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Monopole condensation is responsible for confinement  in U(1)  lattice gauge theory Using numerical simulations and the 
abehan projection, we demonstrate  that this mechanism persists in SO(2)  nonabehan gauge theories Our results support the 
picture of  the QCD vacuum as a dual superconductor 

The lattice formulation of quantum chromodyn- 
amxcs (QCD) provides a tool for exploring the 
dynamics of the QCD vacuum. In particular, it en- 
ables us to test current ideas on color confinement 
't Hooft [ 1 ] and Mandelstam [ 1 ] have conjectured 
that this phenomenon can be understood in terms of 
a color magnetic superconductor, in which color 
magnetic monopoles condense and color electric 
charges are confined This picture is dual to the or- 
dinary superconductor [ 2 ], in which electric charges 
condense and magnetic monopoles would be con- 
fined through the Melssner effect 

These ideas have been successful in understanding 
the mechanism of confinement and the deconfine- 
ment phase transition in four-dimensional compact 
U(1 ) gauge theory, which contains monopoles [ 3,4 ]. 
To extend this to nonabellan gauge theories, it is cru- 
cial to formulate the theory in terms of  its relevant 
abelian degrees of freedom, which are color mag- 
netic monopoles, color electric charges and "pho- 
tons" This can be achieved by fixing to a gauge such 
that the gauge freedom of the maximal abehan 
(Cartan) subgroup remains This gauge fixing is 
called the abehan projection [ 5-7 ] Also, one should 
choose a gauge which is renormahzable [5 ], and in 
which the abehan degrees of freedom describe the 
long-distance properties of the vacuum 

In a recent paper [ 7 ] we provided the framework 
for quantitative analysis by constructing the abehan 

projection on the lattice. We also presented results of 
a Monte Carlo calculation of monopole densities at 
various couplings fl (and temperatures) for gauge 
groups SU(2) and SU(3) However, these calcula- 
tions were restricted to nonrenormallzable gauges 
which are contaminated by unphyslcal short-&s- 
tance artefacts ~ 

In this letter we test the above picture of confine- 
ment quantitaUvely in four-dimensional SU(2) gauge 
theory. To relate the SU(2) theory to the better 
understood U(1) theory, we study the 
Georgi-Glashow model, which interpolates between 
the two. 

The action on an (Ls 3 ×Lt) lattice is 

S = f l G  Z [ 1 - -  ½Tr U ( p ) ]  
P 

+/?H Y~ [ 1 -- ½rr(¢(s) U(s,/~) ¢(s +/~) U + (s,/~)11 , 
$ t t  

(1) 

where U(p) is the product of parallel transporters 
U(s,~) around a plaquette p and O(s)=Oa(s)aa is 
the fixed length (&(s)&(s) = 1 ) adjolnt Hlggs field 
F o r / / n = 0  eq (1) reduces to the pure SU(2) theory 
For/~, = ~ eq (1) reduces to the U (1) theory, which 

#~ The nonrenormahzable gauges are easter to implement 
numerically 
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can be seen most easdy m the unitary gauge ¢(s) = 03, 
a finite action then requires U(s, fx) to be diagonal 
and hence abehan. 

A renormahzable, maximally abehan gauge is ob- 
tained by performing a local gauge transformation 
0(s,/~) = V(s)U(s, fO V(s+/2) -~ such that 

R =  ~Tr(a3  U(s,/2)a3 O + (s,/2)) (2) 
s~t 

is maximized V(s) is only determined up to 
left multlphcation by d=diag(exp[ ia (s ) ] ,  exp [ -1  
× c~ (s) ]), which represents the residual U ( 1 ) gauge 
lnvanance. Following ref [ 7] we perform the abe- 
han projection m this gauge, 1 e we decompose the 
parallel transporters 

~(s,~) 
=((I-Ic(s,/2) 12) ''- -c*(s,~) ) 

~C(S,  f l )  ( 1 --  I C(S, ]1) ] 2 ) 1/2 

where u(s,l~)=exp[larg(Sj~(s,/2)] are abehan 
parallel transporters, and the coset fields 
c(s,/St) ~SU(2)/U(1 ) represent color electric charges 
Under a general SU (2) gauge transformaUon of the 

original gauge field, u(s,/2) and c(s,12) transform m 
the desired fashion. 

u'(s,/2) =exp[ la ( s ) ]  u(s, ft) exp[ - l~(S+/2) ]  , 

c'(s,/2) =c(s,/2) exp[-21or(s)] . (4) 

The color magnetic monopoles of the theory man- 
ifest themselves as half-integer valued magnetic cur- 
rents on the dual lattice. 

1 
m(*s, fit)= ~ argu(p)=0,_+~,  , (5) 

g4~ p~Of(v-t-tt,u) 

where u(p) is the product of abehan parallel trans- 
porters u(s, fi) around a plaquette p, and f(s+/2, It) 
Is the three-cube with origin s+/2 perpendicular to 
the/t-&rectlon, dual to the hnk from *s to *s+/ /on  
the dual lattlce The monopole current is topologi- 
cally conserved on the dual sites *s ~ [ m( *s , / 2 ) -  
m(*s-/i,/2)] =0  Consequently, the monopole cur- 
rents form closed loops on the dual lattice 

To understand confinement in terms of the ideas 
cited at the outset of this letter, it is helpful to in- 
vestigate the &fferent phases of the theory and the 
nature of the accompanying transitions The phase 
&agram at finite temperature ( T= (L,a) - J ) is shown 
in fig 1 The theory has a deconfinement phase tran- 

~m 

I decon f,ned 
HIggs phase 

con f',ned 
prose ~ "  ........ i~iii-i-i-i i-i i .......... 

symmetr ,c phase 

o o  

F~g l Phase diagram of  the Georgl-Glashow model at fimte temperature 
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smon extending from U(1) (flH=OO) to SU(2) 
( f i l l = 0 ) ,  and the Polyakov loop 

Lt - - I  

P=½Tr 1-I U(s+t~,,4) (6) 
t = 0  

~s the order parameter of the t ransmon At fimte f t .  
and large fl~, there ~s also a transmon to a decon- 
fined H~ggs phase We use numerical s~mulatmns on 
a 10 3 N 5 lattlce at various values offl~, flu to analyze 
the propemes of the monopoles m the three phases 
(S~mulatxons on 54 lattices yield similar results.) We 
generate the configuratmns according to standard 
methods, and then max~mxze R m eq (2) ltera- 
tlvely ~2 for the configuratmns m the Monte Carlo 
ensemble In all cases the statistical errors are smaller 
than the symbols plotted 

The U(1 ) theory indicates that the confined phase 

~-' In principle this procedure is critically slowed down, but this 
can be alleviated by Fourier acceleratmn See ref [ 8 ] 

~s a coherent monopole plasma, characterized by a 
high density of long, entangled monopole loops In 
the deconfined phase monopoles are dilute and their 
loops are small In fig 2 we show a two-dlmensmnal 
projection of the monopole currents for typical gauge 
field configurations at / /u  = 8, which corresponds es- 
sentially to U(1),  and at fill=0, which is SU(2) 
Consider first the U(1 ) case depicted m figs 2a, 2b 
In the confined phase (fl~= 1 1 ) the monopole loops 
are so entangled that it is difficult to dlstmgmsh in- 
dividual loops However, we have verified that the 
dominant portion of the magnetic currents is m long, 
intersecting loops In the deconfined phase (f16 = 1 3) 
the monopole loops are small and have almost dis- 
appeared Now consider the SU(2) case depicted in 
figs 2c, 2d Remarkably, the behavior of the mon- 
opoles m the two phases is just as before 

To quantify this ptcture we consider the perimeter 
density of  monopole loops 

<- 

IIiI 

~ ["4 

L~-J Id/  

Fig 2 Two-dimensional perspective projection of  the color magnetic monopole currents Apparently open loops are in fact closed due 
to the periodic boundary conditions The empty regions are illusory because we try to show long loops in their entirety and thereby 
occasionally leave the lattice (a) Confined phase close to the U ( 1 ) hml t  fl~. = 1 1, fl H = 8, (b) deconfined phase close to the U ( 1 ) hml t  
B . =  1 3,/3H=8 (c) Confined phase of the pure SU(2)  theory / /G=2 2 ,BH=0, (d )  deconfined phase of the pure SU(2)  theory tic,=2 6. 
BH=0 
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Fig 3 Perimeter density In(I) of color magnetic monopoles as a 
function offl<, for ( [] ) flH = 8, ( 27 ) fl~ = 2, ( z~ ) flH = I and ( O ) 
flH = 0 The solid lines indicate exponentml fall-off with slope - ~-~ 

and the number  density p ~  of mono-  
pole-ant~monopole pmrs in adjacent spatml cubes 

Hawng seen fig 2 one expects the physics of the 
monopoles m SU(2)  to be s~mdar to the U(1 ) case 

In particular, the deconfined phase is characterized 

by locexp(--~2flG) and p~mocexp(-m~fl(,)  m the 
Villain form of the U(1)  theory [4] 

In fig 3 we present Monte  Carlo data for ln( / )  as 

a funcnon  of fiG fo r f lH=0 ,  1, 2 and 8 They clearly 
indicate the deconf inement  phase t r ansmon  Th~s 
occurs at the same critical flo where the Polyakov 
loop gets a nonvanashmg vacuum expectation value 

Our data suggest that the t r ansmon  is first order at 

f l u = 8 ,  2, 1 and second order at f l u = 0  In the de- 
confined phase the exponenttal fall-off of l shows that 

the monopoles form a ddute gas, as m the U(1 ) the- 

ory The slope is compatible w~th _ g 2  mdependent 
of fill, as indicated by the sohd hnes an fig 3 #-~ The 
same ~s true for Pmm also Thus the ddute gas ap- 
proxlmatmn of the U(1)  theory correctly describes 
the physacs of the monopoles tn the deconfined phase 

of the SU(2)  theory as well The abehan Polyakov 
loop, composed as m eq (6) from abehan parallel 
transporters, is also an order parameter  of the de- 

"~ This  is also in ag reement  with results o f  a recent  stud~ of  the 

S U ( 2 )  v a c u u m  at finite t e m p e r a t u r e  which ~lelded a mono-  

pole action S=~Zfl(. See ref [9] 

conf inement  phase t r ansmon  #4, and  ~t rises more 
dramatically at the t r ansmon  than the nonabehan  
Polyakov loop This demonstrates again the rele- 
vance of the abehan degrees of freedom 

For the H~ggs phase transi t ion ]t is also interesting 
to mveshgate the role of the 't Hoof t -Polyakov mon-  
opoles They are defined m the umtary gauge, 
q](~) = W(~)0(s) W(~) -~ =a~ ,  Ub, / ) )  = W(s)Ub,/~) 
xW(s+f~) -~ Replacing U(s,/)) m eq. (3) by 
C(r,/)) we repeat the construction of magnetac cur- 
rents for the ' t  Hoof t -Polyakov monopoles F~g 4 
shows the perimeter density of "t Hoof t -Polyakov 

monopole loops both as a functmn of fiG at fin = 0 5, 

~4 The abehan Pol} akov loop is nonzero in the deconfined phase. 
because the center Z: is a subgroup of U(1 ) See ref [ 10] for 
a rev iew 
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Fig 4 Perimeter density In(l) of't Hooft-Polyakov monopoles 
(a) as a function of fiG for ( [] ) fl~ = 8, ( ~7 ) flH = 2, ( ~ ) flH = ! 
and (O) fin =0 5, and (b) as a function offlH forflc,=2 4 

519 



Volume 198, number 4 PHYSICS LETTERS B 3 December 1987 

1, 2, 8 and as a funct ion of  fin at flo = 2 4 For  flH = 1, 
2, 8 we f ind a dense state of  long entangled ' t  
H o o f t - P o l y a k o v  monopo le  loops m the conf ined 
phase, whereas they become di lute  and small  m the 
Hlggs phase. However ,  the slope of  the exponent ia l  
fall-off of  l is - i t  2 only at f l ~ = 8 ,  where the theory 
is essentially U ( I  ) At  this coupling the Hlggs phase 
t ransi t ion occurs at flo = 1 1, which is consis tent  with 
a 1~fin expansion a round  the U(1 )  theory [ 11 ] At  
flH = 0 5 we cross f rom the confined to the decon- 
f ined symmetr ic  phase,  where the ' t  H o o f t - P o l y a k o v  
monopoles  are not  di lute  We therefore do not  ob- 
serve an exponent ia l  fall-off of  I in this case This  is 
conf i rmed m fig 4b, where we cross the phase tran- 
si t ion from the deconf ined  symmetr ic  to the decon- 
f ined Hlggs phase at f ixed flo = 2 4. 

The results presented  in this let ter  suggest the fol- 
lowing picture of  the phases of  the Georg i -G la show 
model  The Hlggs phase t rans i t ion  is well descr ibed 
in terms of  ' t  H o o f t - P o l y a k o v  monopoles ,  in the 
Hlggs phase they are heavy and therefore dilute,  
whereas they condense in the S U ( 2 )  symmetr ic  
phases On the other  hand,  the deconf inement  phase 
t ransi t ion can be unders tood  in terms of  color mag- 
netic monopoles  def ined in the maximal ly  abehan  
gauge In the deconf ined  phases the color magnet ic  
monopoles  are well descr ibed by the di lute  gas ap- 
prox~matlon o f  the U(1 )  theory In the conf ined 
phase color magnet ic  monopoles  condense causing 
color  conf inement  by the dual  Me~ssner effect 

Final ly,  the ~mportance of  the abehan  degrees of  
f reedom may be relevant  in numerica l  s imulat ions  
It is possible to accelerate the update  procedure  m 
abel lan gauge theories,  but  nonabel ian  gauge theo- 
ries are more  problemat ic  [ 12 ]. Perhaps the abel ian 
projec t ion  can be used to formulate  nonabel ian  the- 
ones  such that  accelerated abehan algori thms apply. 

We would like to thank M Luscher, M Marcu and 
F Wagner  for their  cont inued interest  
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