded a mono-
pole action S=7n°8, Seeref [9]
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confinement phase transition **, and 1t rises more
dramatically at the transition than the nonabelian
Polyakov loop This demonstrates again the rele-
vance of the abelian degrees of freedom

For the Higgs phase transition 1t 1s also interesting
to investigate the role of the ’t Hooft-Polyakov mon-
opoles They are defined in the unitary gauge,
6()=H()p(s)W(s) ™' =03, Uls.fi) = W(s)U(s, 1)
X W(s+)~' Replacing U(s i) m eq. (3) by
U(s, fi) we repeat the construction of magnetic cur-
rents for the ’t Hooft-Polyakov monopoles Fig 4
shows the perimeter density of "t Hooft—-Polyakov
monopole loops both as a function of B at f;=0 5,

** The abelian Polyakov loop 1s nonzero 1n the deconfined phase,
because the center Z, 1s a subgroup of U(1) See ref [10] for
areview

| r |

| G P R |
re f ] = S - I

»
‘

— O O

|
|

\
[
|
!
|
L
L
\*
|
|
\
[
[
f
F
|
[

Fig 4 Perimeter density In(/) of 't Hooft-Polyakov monopoles
(a) as a funcuon of 8¢, for () Bu=8. (V) Bu=2, (A) fu=1
and () Bu=0 5. and (b) as a function of gy for f,=2 4
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1,2, 8 and as a function of B at f5=2 4 Forfy=1,
2, 8 we find a dense state of long entangled ’t
Hooft~Polyakov monopole loops in the confined
phase, whereas they become dilute and small 1n the
Higgs phase. However, the slope of the exponential
fall-off of / 1s —=? only at B,;=38, where the theory
1s essentially U(1) At this coupling the Higgs phase
transition occurs at S =1 1, which 1s consistent with
a 1/fy expansion around the U(1) theory [11] At
Bu=05 we cross from the confined to the decon-
fined symmetric phase, where the ’t Hooft-Polyakov
monopoles are not dilute We therefore do not ob-
serve an exponential fall-off of / 1n this case This 1s
confirmed in fig 4b, where we cross the phase tran-
sition from the deconfined symmetric to the decon-
fined Higgs phase at fixed f=2 4.

The results presented 1n this letter suggest the fol-
lowing picture of the phases of the Georgi-Glashow
model The Higgs phase transition 1s well described
in terms of ’t Hooft-Polyakov monopoles. in the
Higgs phase they are heavy and therefore dilute,
whereas they condense in the SU(2) symmetric
phases On the other hand, the deconfinement phase
transition can be understood 1n terms of color mag-
netic monopoles defined 1in the maximally abelian
gauge In the deconfined phases the color magnetic
monopoles are well described by the dilute gas ap-
proximation of the U(1) theory In the confined
phase color magnetic monopoles condense causing
color confinement by the dual Meissner effect
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Finally, the importance of the abelian degrees of
freedom may be relevant in numerical simulations
It is possible to accelerate the update procedure in
abelian gauge theores, but nonabelian gauge theo-
ries are more problematic [12]. Perhaps the abelian
projection can be used to formulate nonabelian the-
ories such that accelerated abelian algorithms apply.

We would like to thank M Luscher, M Marcu and
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