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Abstract. The thermodynamics and  cosmology of torus-compactified heterotic strings are 
studied We emphasise qualitatively new effects due  to compactification New topologically 
stable states appear which correspond to strings winding around the non-simply-connected 
compact manifold Under reasonable assumptions they avoid the blowing up of the 
compactification scale when the universe becomes matter dominated For a higher- 
dimensional point field theory with scale-invariant ground state this blowing up would be 
unavoidable 

1. Introduction 

Superstring theories (Green et al 1987 and references therein) are optimistically 
considered as candidates for an ultimate theory of all fundamental interactions of 
nature, including gravity. These theories are consistent (anomaly-free) chiral quantum 
theories, incorporate gravity in  a natural way, and are presumably finite. As a theory 
of everything they would also have to allow a derivation of the standard model of 
strong, electromagnetic and weak interactions, i e. determine all the free parameters 
including the family number and the observed gauge structure. Furthermore, they 
would have to explain the vanishing of the cosmological constant despite supersym- 
metry breaking (Moore 1987). 

At the present level of understanding the best one can say is that this does not 
appear to be impossible In  any case, no attractive alternatives are around, at least 
none which would attack all these problems at once 

One problem with the present formulation of string theories is that it is intrinsically 
Pefiurbative, with strings moving on a classical background. Many classical solutions 
(superconformal fieid theories) exist, and it is unclear how to select the 'right' one. 
Eventually the theory should self-consistently determine its own background. This 
could only be expected from a non-perturbative formulation which has not yet been 
found. Actually solving such a theory in a non-perturbative way would still be another 
matter 

Despite this very incomplete understanding of the structure of the theory it IS  

necessary to work out observable consequences at the level of string perturbation 
This first of all means looking for classical solutions with acceptable low energy 

Predictions (masses, Yukawa couplings, family number). No completely satisfactory 
has yet been found. The other possible approach to make contact with 

Phenomenology 1s to study the early history of the universe. Here the most striking 
Prediction of string theories is the existence of a phase transition at a critical temperature 
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T, close to the Planck scale. For the heterotic string (Gross et al 1985, 1986) T, is 

given by 

Tc=[(2+&)ncu'"*]-' (1) 

with a fundamental scale parameter of the order of the Planck length. T, simply 
reflects the exponential increase of the level density of a free string gas. The specific 
heat turns out to be finite as 7 approaches T, from below. Therefore T, does not have 
the interpretation of a limiting temperature (Hagedorn 1965) but indicates a phase 
transition. This phase transition actually prevents us from following the evolution of 
the universe backward in time beyond the Planck time. This, however, would normally 
be one of the main objectives of a finite quantum theory of gravity This might be 
another indication that perhaps a completely different formulation of string theories 
would be needed. The situation might resemble that of the physics of strong interactions 
before QCD. The existence of a high-temperature phase transition was anticipated from 
the exponentially rising hadronic mass spectrum but there was no way to understand 
the nature of the high-temperature phase without the notion of quarks and gluons, 
Similarly, a radically new approach might be needed starting from string theories, 
leaving the present formulation as an effective theory, perhaps appropriate for the 
low-temperature (long-distance) behaviour. The notion of smooth spacetime manifolds 
might lose its meaning at  short distances. 

Below the critical temperature the cosmological evolution is modified by higher- 
derivative contributions to the Einstein equation (as well as to the background field 
equations of other massless modes), and by the contribution of higher string modes 
to the energy-momentum tensor. Usually these effects are very small, and the cosmo- 
logical evolution apparently does not differ significantly from that of the point field 
theory of the corresponding massless modes. 

The original approach to string theories in four-dimensional spacetime was to 
compactify superstrings in their critical dimension d, = 10, i e. looking for classical 
solutions of topology M4 x K ,  with K 6  a six-dimensional compact space. Most studied 
examples are tori (Narain et a1 1987b) or orbifolds (Dixon et a1 1985a, b). A general 
feature of these solutions is scale invariance, i e. the compactification scale R is not 
specified. 

One might simply assume R to be small but this leads to a cosmological problem 
This procedure could only be acceptable if R would remain small once it has been 
chosen to be so initially. For point field theories this IS  the case for a radiation. 
dominated universe but not for matter dominance There R starts to blow up in an 
unacceptable way (see, e.g., Weiss 1986). It will be the main point of this paper to 
demonstrate that string theories provide a solution to this problem which IS not available 
in the case of point field theories. I t  is in fact well known that, for string theories 
compactified on non-simply connected manifolds, new states appear corresponding to 
strings winding around the extra dimensions. They form topologically stable sectors 
and appear as states with an R-dependent mass in the equivalent effective point theory 
For certain values of the compactification scale or other background fields they mag 
become massless (points of enhanced symmetry) To our knowledge these states (called 
winding states or solitons in the following) have so far not been studied in a cosmologd 
context. We shall show that these states in fact stabilise the compactification radius 
under reasonable assumptions. 

Very recently string theories have been formulated directly in four dimensions, 
Presumably they cannot be understood through compactification of ten-dimensional 
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string theories (Kawai et a/  1987, Antoniadis et a1 1986, Narain et a1 1987a, Lerche 
et 1986). For these theories the question of a higher-dimensional Kaluza-Klein 
type cosmology does not arise, and our solution of providing a stable value for the 
compactification radius (i.e. one of the background fields) does not apply. Of course, 
the existence of these theories makes the problem of selecting one vacuum out of many 
possible ones only more severe. 

The outline of this paper is as follows. In 0 2 we study the thermodynamics of a 
free gas of heterotic strings compactified on a particular torus. We concentrate on the 
aspect of compactification because the thermodynamics of uncompactified strings has 
been studied before (Tye 1985, Bowick and Wijewardhana 1985, Alvarez 1986, Alvarez 
and Osorio 1986, Matsuo 1986, Gleiser and Taylor 1985). Section 3 represents the 
main part of this paper. We present numerical estimates on the stability range of a 
four-dimensional or ten-dimensional cosmological evolution. Moreover, we discuss 
the conditions under which winding states can play a major cosmological role and 
solve the stability problem of the compactification radius. Section 4 provides a 
summary 

2. Thermodynamics of torus-compactified heterotic strings 

It has been demonstrated by various authors (Polchinski 1986, Carlip 1986, O’Brien 
and Tan 1987) that the free energy of an ideal string gas is identical to that of an ideal 
gas of point particles with the corresponding mass spectrum In particular, a modular 
invariant representation has been found by O’Brien and Tan (1987). This analysis 
need not be repeated here. 

The analogue gas representation is the most convenient for our purpose. We 
therefore need to know the mass spectrum of the heterotic string compactified on some 
6-manifold As an example we shall study torus compactification It does not lead to 
phenomenologically acceptable models because the compactified theory shows N = 4 
supersymmetry and therefore no chiral fermions. However, no completely satisfactory 
classical solution is so far known; therefore we may as well study this simple compac- 
tlfication scheme which is well understood. The mass spectrum depends on the 
background metric it, of the 6-torus and possible other background fields (Narain et 
a1 1987b). For the purpose of demonstration we simply choose $, = 6, and put other 
background fields equal to zero The resulting mass spectrum is 

with 
$M’=$M;+aM; (2) 

and 

(4) 

”nits are such that the string tension (2rcu’)-l has the value l /n,  i.e. a’=$. The P’ 
define the E,xE,  root lattice of the left-moving bosonic string sector (Gross et a1 
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1985). The integers n' and m, have the meaning of winding numbers and quantised 
momenta on the 6-torus respectively, with R, the corresponding radii. The oscillator 
modes NL and NR take on non-negative integer eigenvalues. Physical states have to 
satisfy the constraint 

M : =  M;. (51 
It is convenient to split the spectrum into non-winding ( n '  = 0, V I )  and winding states 
(n' f O  for some k ) .  Non-winding states have masses 

with N a non-negative integer The contribution of these states to the free energy id 

where d E W  is the level degeneracy of the uncompactified ten-dimensional theory In 
particular there are d,NW = 8064 massless states. The asymptotic behaviour is known 
to be 

exp[(2 + f i ) 2 ~ v ' X ]  (8) d l W - N - I I / 2  

determining the critical temperature (1) above which the canonical ensemble does not 
exist 

Equation (6) is the mass spectrum one obtains by first taking the point field limit 

in ten spacetime dimensions, and compactify afterwards This procedure misses all 
the winding states ( n k  # 0 for some k ) .  From ( 2 ) - ( 5 )  it would be very easy to work 
out these masses and level degeneracies systematically. This is in fact not even necessary 
for our purpose, for the following reason. Higher-mass string levels give a very small 
contribution below and even at the critical temperature. For the energy density at a 
compactification radius R - 1 (in units a ' =  f )  and T = T, we find a contribution of 
about 1.2% It is even smaller for the pressure This is easy to understand because 
T, (equation (1)) is a small number in units of a' = f Higher-mass states are therefore 
exponentially suppressed. In this case it is sufficient for all practical purposes to 
approximate the non-winding sector of the free energy (7)  at T S  T, by the level N = o  
states, and concentrate on those winding states which become massless for some values 
of the compactification scale. It is easy to check that the only states of this type are 
given by 

n k  = mk = + 1  for some k 

n'=O i # k  

1 ( P ' ) 2  = 0 NL = NR = 0 
I 

( 9 )  

i.e. they wind around the kth circle once. The corresponding Kaluza-Klein mass towel 
is given by 

vanishing for Rk = I? = I / &  m, = 0 ( I  # k ) ,  R , ( I  # k )  
better submanifold) of enhanced symmetry If R, = 

unrestricted. This is a point (01 

R for a11 I  one gets a maximal 
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enhancement 
Ex x E, x U( 1 )'+E8 x Ex x SU(2)6, 

The contribution of these winding states to the free energy is 

with level degeneracy dl: = 16, because these states are built on eight degenerate bosonic 
and fermionic vacuum states. Other winding states are suppressed in (11). 

Equation ( 11) is, however, not appropriate for all purposes. It represents a grand 
canonical ensemble with zero chemical potential, i.e. assumes unconstrained changes 
of particle numbers. This is of course not true for the winding states in particular, 
which can only be pair-produced and cannot decay into non-winding states but only 
annihilate. Equation [ 11) should therefore only be used if RI, is very close to E, and 
these states are copiously produced. Otherwise, if the particle density is low, it is 
better to use a representation with a fixed number of winding states N,,. Quantum 
statistics effects do  not play a significant role in this case, and equation (11) should 
be replaced by 

3. Cosmological evolution 

We now discuss the influence of winding states on the problem of stability of the 
compact space. For simplicity we identify the radii R, = R of the 6-torus and study 
the time evolution of the compactification scale R. Denoting the scale factor of 3-space 
by a(  t )  we consider the ten-dimensional metric ansatz 

g,,, = diag(-1, a'( t ) ,  . . . , R' ( t ) ,  . . .). (13) 

TI  = ~ ( - 7 p t S p , - 6 ~ , + 9 6 ! . ~ r ' ? +  120~:) (14Q) 

;( p - 3p,  $. 2p,, - 24Jj1J!2 - 48.~:) (14b) 

B = 6[ $1 ( yi $- 3~: )  + j'2(3.~, + 5 ~ 4 1  - (14c) 

The Einstein equations reduce to the following set of differential equations: 

3 2  

(s)-' 
with p (  t )  = T I (  t )  the inverse temperature. We have introduced the notation 

y, = ci( t ) / a (  t )  R ( t ) / R ( t ) .  (15) 

Energy density p and 3- and 6-pressure p3 and p6 are calculated in the standard way 
from the free energy (equations (7), (11) and (12)) 



45s J Kripfganz and H Perlt 

with V, = (2n-R),. The constraint equation 

3y:+ ISy,yz+ 1sy;=p (17) 

has to be satisfied initially. 
Note that the ten-dimensional gravitational Constant x 2  = 8&,,, which would 

normally appear in (14) and (17) has been absorbed by a rescaling of time r-tx-lt. 

The time evolution of the scale factors a ( t ) ,  R ( f )  is now completely specified. The 
choice of initial conditions at T = T, is less clear, however. Assuming, e.g., ;I first-order 
phase transition at T =  T, one could imagine the visible part of the universe originating 
from a single bubble formed during that phase transition. Kinetic considerations would 
allow us to estimate the bubble size if one could understand the dynamics of the 
high-temperature phase. Since this is not the case we shall take. the initial value of 
the compactification scale R as a free parameter instead. The stability problem of 
compactification may be considered as being solved naturally i f  R ( t )  does not blow 
up for a reasonable sufficiently broad range of initial values R(O). 

We now discuss the time evolution of R ( t ) .  The driving force for a possible blow 
up of R is p-3p3+2p, (compare with (14b)) which competes with a friction term. 
We first ignore the winding states. There are two limiting regimes (for T G  T‘): 

R<< T-’ P = 3P3 Ph = 0 
R >> T-l P = 9P3 =9p, 

obviously corresponding to a radiation-dominated four-dimensional i R ( I 1 -+ constant, 
a( t )  - t ” ? )  or ten-dimensional ( T (  f )  - U (  I )  - r‘’’) expansion, respectively. The range 
of attraction of these limiting regimes can be found by numerically studying the space 
of trajectories. In particular, for a symmetric initial expansion rate ( ~ ~ ( 0 )  = .r,?(O) = 
1 / 6 ~ ” ~ )  we find the universe developing towards an effective four-dimensional space- 
time if 

(18) R(0)  6 R* - 0.95. 

p3 c= 0 . 2 7 ~  p ,  = 0.03~. (19) 
Excited string modes have very little influence on this behaviour. The destabilising 
effect for R(O)> R” arises from the N=O Kaluza-Klein modes (compare with (6)). 

Starting from a string theory one also finds higher-derivative contributions to the 
Einstein equations. Below T, contributions are also numerically small ( Kripfganz and 
Perlt 1987). 

If R(0)  is in the stability range (18), R ( t )  will approach a static value which is 
stable as long as the universe is radiation dominated. However, when it becomes 
matter dominated ( p 3  = 1 / 3 p 3 p 3 < <  p )  y2  = 0 is no longer a solution as is obvious from 
(14b). R ( t )  will start blowing up. This has been studied, e.g., by Weiss (1986) and 
need not be repeated here. It would lead, e.g., to a non-acceptable time variation of 
gauge coupling constants. 

In the remaining part of this section we study the question of whether the contribu- 
tion of winding states to the energy-momentum tensor would qualitatively change this 
picture. Certainly this can only occur if the number density of winding states at the 
time tM of the onset of matter dominance is sufficiently large (this will be further 
specified below). This role cannot be played by strings originally present (they would 
be totally diluted) but by winding-antiwinding pairs in thermal equilibrium. This 

At R = R*, T = T, we find as equations of state 
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requires their mass to be small (not much larger than the temperature), 
in turn means that R(tM) must be extremely close to 8. This would appear 

unnatural if I? itself would not act as an attractor. In  fact it may do so. The argument 
has two steps. One is to show that ~ ( t )  stays close to R up to t M  if it is close to it at 
a time when T has fallen somewhat below the critical temperature such that the 
Kaluza-KIein modes are also sufficiently suppressed. In this case the equations of 
state will be 

p3 = $+ O( r 2 )  

p6 = -C, T2r  + O( r 3 )  

with r(  t )  = R(  t )  - I?. Equation (20) follows from a low-mass expansion of the free 
energy (7) and (11). The constant C1 is given by 

C1 = 3 ~ ~ d , “ / ( 2 & ) ~ .  (21) 

8 I + 24y, r + 21?C1 T2r  = 0. 

p=CzT4=3y:  (23) 

The linearised term of the evolution equation (14b) becomes 

(22) 

Making use of the constraint equation (17)  

with 

C 2 = & ~ 2 ~ d 0 / ( 2 ~ 8 ) 6  

do= d t W  + 12dr = 8256. 

Equation ( 2 2 )  can be solved explicitly by introducing z = y;l” as a new independent 
variable Solutions are found to be zeroth-order spherical Bessel functions in z, or 

R ( t )  = R + j r , / J i )  s i n ( 2 ~ t ) ’ ” + ( r , / J i )  COS(&GT~)~’* (25) 

c = (fi/4)8c,c;1/2 (26) 

with 

Therefore, as soon as R 1s sufficiently close to 8 it will stay close to it during the 
whole radiation-dominated period Winding string states would be light and abundant. 

This conclusion only holds, however, if R gets very close to I? in the first place. 
In general this will not be the case. Numerical calculations show that near the critical 
temperature the winding contribution (11) to the free energy is so small that R does 
not act as an attractor for a sizeable neighbourhood. A typical trajectory starting with 
Some R ( 0 )  < R* will move towards some limiting value different from R. In this case 
winding states would be heavy and would not be produced in large numbers. In this 

they could not play any role in solving the stability problem of the matter- 
dominated period 

There is a way out if the net number of winding strings is non-zero initially. This 
Is not as artificial as it may sound, since we already assume that something like bubbles 
Of a non-trivial topology may form at the critical temperature. This would be quite 
natural if topology would not be a meaningful concept in the high-temperature phase, 
‘4. If spacetime becomes discrete. 
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Now, if the net number of winding strings would be non-zero initially, and if R is 
not very close to l?, there would still be a few heavy winding states which cannot decay 
since they are topologically stable. Equation (12) for the winding sector of the free 
energy now becomes appropriate. If there are N ,  winding states of mass M,v 

(271 M : =  4 R 2 +  I /  R 2  - 4  

they give a contribution to the pressure p6 (for M , a  T )  

which drives R ( t )  towards l?. This contribution will be relevant only for some initial 
period, until the non-matching winding states are diluted This would be sufficient, 
however, to give I? a broad range of attraction. Once R ( t )  is close to l? it would 
follow the solution ( 2 5 )  

There might be other ways of ensuring a density of light winding states of perhaps 
a few orders of magnitude below the photon number density during the radiation. 
dominated period. Turning now to matter dominance R(  t )  will increase somewhat 
from l? making these states heavy. Since they are topologically stable they cannot 
decay but must annihilate. Annihilation will be in general incomplete. Therefore, a 
small fraction of these states will survive. Effectively, we are again in a situation of a 
fixed number of winding states and ( 2 8 )  applies. Again we find a stabilising force 
preventing R( t )  from blowing up, provided 

p i - 2 p s <  0. (291 

Due to the peculiar R dependence of the mass of the winding states (equation ( 2 7 ) )  
their energy density may be negligible compared to 2 1 ~ 4 .  This will be the case for 

From equation (28) we finally find a lower bound on the number density n ,  of the 
winding states compared to the baryon density n,  

$n ,a  n , M B m  (31) 

where m M B  is the proton mass in Planck units! The number density of the winding 
state surviving until the present may therefore be very small, but still provides a 
stabilisation of the compactification scale. 

4. Summary and discussion 

The cosmological scenario outlined in this paper for a torus-compactified heterotic 
string theory has various general aspects valid for non-simply-connected manifolds, 
At IOW energies these theories contain additional states due to the compactification 
They are topologically stable and have a mass depending on the compactification scale 
R. The mass M ,  will be minimal for some value l? of R. Interesting cosmological 
effects are expected in particular if M,( I?) = 0. This appears to be a rather general 
phenomenon at least for torus or orbifold compactifications (Narain et a f  1987b, Naif 
et al 1987). Whereas the ground state is scale invariant in these cases the incoherent 
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contribution of the winding states to the energy-momentum tensor breaks scale invari- 
ance Under reasonable assumptions this contribution stabilises the compactification 
scale during the cosmological evolution while it would blow up otherwise during the 
matter-dominated period. 

It would be interesting to study the astrophysical consequences of similar but more 
realistic compactification schemes in some detail As far as we can see, however, these 
winding states might not have any other observable effect as long as they belong to a 
hidden sector, i.e. the usual matter fields are singlets under the corresponding symmetry 
enhancement 
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