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Our earlier analysis of the lattice 4~ 4 theory in four dimensions is extended to a neighborhood 
of the critical line in the broken symmetry phase, which includes the "scaling region" char- 
acterized by am R <~ 0.5 (a: lattice spacing, mR: renormalized particle mass). As in the symmetric 
phase, the renormalized coupling gR at zero momentum is bounded by a function of the cutoff 
A = 1 / a ,  which decreases logarithmically as A ~ o¢. The maximal possible value of gR in the 
scaling region is found to be about 2 of the tree level unitarity bound, i.e. the coupling is never 
really strong and bound state particles, if they exist at all, are expected to have a small binding 
energy. In terms of the renormalized vacuum expectation value v R of the field ~, the upper bound 
on the coupling corresponds to m R ~< 3.2v R. 

1. Introduction 

Although the lattice q~4 theory in four dimensions is a free field theory in the 
continuum limit, the particle interactions at low energies need not a priori be weak 
when the ultra-violet cutoff A = 1/a (a: lattice spacing) is finite and reasonably 
large compared to the renormalized mass m R" Still, for the one-component model in 
the symmetric phase, we have recently been able to show [1] that the renormalized 
coupling gR at zero momentum is always smaller than about ] of the tree level 
unitarity bound whenever A >/2m R. Thus, the interactions are never really strong in 
this model and renormalized perturbation theory may be applied to calculate the 
scattering matrix at low energies, for example. Using a combination of conventional 
analytic methods, many further results on the model in the symmetric phase were 
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obtained in ref. [1] and these could be directly compared with data produced by a 
large scale numerical simulation [2] at infinite bare coupling (which is the most 
difficult case for the analytic approach). A complete matching was observed and 
this then leaves little doubt about the validity of the (weak) qualitative assumptions 
on which our analysis was based. 

In this paper, we consider the one component t~ 4 theory in the phase, where the 
reflection symmetry q~ ~ - ~  is spontaneously broken. The motivation and goals are 
the same as for our earlier work on the symmetric phase, in particular, we shall 
determine the renormalization group trajectories (curves of constant coupling gR) in 
the plane of bare parameters and the maximum value of A / m  R for given gR (the 
triviality bound). Also we have again taken care to present the results in a form 
which can be readily compared with data from future Monte Carlo simulations. 

At weak coupling, the q~4 theory in the broken symmetry phase describes a single 
massive particle with local 3- and 4-body interactions. Through one-particle ex- 
change processes, these interactions give rise to an attractive force between the 
particles, which has a range equal to mR 1. This is quite different from the symmetric 
phase, where the interactions are repulsive and have only half this range (at least 
two particles must be exchanged in this case). At strong coupling, the low energy 
properties of the model are therefore likely to be more complicated in the broken 
symmetry phase than in the symmetric phase, in particular, it is conceivable that 
bound state particles form. 

In the Ising model limit of the theory such bound states do in fact occur as the 
following simple consideration shows. Deep in the broken symmetry phase (at very 
low "temperatures" in other words), a one particle state may be described as a 
single spin, which is flipped relative to the ground state magnetization. Similarly, a 
two-particle state is obtained by flipping two spins. When the flipped spins are 
separated by a distance greater than one, there is, to a first approximation, no 
interaction between them (the Ising hamiltonian only couples nearest neighbors) 
and the two particles are hence unbound. The situation is different if the spins are 
at a distance one, because the number of opposite nearest neighbor spin pairs is 
reduced by 2 in this case. Such states therefore describe two-particle bound states 
with a binding energy equal to 2 spin interaction units. 

The above example shows that bound states exist in a limit, where the cutoff A is 
very low. For larger values of A, the triviality bound sets an upper limit on the 
coupling gR and the attraction between particles may then no longer be sufficiently 
strong for the formation of stable bound states. On grounds of the results obtained 
in this paper, we shall in fact argue that for A >_ 10m R such states are unlikely to be 
present. In the intermediate range 2m R ~ A _< 10m R, it is more difficult to make a 
safe prediction, but if bound states exist for sufficiently large bare coupling, their 
binding energy should be rather small. 

Our analysis of the broken symmetry phase relies heavily on the results and 
methods of ref. [1]. We shall therefore assume from now on that the reader is 
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familiar with that paper, in particular, unless otherwise stated, the notation intro- 
duced in ref. [1] will be taken over without further notice*. 

As we have already pointed out in ref. [1], the broken symmetry phase appears to 
be more difficult to treat than the symmetric phase, because for general bare 
coupling X, there is no known (practical) expansion for x ~ oo, which could play 
the r61e the high temperature expansion did in our analysis of the symmetric phase. 
An exceptional case is the Ising limit X = oo, where a "low temperature" expansion 
can be derived [3] which could be worked out to high orders without great difficulty. 
However for X < oo, the situation seems to be less favorable even though the 
correlation length is small for large x and one might therefore hope to be able to 
perform a kind of cluster expansion. Anyhow, we did not pursue these matters any 
further, because we realized that our goals could also be reached by a different 
strategy, which does not require the theory to be solved for large ~. 

In outline the new strategy is as follows. As we have discussed in subsect. 4.4 of 
[1], the renormalized coupling gR in the symmetric phase scales to zero as one 
approaches the critical line ~ = Xc(?t) in such a way that the limit 

/ t ~ _  ]~82/,82_l/fllgR (1.1) 
Cl( )k  ) = l i m  a m R ~ l J l g R J  

K ----* K c 

exists. Similarly, a constant C{(X) may be defined by approaching K c from the 
broken symmetry phase. Both constants are defined at the critical line and it is 
therefore not surprising that they can be given an interpretation in terms of the 
critical (massless) theory. It then becomes apparent that C[(?t) is actually propor- 
tional to CI(X ) with a proportionality constant, which is exactly given by 

C/(X) = el/6CI(X ) (1.2) 

for our choice of renormalization conditions. 
CI(X) can be calculated for all X to a reasonable estimated accuracy from our 

solution of the model in the symmetric phase. Thus, C{(X) is known and may be 
used as initial datum for the integration of the renormalization group equations 
along the lines X = constant in the broken symmetry phase (see fig. 1). Since the 
Callan-Symanzik coefficients fl, "/, ~ (and e) are only known in perturbation theory, 
the integration must be stopped when the coupling gR becomes large (point D in 
fig. 1). Thus, in this way the theory can only be "solved" in a narrow band around 
the critical line in the broken symmetry phase, but as we shall see, this band 
includes the whole scaling region A >/2m R. The shaded area in fig. 1, where the 
theory remains unsolved, is therefore not a very interesting region since there, 
similarly to the high temperature region in the symmetric phase, the physics at 
scales of mp. is strongly influenced by non-universal cutoff effects. 

* Equations in ref. [1] will be referred to by equation numbers prefixed by I such as for example 
(I.4.30). 
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Fig. 1. Qualitative plot of the phase diagram of the lattice @4 theory. The integration of the renormaliza- 
tion group equations is started at e.g. point A at the boundary of the high temperature region 
(cross-hatched area) and follows the line ~ = constant towards point B, where the constants C a and C{ 
are determined. The integration can then be continued away from the critical line to (say) point C in the 

broken symmetry phase. 

The crucial step in the procedure just described is the proof of eq. (1.2). It is 
based on the definition of a renormalized massless theory and the reconstruction of 
the massive theory on both sides of the critical line using mass perturbation theory 
and mass independent counterterms. This scheme has been advocated by Weinberg 
[4] (although not for scalar theories) and was explained most clearly by Br6zin, 
Le Guillou and Zinn-Justin [5] in their review of the field theoretical approach to 
critical phenomena*. 

The organization of this paper is as follows. In sect. 2, we discuss the renormaliza- 
tion of the theory in the broken symmetry phase and fix the renormalization 
scheme. Scaling laws, analogous to those in the symmetric phase, are derived 
subsequently (sect. 3) and the relation between the integration constants C 1 and C{ 
alluded to above is established in sect. 4. After that, the renormalization group 
equations in the broken symmetry phase can be integrated and the main results, a 
quantitative plot of the renormalization group trajectories and the triviality bound, 
are obtained (sect. 5). Conclusions are drawn in sect. 6 and the perturbation 
expansion coefficients for the Callan-Symanzik functions fl, 7, 8 in the broken 
symmetry phase are listed up to 3 loops in appendix A. 

In many respects, sect. 4 is the heart of our paper and the steps taken there are 
therefore explained in great detail. Otherwise we shall be rather brief, because the 

* It is also implied if one uses dimensional regularisation and minimal subtraction [6]. 
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methods used and the argumentation are practically the same as in our earlier paper 
on the symmetric phase [1]. 

2. Renormalization in the broken symmetry phase 

In this section we define the bare and renormalized vertex functions of the 
fundamental field ~ and the composite field 0 (eq. 0.2.5)) in the broken symmetry 
phase K > re(X). In our discussion of renormalization, we shall essentially follow 
Symanzik's analysis [7]. 

2.1. BARE VERTEX FUNCTIONS 

As in the symmetric phase (sect. 2 of ref. [1]), we start off by defining the 
generating functional W(H, K) for the connected correlation functions of ~ and 0. 
Because of the spontaneous symmetry breaking, some care must be paid to obtain 
the correlation functions in a pure state. Thus we first introduce a positive 
"magnetic" field h and then define W ( H ,  K )  as a limit for h ~ 02 

eW= lim [ I - I  d¢(x)exp -Sh+ ~(H(x)¢(x)+K(x)O(x , (2.1) 
h ---', 0 ~ h h  x 

S h = S - h,~_.,q~(x), (2.2) 
x 

.~h = f H  d,/,(x)e -s` (2.3) 

(S is the action (I.2.1) and the source fields H(x), K ( x )  are assumed to decay 
rapidly for large x). With these conventions W(0,0)=0 and the spontaneous 
vacuum expectation value of q~, given by 

OW H=K=0 V O H ( x )  ' (2.4) 

is positive. 

The bare vertex functions F (",l) are again defined via the Legendre transform 
F(M, K) of W(H, K). However, because of the non-zero expectation value of oh, it 
is more natural to introduce the local magnetization M ( x )  through 

OW 
M ( x ) -  OH(x~) o (2.5) 

instead of (1.2.7) and the definition of F ( M ,  K )  is accordingly changed to 

r = w -  E / - / ( ~ ) ( i ( x )  + ~). 
x 

(2.6) 
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Then the vertex functions F~n'l)(p 1 . . . . .  Pn; ql . . . .  , ql) are generated by expanding 
F ( M ,  K )  in powers of M and K as in eq. (I.2.9). 

By definition, F ~°,°) and F 0'°) vanish. Except for F~2'°)(p, - p ) ,  which is equal to 
the negative inverse propagator of ~, all other vertex functions are the one-particle 
irreducible parts of the connected n +/-point functions with full propagator ampu- 
tated external &legs. We emphasize that one-particle irreducibility here only refers 
to channels with non-empty sets of external momenta on both sides, in particular, in 
a Feynman diagram expansion of F(", t), tadpole subgraphs are not excluded. 

We finally note that for (n, l) 4: (0,0), we have 

ar<",'>= a°r<"+l,%.+, +r<.,'+G,+,=0 (2.7) 
3~ OK =0 • 

This relation will later be used to derive the Callan-Symanzik equation. Compared 
to the analogous eq. (I.2.11) in the symmetric phase, it involves an additional term, 
which arises from the fact that the Legendre transform (2.5), (2.6) depends on K 
through v. 

2.2. PERTURBATION THEORY 

The weak coupling perturbation expansion of the vertex functions F ~n'0 is 
obtained by expanding about the absolute minima of the action S. For K > Kc(~ ) 
and small X, S has exactly two degenerate absolute minima at 

q~(x) = _+s o , (2.8) 

1 
So2 = ~ - ( 8 ~ -  1 + 2~) ,  So>0.  (2.9) 

According to the definition (2.1) of W(H,  K) ,  the functional integral is to be 
evaluated with a small magnetic field h, which is turned off at the end of the 
calculation. In perturbation theory, an equivalent procedure is to expand only about 
the positive minimum qffx) - + s o. Thus, we introduce a fluctuation field %(x)  and 
an associated composite field Oo(X ) through 

% ( x )  = - s 0 ) ,  (2.10) 

3 

Oo(X)= E { % ( x ) % ( x + / ~ ) + % ( x ) % ( x - ~ ) } .  (2.11) 
~ 0  



M. Lfischer, P. Weisz / Lattice ~4 theory (II) 

The action then becomes 

71 

2 1 2 2 S =  1 y"  (OtSPo(X)) +2rnoePo(X ) +-~-. 3 ~ o m o % ( X ) 3 +  -~-.q)o(X) 4 +co n s t ,  
/ z=o  

(2.12) 

where the bare mass m o > 0 and the coupling go are given by* 

2 
m 2= - ( 8 x -  1 + 2X), (2.13) 

K 

6X 
go = ~ - -  (2.14) 

The Feynman rules for the calculation of the correlation functions of % and 0 o in 
powers of go may now be derived from (2.12) in the usual way. The corresponding 
vertex functions are sums of one-particle irreducible Feynman diagrams (in the 

sense explained above) and will be denoted by Fo ("'/). 
There is a simple relation between the vertex functions F TM 0 and  1"(o ~, O, which 

can be easily established using the associated generating functionals. In general we 

have 

F ("' ') = (2 r )  ,/2-,Fo(, ' ,), (2.15) 

the exceptions being 

F (°'1) = (2~) -  aFo(°'l)+ (2x)-1/216VoSo + 8s 2 , (2.16) 

3 
F(1'1)( p; q) = (2x) 1 /2 F (1 ' 1 ) (  p ;  q) + 2s o E (1 + cos q , ) .  

t~=o 
(2.17) 

In (2.16), o o denotes the vacuum expectation value of %,  which is related to the 
vacuum expectation value of ~ through 

v = (2x) - 1 / 2 U  0 -~- S O . (2.18) 

In perturbation theory, v o is given by the sum of all connected tadpole graphs. 
Through eqs. (2.15)-(2.18) the Feynman diagram expansion of v 0 and F0 ~n,l) 

immediately leads to the desired perturbation expansion of v and /'(n' 0 in powers 

* Note that the definition (1.2.4) of the bare mass m o in the symmetric phase is different. 
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of go- In the lowest order (tree level) approximation, we have 

( 1 u =  
2 Kg-----o ] (2.19) 

and the non-zero vertex functions are given by 

/-(2,0)( p,  _ p )  = _ 2x(m 2 +/32), (2.20) 

F O ' ° ) = - ( 2 x ) 3 / 2  3~omo, (2.21) 

F (4'°) = - (2x)Zgo, (2.22) 

F (°'1) = 8v 2 , (2.23) 

F(l ' l ) (p;  q) = v(16 - •2), (2.24) 

F(2'1)(Pl, P2; q) = 16 _/32 _/32, 

where/32 is defined by 

(2.25) 

3 
/32 = 4 • sin2-~. (2.26) 

tz=0 

For small coupling, the model thus describes a single particle of mass m 0 with weak 
3- and 4-body interactions, which come in a certain proportion as dictated by the 
spontaneously broken symmetry. 

2.3. RENORMALIZATION 

From the work of Symanzik [7], one knows that the renormalization of the theory 
in the broken symmetry phase does not require any more counterterms than are 
already needed in the symmetric phase. Thus, apart from additive subtractions of 
/,(0,1) and F (0'2), it is sufficient to express the bare parameters r and X through a 
renormalized mass m R and coupling gR and to multiply the fields 4~ and • by 
appropriate wave function renormalization constants Z R and ZR °. To the extent that 
finite renormalizations can be made, the precise definitions of mR, gR, Z R  and Z~ 
are of course arbitrary. Here we adopt a scheme which is easy to work with in 
perturbation theory and leads to some simplifications later on when we discuss the 
Callan-Symanzik equation. 

As in the symmetric phase, the renormalized mass m R and the wave function 
renormalization constant Z R are determined through 

v(2'°)(p,-p)= --ZRl(mZ +p2 +O(p4)}, (p~O). (2.27) 
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The renormalized vacuum expectation value v R of ~ is then given by 

v R = v ( Z R) - 1/2.  ( 2 . 2 8 )  

With these conventions, the tree level formula (2.19) can be rephrased in the form 

3rn2 / v 2  = go + O( g~ ) , (2.29) 

and a natural definition of the renormalized coupling gp, therefore reads 

gp, = 3m2 / v ~ .  (2.30) 

In our scheme, the "mass formula" 

m 2 = 1  2 ( 2 . 3 1 )  ~gRUR 

is hence an identity, whereas the four-point coupling at zero momentum is a 
non-trivial function of gR" 

We finally fix the wave function renormalization constant Z~ of 0 through 

F(m)(O;O)=v(ZRZ~) -1 (2.32) 

In view of eqs. (2.24) and (2.25), this definition is equivalent to eq. (I.4.4) at tree 
level, but in higher orders the two definitions would differ by a finite factor. 

Renormalized vertex functions/,~n,z) may now be defined in the usual way by 

F(R ., t) _ 0 for n = 0, l ~< 1, (2.33) 

F(Ro. 2) ( q, _ q ) = ( ZR o )2 (F(O.2) ( q, _ q ) _ F(O,2) (0, 0 ) }, (2.34) 

for all other n , / .  (2.35) 

We shall always consider F(R n'l) to be a function of mR, gR and the momenta 
(through eq. (2.30), o R is also considered a dependent quantity). When one inserts 
the bare perturbation expansion derived in the preceding subsection into the above 
equations and eliminates m 0 and go in favor of m R and gR, one obtains the 
renormalized perturbation expansion of F(R n't) in powers of gR" By Symanzik's 
analysis, the coefficients in this expansion are ultra-violet finite, i.e. their continuum 
limit exists and what we have said about scaling in subsect. 4.2 of [1], carries over 
literally. 
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The renormalized vertex functions fulfill the normalization conditions 

F ~ 2 , ° ) ( p , - p ) = - { m ~ + p 2 + O ( p 4 ) ) ,  ( p ~ O ) ,  (2.36) 

F~'2)(0, 0) = 0, (2.37) 

F~'I)(0; 0) = v R (2.38) 

(and eq. (2.33)). To completely specify the normalization of the vertex functions, a 
further condition must be added, which insures that v R is in fact the renormalized 
vacuum expectation value of ~. There is no simple expression of the latter in terms 
of the renormalized vertex functions, but as discussed by Symanzik [7], it is 
nevertheless well determined by them, because it enters the Ward identities implied 
by the symmetry (~ ~ - ~  of the action in a non-trivial way. While it is not 
necessary to recall any details of this construction, it is important to know that our 
renormalization scheme can be unambiguously characterized without recourse to the 
bare correlation functions. In particular, if we had used (say) dimensional regu- 
larisation instead of a lattice and followed the steps (2.27)-(2.35) to define the 
renormalized theory, the resulting renormalized vertex functions would have been 
the same (up to scaling violation terms, of course). 

3. Sca l ing  behavior  in the  crit ical  reg ion  

The scaling properties of the 4~ 4 theory in the broken symmetry phase are 
essentially the same as in the symmetric phase, so that here we only summarize the 
basic results and refer the reader to sect. 4 of [1] for a more detailed discussion. 

3.1. THE CALLAN-SYMANZIK EQUATION 

The composite field 0(x)  has been introduced in such a way that the basic 
equation 

9S 
- -  = - E O ( x )  ( 3 . 1 )  
OK x 

holds. In terms of the bare vertex functions, this property is expressed through eq. 
(2.7), which in turn implies the Callan-Symanzik equation'* 

{ 0 8 ) 
mR om'---~R +BOg R ny 16 F~ "'1) 

= 0 m .  r ("  + po+i =0 --  .o8,2r .2  (o ;  0 , o ) )  

1) ~ (~ /"(0 3) 0 , 0  0 ~-Em2{ In(n'l+ ]ql+l~O--CJnOl2 R' ( . , ) ) "  (3 ,2)  

* Eq. (3.2) is valid for all n, l except n = 0, l ~< 1. 
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The coefficients /3, y, 8 and e in this equation are given by eqs. (I.4.21)-(I.4.24), 
while the new coefficient # is related to the vacuum expectation value of ~ through 

O= Z{~ z/2 OK / Or (3.3) 

(derivatives with respect to x are at fixed X). 
In our renormalization scheme, the coefficients ~ and e can be algebraically 

expressed through /3 and 3'. Indeed, from eqs. (2.28), (2.31) and the definition of 
/3, y, ~ one easily shows that 

0 = 1 + "t - • (3.4) 

Next, choosing n = 1, l = 0 in the Callan-Symanzik equation and using the normal- 
ization conditions (2.36), (2.38) one obtains e = #mR/V R and hence 

/3 
e =  i + y -  2g------R " (3.5) 

We emphasize that these relations are a special feature of our renormalization 
scheme, in particular, if we had adopted the normalization (I.4.8) of the operator 0 
we chose in the symmetric phase, there would have been no formula for e in terms 

of fl, y ,& 
We have computed fl, ~,, 8 in renormalized perturbation theory up to three loops 

for mR = 0 and up to one loop for general mR (appendix A). The results show that 
the universal coefficients ill, f12, 71 and 8 z are the same as in the symmetric phase. 
A curious although not very important fact is that the fl-function becomes negative 
for gR --> 0 and fixed m R (the tree level coefficient u o is negative). Sufficiently close 
to the critical line, where scaling violation terms can be neglected, fl is however 
always positive so that the critical behavior of the theory is not influenced by this 
effect in any relevant way. 

3.2. SCALING LAWS FOR mR, gR, ZR AND Zr~ 

As we have discussed in [1], the q~4 theory becomes a free field theory when one 
approaches the critical line x = Kc(~ ) from below. In sect. 4 we shall argue that the 
same happens also in the broken symmetry phase, in particular, the coupling gR is 
expected to be small close to the critical line. In this regime, perturbation theory 
may therefore be used to evaluate the /3-function and the precise asymptotic 
behaviour of gR for m R ~ 0 and fixed ?~ then follows from the renormalization 
group equation (I.4.26). In an implicit form, this scaling law reads 

mR= C{(/31gR) B2/~'~e-X/~lgR {1 + O(gR) } , (3.6) 
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where C{ is an integration constant depending on )~ and ill, r2 are the one- and 
two-loop coefficients of the r-function. 

Similarly, the scaling laws 

Z R = C2'(1 + O(gR)},  (3.7) 

= c;g 1/3{1 + o(gR)), (3.8) 

follow from the renormalization group equations (I.4.27), (I.4.28), while the relation 

derives from 

= !¢ " t~ ' a2  r ' - 1 / 3 " ( 1  q- O ( g R )  } ( 3 . 9 )  K - -  K c 2 ~ 3 , , ~ R 6 R  i.~ 

mR ~Orn-- = rn2 eZ[ '  (3.10) 

with e given by (3.5). Note that compared to the corresponding formula in the 
symmetric phase, there is an extra factor of - ½ in (3.9), which can be traced back 
to the fact that at tree level, the coefficient e is different in the two phases. 
Otherwise the scaling laws are identical except, of course, that the integration 
constants C~ and C i' need not be the same. 

We finally note that the spontaneous vacuum expectation value of ~ scales to 
zero according to [5] 

t¢ 
v ~x ( - T )  1/2 [ln(-~-)l 1/3 , ~" = 1 - - - ,  (3.11) 

"r--, 0 t¢ c 

as one may easily show from eqs. (2.28), (2.30) and the scaling laws above. On the 
other hand, the dimensionless ratio vw/mR diverges logarithmically, i.e. in physical 
units, the renormalized vacuum expectation value is infinite in the continuum limit. 

4. Properties of the integration constants Ci(X) and CI'(X) 

Our goal in this section is mainly to establish a relation between the constants C i 
and C/, which occur in the scaling laws in the symmetric and broken symmetry 
phase, respectively. As we have already indicated in the introduction, this will be 
achieved by defining a massless renormalized theory along the critical line from 
which the massive theories on both sides of the critical line can be reconstructed 
using mass perturbation theory. In this framework, the scaling behaviour of the 
model in the two phases can be mapped onto a single property of the critical theory 
and this then implies that the constants C i and C/ must be related. 
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4.1. RENORMALIZATION OF THE CRITICAL THEORY 

Along  the critical line K = r¢(~) ,  the bare  vertex functions F ("'t) are in general 
only  well-defined for non-except ional  external m o m e n t u m  configurat ions*.  We 
therefore  fix the renormal izat ion constants  at some (arbitrary) m o m e n t u m  scale 
/~ > 0, which is to be  scaled as a mass  pa ramete r  in the con t inuum limit. Specifically, 

the wave  funct ion renormalizat ion constant  Z c is defined by  

0 
OpoF(2 ' ° ) (P  , - P ) I p = , I  - 2 / I Z ~ - '  n 1 = 0 t , 0 , 0 , 0 )  (4.1) 

and  the renormal ized  coupling g~ is determined through 

/ 'O ' ° ) (n l ,  n2, n3, n4) = - Z c 2 g c ,  (4.2) 

n i . n j = 1 3 1 a 2 ( 4 3 , j - 1 ) .  (4.3) 

The  vectors  r/i, i = 1 , . . .  ,4, are the corners of  a regular tetrahedron,  whose posi t ion 
relat ive to the lattice axes should also be specified for gc to be  defined unambigu-  

ously. We  assume that  this has been done  in some way, but  do not  actually write 
down  the coordinates  of  n i, since they will never  be needed. We finally fix the wave 
func t ion  renormal iza t ion  constant  Z~ of the opera tor  0 through 

F(Z'l)(n3, n4;ns) (ZcZc¢) 1 = , ?'15 = - - / ' / 3  - -  1" /4  " (4.4) 

The  quant i t ies  gc, Zc and Zff in t roduced in this way are free of  infrared divergences 
and  are hence well-defined functions of  )t and /z .  

W e  now proceed  to define renormalized vertex functions F~ ("'1) by  

F( . ,  z) = 0 for n = O, l ~< 1, (4.5) 

(4.6) 

("'0 for all other n , / .  (4.7) 

In  these equat ions,  r = xc()t ) as before and )~ is to be el iminated in favor  of  go, i.e. 
Fc <"'t) is considered to be  a function of /z ,  gc and the momenta .  

The  scaling propert ies  of  the critical renormalized vertex funct ions Fc (n't) are 
ent irely analogous  to those of  the massive renormalized vertex funct ions F(R n' t) with 
/~ p lay ing  the r r l e  of m R (cf. sect. 4.2 of [1]). Fur thermore ,  because the bare  vertex 

* F (''t) is defined as in the symmetric phase. Note also that F (°,1) is infrared finite even though the 
external momentum vanishes in this case. 
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functions are independent of Ix, the renormalization group equation 

(o o ) 
Ix ~ +/3c Tg~ - nyc - lSc Fc("'t)= 8"°8'2B (4.8) 

holds, where the coefficients tic, Yc, 8c and B are given by 

0 
~c = Ix t ~O----2gc' (4.9) 

0 
7c = t2Ix__O# In Zc, (4.10) 

0 
8c = IX-~IX In Zc ° , (4.11) 

2 0 - . , )  (4.12) 

(derivatives with respect to Ix are at fixed X). 

tic, Yc and 8 c have been computed in powers of gc up to three loops [5]. 
Neglecting scaling violations, one finds that the leading coefficients ill, f12, 71 and 
81 are the same as in the massive phases. From eqs. (4.9)-(4.11), we can thus derive 
scaling laws for go, Zc and Zc ~ in the usual way, provided we assume that for some 
Ix, the coupling gc is sufficiently small to be attracted by the trivial zero of tic. We 
shall later argue that this is indeed the case (subsect. 4.3) and hence conclude that 
for Ix -~ 0 and fixed X, the scaling laws 

Ix = Cf(f l lgc)-B2/O~e -1/Blgc {1 + O(gc)} , (4.13) 

Zc = c ;{1  + O(gc)} ,  (4.14) 

Z ~ =  C~g~1/3(1 + O(gc)} ,  (4.15) 

hold, where the C c denote yet another set of integration constants depending on X. 

4.2. RECONSTRUCTION OF THE MASSIVE THEORY 

Following Br6zin et al. [5], we here show how the vertex functions F~", 0 defined 
for r 4: x c can be obtained from the critical renormalized vertex functions Fi n" o. For 
simplicity, the details are only worked out for the symmetric phase, but the analysis 
can be extended to the broken symmetry phase without additional difficulties. 

Let F ( M ,  K; K, X), x <~ JCc(X), be the generating functional of the bare vertex 
functions F (n'O as defined in sect. 2 of [1] and set Ax = ~ - x c. Our starting point is 
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the (trivial) identity 

F(M,K;r,X)= lim {F(M,K+ArOL;rc, X)-F(O,A~OL;Kc,~)}, (4.16) 
L--+ ¢~ 

where 0L(X), X ~ 7/4, denotes the cutoff function 

0L(X)={10 otherwiseif[x~[<~Lf°rall/'t=0 . . . . .  3 (4.17) 

(the limit procedure is necessary, because in infinite volume, F is only defined for 
source fields which are decaying at infinity). By eq. (4.16), the bare vertex functions 
iv(,,, n at ~ < ~c can thus be calculated in terms of the critical vertex functions. For 

example, for n >/2 we have 

3P( ~ P~) . . . . .  Pn;K')~) 

, f" d4ql d4q, 
= t}i~rn°° ,=o ~" (A , )  L " ( Z r r )  4 . . .  (2~r) 4 

p , +  qj . . . . .  e . ;q l  ..... q,;gc,)t)OL(ql)...OL(q,), 
i = 1  

(4.18) 

where the dependence on ~ and X has been indicated explicitly and the notation is 
otherwise the same as in eq. 0.2.9). 

Eq. (4.18) reveals that the massive vertex functions can be reconstructed from the 
critical theory essentially by mass perturbation theory with IA~I playing the r61e of 
the bare mass squared and • being the mass operator. A subtle point to note is that 
mass insertions at zero momentum in a Feynman diagram with massless propa- 
gators usually result in an infrared divergent integral. In eq. (4.18), the limit L ~ oe 
can therefore be taken only after the summation over l, which makes the propa- 
gators massive and the zero momentum limit well-defined. 

We now proceed to rewrite eq. (4.18) in terms of renormalized vertex functions. 
To this end, define a new set of massive renormalized vertex functions F(m "'°) 
through 

~p p~ '°)(p 1 . . . . .  p,;  /1, me, go) 
i 

1 2 t -~  d4ql d4qt 
= 'Lm k o-- . . . .  L ~ ,=0 " - (2~r) 4 (2~r) 4 

x,~p ~_.p,+ F~ qj r~"'"(p~,...,p,;q~ . . . . .  q t ; l ~ , g c ) O L ( q l ) . . . O L ( q , ) ,  
i = 1  j = l  

(4.19) 
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where rn~ >/0 denotes 
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an arbitrary mass parameter. From eq. (4.18), one then 

F(R"0 ) (p l  . . . . .  Pn; mR,  g R )  = x~/ZF(m"'°)(Pl . . . . .  p ,;  II, me ,  g~),  (4 .20)  

where X~, m R and gR are functions of II, m~ and gc determined by 

F ~ m Z ' ° ) ( p , - p ) = - X ; l ( m Z  + p Z + O ( p 4 ) } ,  (p- - 'O) ,  (4.21) 

r2,o)(o,o,o,o) = -x;:gR. (4.22) 

These values of m R and gR correspond to 

2 = rc(?~ ) - Zc°(ll, X)rn c (4.23) 

and a bare coupling ?~ as specified b y / i  and gc. Furthermore, when deriving eq. 
(4.20), one also gets the relation 

x,= zR( ,x)/Zc(ll, x), (4.24) 

which we shall use later on. 
Eqs. (4.19)-(4.22) show that the renormalized vertex functions F{R "'°) can be 

reconstructed from the critical vertex functions F) n'° without recourse to any bare 
quantities. A crucial observation now is that the newly introduced vertex functions 
F~m "'°) have scaling properties, which are completely analogous to those of F~ "'t), 
provided that we treat II and me as physical masses. In other words, if we introduce 
a lattice spacing a as in sect. 4.2 of [1], the scaled vertex functions 

F(m "'°) = a'-4F{m"°)( afil . . . . .  aft,; all, amc, g~) (4.25) 

are independent of a up to scaling violation terms, which vanish like a power of a 
for a ~ 0. This property follows from the definition (4.19) and the scaling behaviour 
of F,! "'l). It implies, in particular, that X~,, mR/~t and gR as given by eqs. (4.21), 
(4.22), depend only on g¢ and mc/ll, if m c and II are small compared to the 
ultra-violet cutoff A (which is equal to 1 in lattice units). Another way to say this is 
that F(R "'°) and F~ "'°) are related by a finite renormalization transformation. 

We finally mention that the analysis could of course be extended to the vertex 
functions F{R "'/) with l ~ 0 and one would then be able to show that the renormaliza- 
tion constant 

x) / zg ( l l ,  x) ,  (4.26) 

is also "finite",  i.e. that it depends only on gc and mc/ll  in the scaling region. 
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4.3. TRIVIALITY OF THE CRITICAL THEORY AND THE RELATION BETWEEN THE 
CONSTANTS C i AND C[ 

The integration constants Ci(X ) and C[(X) are determined by the asymptotic 
behaviour of mR, gR, ZR and Z~ as one approaches the critical line keeping the 
bare coupling X fixed. The framework developed above is ideal to study this limit, 
since it allows us to compare theories with the same ~ but different renormalized 
masses m c. 

Since we are here only interested in what happens very close to the critical line, 
we may assume m c << 1, and we are also free to choose ~ << 1. Scaling violations 
can then be safely neglected and from the discussion in the preceding subsection, we 
conclude that universal relations of the form 

gc = FI(gR, mR~F), 

Z c = F2(gg,  mR/I-t)ZR, 

Zc ° =  F3(g R, mR/l~)Z~ 

(4.27) 

(4.28) 

(4.29) 

hold, where all quantities involved are defined at some fixed bare coupling X. The 
functions F, are not known in closed form, but they can easily be calculated in low 
orders of perturbation theory. In particular, for the symmetric phase we have 

F I = g R  32¢r 2 2 + l n  3 + I n  + O ( g 3 ) ,  (4.30) 

F2= 1 + O ( g ~ ) ,  (4.31) 

F s = 1 + O(gR) , (4.32) 

and similar formulae can be derived in the broken symmetry phase. 
We now specialize to the symmetric phase, set t~ = m p, and let m R go to zero. 

Since 2~ is fixed, gR also has to go to zero in this limit according to the scaling law 
(1.4.30). In eq. (4.27), F 1 may therefore be evaluated in perturbation theory and it 
follows that 

3g2 (2 + In 3) + O ( g  3) (4.33) 
gc = gR 32~r 2 

where gc is defined at scale ~t -- m R- Thus we have 

lim gc(~t, X) = 0 (4.34) 
/~---, 0 

and the continuum limit of the critical theory is hence trivial (as expected). 



82 M. L~cher, P. Weisz / Lattice ¢p4 theory (II) 

We have earlier derived the scaling laws (4.13)-(4.15) assuming that gc is small 
for some #. By the above considerations, this is in fact the case and gc, Zc and Z~ 
hence scale as anticipated. Actually, eq. (4.13) also follows directly from (4.33) and 
the scaling law (I.4.30) for gR with the constant Cf being given by 

c ; ( x )  = 1¢%c, (x )  (4.35) 

for all ~. We emphasize that this is an exact result even though we only needed to 
work out the function Fl (g  R, mR/ l~  ) to one-loop order*. 

The constants C~, C~ may be related to C 2, C 3 in a similar way. In fact, setting 
/z = m R and using eqs. (4.28)-(4.32), one readily obtains 

C~(~) = Ci(X) for i =  2,3. (4.36) 

The import of eqs. (4.35), (4.36) is that they establish a one-to-one correspondence 
between the scaling properties of the critical theory and those of the massive theory 
in the symmetric phase. In particular, the results of [1] could be transferred to the 
critical theory and, for specified ~, any low energy amplitude could then be 
calculated to some reasonable estimated accuracy. 

We now turn to the broken symmetry phase. Since we already know that the 
critical theory is trivial, we can invert the above argumentation to show that the 
theory is also trivial in the broken symmetry phase, in particular, the scaling laws 
(3.6)-(3.9) hold. Furthermore by working out the functions F/ in perturbation 
theory, we can then relate the integration constants C/ to the constants C~ as in the 
symmetric phase and finally obtain the long heralded result 

C{ = e l / 6 C 1 (  ), 

Ci'(X) = Ci(  ) for i = 2 , 3 .  

(4.37) 

(4.38) 

By passing through the critical theory, we have thus managed to transfer the 
information contained in the asymptotic scaling behaviour of mR, gR, ZR and Z~ 
in the symmetric phase to the other side of the critical line. In what follows, we shall 
not refer to the critical theory again, in fact, the relations (4.37), (4.38) are all what 
is needed to extend the results of [1] to the broken symmetry phase (sect. 5). 

4.4. CALCULATION OF C~(~,) FOR 0 < ~, ~< oo 

As we have discussed in ref. [1], the dependence of m R, gR, ZR and ZR ~ on K and 
)~ can be determined in the whole symmetric phase region by combining data from 
the high temperature expansion with the renormalization group equations. In 

* It has probably not escaped the reader that our calculations are formally very similar to those needed 
to match the A-parameters of different renormalization schemes in non-abelian gauge theories. 
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TABLE 1 
Values of In Ci(X) versus X 
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lnC1 lnC 2 lnC3 

0.01 44.3(2) 1.3799(3) - 4.072(8) 
0.02 23.3(2) 1.3738(4) - 3.84(1) 
0.03 16.2(2) 1.3677(4) - 3.70(1) 
0.04 12.6(2) 1.3616(5) - 3.60(2) 
0.05 10.4(2) 1.3556(6) - 3.53(2) 
0.06 9.0(2) 1.3496(7) - 3.45(2) 
0.07 7.9(2) 1.3437(8) - 3.39(2) 
0.08 7.1(2) 1.3378(8) - 3.34(3) 
0.09 6.4(2) 1.3321(9) - 3.30(3) 

0.10 5.9(2) 1.326(1) - 3.26(3) 
0.20 3.5(3) 1.277(3) - 2.98(4) 
0.30 2.7(2) 1.249(4) - 2.81(5) 
0.40 2.3(2) 1.248(5) - 2.71(7) 
0.50 2.0(2) 1.275(6) - 2.66(7) 
0.60 1.9(2) 1.330(7) - 2.65(8) 
0.70 1.8(2) 1.411(8) - 2.67(9) 
0.80 1,7(2) 1.520(9) - 2.72(9) 
0.90 1.6(2) 1.662(9) - 2,8(1) 
1.00 1.5(2) 1.87(1) - 3.0(1) 

The parameter X is defined in [1] and the errors are obtained by propagating the errors of the initial 
data at ~ = 0.95~c, where the integration of the renormalization group equations was started. 

p a r t i c u l a r ,  the  c o n s t a n t s  C i c an  be  c a l cu l a t ed  b y  f i rs t  i n t e g r a t i n g  the r e n o r m a l i z a t i o n  

g r o u p  e q u a t i o n s  (1.4.26)-(1.4.28) f r o m  m R = 0.5 d o w n  to  (say)  m R = 0.001 n u m e r i -  

ca l ly .  T h e n ,  fo r  st i l l  sma l l e r  va lues  of  m R, sca l ing  v io l a t i ons  in  /3, ~,, 8 a re  neg l ig ib le  

a n d  the  i n t e g r a t i o n  can  b e  ca r r i ed  on  a n a l y t i c a l l y  to  the  l imi t  m R ---, 0, whe re  the  

C i ' s  a r e  e x t r a c t e d  f r o m  the a s y m p t o t i c  b e h a v i o r  of  the  so lu t ion .  T h e  resu l t  of  this  

c a l c u l a t i o n  fo r  a se lec t ion  o f  va lues  of  ~ is s h o w n  in t a b l e  1. 

F o r  s m a l l  X the  c o n s t a n t s  Ci(X ) can  a lso  b e  ca l cu l a t ed  in  p e r t u r b a t i o n  theory .  F o r  

e x a m p l e ,  to  d e t e r m i n e  In C1 up  to  t e r m s  of  O(X) ,  we s t a r t  w i th  the  o n e - l o o p  f o r m u l a  

6X (6~.)2 3 
gR = .-5- + ._-ST ~ [In m ~  - 3.7920] + O( •3 ) ,  

/¢c /£c 
(4 .39)  

w h e r e  we h a v e  neg lec ted  sca l ing  v io l a t i o n s  (which  is p e r m i s s i b l e  for  m R ~ 0). 

I n s e r t i n g  th is  r e l a t i o n  in to  the  sca l ing  l aw (1.4.30) a n d  us ing  the sma l l  )t e x p a n s i o n  

o f  xc(X ) ( a p p e n d i x  C of  ref. [1]), t hen  y ie lds  

~2  17 
l n C 1 -  721t 27 In ?t + 1"1159 + O ( x ) "  (4 .40)  
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To the order stated, this expansion is exact. It reproduces the values of In C1 listed 
in table 1 within the quoted errors up to ~ = 0.2 and thus provides an excellent 
check of our calculations. We have also worked out the small ~, expansions of C 2 
and C 3 and found agreement with the data of table 1 (to the extent expected) in 
these cases too. 

5. Integration of the renormalization group equations 
in the broken symmetry phase 

We now proceed to calculate mR, gR, Z R  and Z~ as a function of K, X in the 
broken symmetry phase K > ~c- The idea is, first to use the scaling laws (3.6)-(3.9) 
and the known values of the integration constants C/(X) to determine these 
quantities very close to the critical line, where the corrections to the scaling laws are 
negligible. After that the larger values of r are reached by integrating the renormal- 
ization group equations (I.4.26)-(I.4.28) and (3.10) numerically using the 3-loop 
formulae for t ,  y, 8. Of course, we have to make sure that this approximation is 
valid in the range of integration and we therefore study this question first. 

5.1 THE TREE LEVEL UNITARITY BOUND AND THE APPLICABILITY OF RENORMALIZED 
PERTURBATION THEORY 

As in sect. 7 of [1], the tree level unitarity bound on gR is obtained from the 
requirement that the lowest order expression for the S-wave scattering matrix does 
not  violate unitarity in the elastic region. Due to the contribution of one-particle 

exchange diagrams, the bound 

gR Z 47 (5.1) 

derived in this way is somewhat lower than in the symmetric phase, but there is no 

qualitative difference. 
In general, the perturbation expansion of low energy quantities is rather well 

convergent when the bound (5.1) is satisfied. In case of the physical particle mass 

m = rn a (1 - 0.01465a R - 0.02739a~ + O (g 3 )  }, (5.2) 

a a = gR/161r 2 , (5.3) 

the higher order corrections are actually very small so that m = m R should be an 
excellent approximation*. For other quantities such as the 3-point coupling 

- m .  = = ~-oe R + , (5.4) 

* In eqs. (5.2)-(5.6) we have neglected scaling violations. 
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and the (amputated) full 4-point function 

3 /F(3,0 ) 2 
. (o,o,o)) 
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45~ _.1_ 45_2 O ( g 3 )  } = 8gR(1  + y ~ R  ~ U R +  (5.5) 

the perturbation expansion is however less well behaved, but the rate of convergence 
is about what one expects on the basis of (5.1). 

To one-loop order, the S-wave scattering length a 0 is given by 

gR (1 +4.5491a R + O ( g 2 ) } .  (5.6) 
a ° -  8~rme. 

Since a o is positive, the particle interactions at large distances are attractive and it is 
conceivable that bound states form when gR is sufficiently big. At the threshold 
value g~ of gR where this happens, the scattering length a 0 diverges and from eq. 
(5.6) we thus estimate 

g~ = 35 (5.7) 

(at this value of gR, the one-loop "correction" is equal to the first term in eq. (5.6)). 
Of course, this argumentation is extremely crude and eq. (5.7) can only be taken as a 
rough indication for the minimal coupling strength required for bound state 
formation. 

We finally remark that the expansions of the Callan-Symanzik coefficients/3, 3', 3 
up to 3-loops (appendix A) are rather well convergent in the range (5.1), at least it 
seems reasonable to apply these formulae for 0 ~ gR ~ 31, which will turn out to be 
the relevant domain in what follows. 

5.2 RENORMALIZATION GROUP TRAJECTORIES AND THE TRIVIALITY BOUND 

Following the steps sketched at the beginning of this section, we now integrate the 
renormalization group equations from the immediate neighborhood of the critical 
line up to m R = 0.5. For the Callan-Symanzik coefficients /3, "y, 3, we take the 
3-loop formulae with the exact lattice expressions for the tree level and l-loop 
coefficients (eqs. (A.1)-(A.6)). The results of this calculation, presented in table 2, 
show that the coupling gR at me. = 0.5 is monotonically increasing with ?~ and 
reaches a maximal value of about 31 in the Ising limit. For m R ~< 0.5, the coupling 
ge. is hence smaller than 2 of the tree level unitarity bound (5.1), in particular, the 
use of the 3-loop approximation for/3, "¢, 3 appears to be justified a posteriori. To 
sum up we have thus achieved an essentially complete solution of the q54 theory in 
the broken symmetry phase in a range of x, which includes the scaling region 
mR ~< 0.5. 
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TABLE 2 
Values of x, gR, Zrt, and Z~ versus ~, at m R = 0.5 as obtained by integrating the 

renormalization group equations starting from the critical line 

~ gR ZR Z~ 

0.01 0.1277(1) 1.197(6) 3.907(1) 0.0161(2) 
0.02 0.1285(2) 2.32(2) 3.878(1) 0.0164(2) 
0.03 0.1292(2) 3.37(4) 3.850(2) 0.0166(3) 
0.04 0.1299(2) 4.36(7) 3.821(2) 0.0168(4) 
0.05 0.1307(2) 5.3(1) 3.794(3) 0.0170(4) 
0.06 0.1314(2) 6.2(1) 3.767(3) 0.0173(5) 
0.07 0.1322(2) 7.0(2) 3.740(4) 0.0176(6) 
0.08 0.1329(2) 7.9(2) 3.714(4) 0.0178(6) 
0.09 0.1337(2) 8.6(3) 3.689(5) 0.0181(7) 

0.10 0.1344(2) 9.4(3) 3.664(5) 0.0183(8) 
0.20 0.1408(3) 15(1) 3.46(2) 0.021(1) 
0.30 0.1445(3) 20(1) 3.34(2) 0.022(2) 
0.40 0.1444(4) 23(2) 3.31(3) 0.024(2) 
0.50 0.1402(4) 25(2) 3.39(3) 0.024(2) 
0.60 0.1324(4) 27(2) 3.57(4) 0.024(3) 
0.70 0.1217(4) 28(3) 3.86(5) 0.023(3) 
0.80 0.1089(4) 29(3) 4.29(6) 0.022(3) 
0.90 0.0942(4) 30(3) 4.94(8) 0.020(3) 
1.00 0.0764(3) 31(3) 6.1(1) 0.017(2) 

To give an impression of how this solution looks and what the typical errors 
involved are, we have listed gR, ZR, ZR ° and ~ versus m R for three values of X in 
table 3. The similarity of these data lists with the corresponding ones in the 
symmetric phase (table 3 of ref. [1]) is striking, the only notable difference being the 
substantially smaller errors for r at ~ = 1 quoted here. The reason for this is that r 
is calculated differently in the two cases. Here we compute x - x c by integrating eq. 
(3.10) starting at the critical line and then add x c as determined from the high 
temperature expansion of the susceptability X2 (table 1 of [1]), while in the 
symmetric phase, we integrated the renormalization group equations starting at 
x = 0.95x c. Of course, the procedure applied in the broken symmetry phase works as 
well in the symmetric phase and in this way, the errors quoted for x in table 3 of [1] 
could actually be reduced to the level reported here. 

In order to have some sort of quantitative check on the applicability of perturba- 
tion theory for the renormalization group functions t ,  "/, 8, we have repeated our 
calculations using the 2-loop instead of the 3-loop expressions. The result was that 
no significant change would be implied in table 3 by this substitution except for gR 
at ~ = 1, although even in this case the data agreed within the combined error 
m a r g i n s .  

The flow of the renormalization group trajectories in the scaling region is 
displayed in fig. 2. While the shape of the curves is similar in both phases, the 
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TABLE 3 
Results from the solution of the renormalization group equations in the broken symmetry phase at 

~, = 0.01, 0.10 and 1.00 
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~. m R gR ZR Z~ ~; 

0.01 0.50 1.197(6) 3.907(1) 0.0161(2) 0.1277(1) 
0.40 1.202(6) 3.929(1) 0.0161(2) 0.1270(1) 
0.30 1.204(6) 3.946(1) 0.0160(2) 0.1264(1) 
0.20 1.199(5) 3.959(1) 0.0160(2) 0.1260(1) 
0.10 1.184(5) 3.966(1) 0.0161(2) 0.1258(1) 
0.09 1.181(5) 3.967(1) 0.0161(2) 0.1258(1) 
0.08 1.178(5) 3.967(1) 0.0161(2) 0.1258(1) 
0.07 1.175(5) 3.968(1) 0.0161(2) 0.1258(1) 
0.06 1.171(5) 3.968(1) 0.0161(2) 0.1258(1) 
0.05 1.167(5) 3.968(1) 0.0162(2) 0.1257(1) 
0.04 1.161(5) 3.968(1) 0.0162(2) 0.1257(1) 
0.03 1.154(5) 3.969(1) 0.0162(2) 0.1257(1) 
0.02 1.144(5) 3.969(1) 0.0163(2) 0.1257(1) 
0.01 1.127(5) 3.969(1) 0.0163(2) 0.1257(1) 

0.10 0.50 9.4(3) 3.664(5) 0.0183(8) 0.1344(2) 
0.40 9.1(3) 3.685(5) 0.0184(8) 0.1336(2) 
0.30 8.7(3) 3.702(5) 0.0186(8) 0.1330(2) 
0.20 8.1(2) 3.715(5) 0.0190(8) 0.1326(1) 
0.10 7.4(2) 3.726(5) 0.0195(8) 0.1323(1) 
0.09 7.3(2) 3.727(5) 0.0196(8) 0.1323(1) 
0.08 7.2(2) 3.728(5) 0.0197(8) 0.1323(1) 
0.07 7.1(2) 3.730(5) 0.0198(8) 0.1323(1) 
0.06 6.9(2) 3.731(5) 0.0200(8) 0.1323(1) 
0.05 6.8(2) 3.732(5) 0.0201(8) 0.1323(1) 
0.04 6.6(2) 3.733(5) 0.0203(8) 0.1323(1) 
0.03 6.4(1) 3.734(5) 0.0205(8) 0.1323(1) 
0.02 6.1(1) 3.736(4) 0.0209(8) 0.1322(1) 
0.01 5.7(1) 3.739(4) 0.0214(8) 0.1322(1) 

1.00 0.50 31(3) 6.1(1) 0.017(2) 0.0764(3) 
0.40 27(2) 6.12(9) 0.017(2) 0.0759(2) 
0.30 24(2) 6.18(9) 0.018(2) 0.0754(2) 
0.20 20(1) 6.24(8) 0.019(2) 0.0751(1) 
0.10 16.4(9) 6.30(7) 0.020(2) 0.07485(9) 
0.09 16.0(8) 6.31(7) 0.020(2) 0.07483(8) 
0.08 15.5(8) 6.32(7) 0.020(2) 0.07481(8) 
0.07 15.0(7) 6.32(7) 0.020(2) 0.07480(8) 
0.06 14.4(7) 6.33(7) 0.021(2) 0.07479(8) 
0.05 13.8(6) 6.34(7) 0.021(2) 0.07478(8) 
0.04 13.1(6) 6.35(7) 0.021(2) 0.07477(8) 
0.03 12.3(5) 6.35(7) 0.022(2) 0.07476(8) 
0.02 11.4(4) 6.37(7) 0.022(3) 0.07476(8) 
0.01 10.0(3) 6.38(7) 0.023(3) 0.07476(7) 
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Fig. 2. Quantitative drawing of the renormalization group trajectories (curves of constant coupling gR) 
in the plane of bare parameters for gR = 10, 15, 20 and 25. The top and bottom of the diagram 
correspond approximately to m R = 0.5 and arrows are in the direction of decreasing m R (increasing 

ultra-violet cutoff in other words). 

interval of x corresponding to m R _< 0.5 is roughly a factor 3 smaller in the broken 
symmetry  phase than in the symmetric phase. This difference essentially originates 
in the fact that the coefficient e in the renormalization group equation (3.10), which 

describes the evolution of x as a function of m R, is differently related to fl, 7, 8 in 
the two phases. 

As shown in fig. 2, the maximal value of the cutoff A in units of m R at fixed gR 
is attained in the Ising limit X = 1. This observation together with the data listed in 

table 3 leads to the triviality bound plotted in fig. 3, where instead of the coupling 

gR, we have taken m R / V  R a s  the independent variable, because in the context of 
the Higgs model, this quantity has a more direct physical significance (recall 
gR = 3m 2 / v 2  in our renormalization scheme). A striking feature of fig. 3 is that the 

upper  bound on the cutoff is very rapidly rising when m R / O  R decreases from 3 to 2. 
For  example, if we assume the standard model value v R = 250 GeV for the purpose 
of illustration, a mass m R = 750 GeV would imply A ~< 1.9(2) TeV, whereas for 
m R = 500 GeV the maximal allowed value of A would be as high as 19(3) TeV. 

6. Conclusions 

The most conspicuous result of our analysis of the one-component lattice ~4 

theory in the broken symmetry phase is that, concerning the scaling behaviour, there 
is practically no difference to what happens in the symmetric phase [1]. In 
particular, as soon as the ultra-violet cutoff A is larger than two times the physical 
particle mass, the renormalized coupling gp. cannot exceed a maximal value of 
about  2 of the tree level unitarity bound and renormalized perturbation theory 
should hence give an essentially correct description of the particle interactions at 

low energies. 
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Fig. 3. Maximal value of the ultra-violet cutoff A in units of m R for given mR/O R (OR: renormalized 
vacuum expectation value of the field q0. The size of the estimated errors as quoted in table 3 is 

indicated at two representative points. 

F rom the triviality bound shown in fig. 3, one obtains an upper bound 

m R ~< 3.20 R (6.1) 

on the particle mass mR, if one requires A >~ 2m R. Since we have only considered 
the one-component  model in this paper, we cannot assign any immediate physical 
significance to this bound, but it is nevertheless interesting to see what it would 
imply in the context of the standard model. There m R would be the Higgs particle 
mass rn H and the vacuum expectation value v R would be related to the W boson 

mass m w through v R = 3m w. Thus, eq. (6.1) amounts to m H _< 9.6m w, which is 
actually rather close to the bounds obtained recently in Monte Carlo studies of the 
lattice SU(2) Higgs model [8-10] and those derived earlier on the basis of certain 

theoretical or phenomenological assumptions (re/. [11] and references quoted there). 
In the scaling region A >/2mR, the maximal possible value of gR is only slightly 

lower than our estimate eq. (5.7) of the minimal coupling g~ which is required for 
bound state formation. We therefore cannot exclude the existence of bound state 

particles for (say) A ~ 10m R and large bare coupling )t, but it is quite clear that for 
all A >~ 2mR, bound state formation is marginal and the binding energies should be 
rather small. 

Although our analysis did not involve any unjustified approximations, it would 
nevertheless be very important to check our results by a large scale numerical 
simulation similar to the one already performed in the symmetric phase [2], because 
we cannot be absolutely sure that the (weak) qualitative assumptions that we made 
along the way (for example, that the renormalized perturbation theory is applicable 
when gR is small) are in fact true. As discussed in subsect. 5.2, the whole scaling 
region A >~ 2m R is squeezed into the interval ~c < K _< 1.015K c so that in such a 
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simulation ~ must be tuned on an even finer scale than is already necessary in the 
symmetric phase. Also, compared to the symmetric phase, finite size effects are 
expected to be significantly enhanced. One of the reasons for this is that in finite 
volume there exists a slow mode, which is associated with fluctuations of the total 
"magnetizat ion" of the system between the classically degenerate ground states 
[12,13]. Another source for finite size effects are one-particle exchange processes 
"a round  the world" [14,15]. In the broken symmetry phase, these make a rather 
large contribution to the volume dependence of the particle mass, because the 
leading ("pole")  term in the mass shift formula of refs. [14,15] does not vanish in 
this case. Finally, we note that for given m R and gR, the scattering length a 0 in the 
broken symmetry phase is at least 4 times as big as in the symmetric phase so that 
the finite size shift of the lowest two-particle energy level will also be enhanced by 
about this factor [2,16] (in this calculation additional difficulties must be expected 
when bound states exist). 

The solution of the 0 4 theory in the broken symmetry phase presented in this 
paper is based on the observation that the scaling properties in the two phases of the 

model are related in a one-to-one fashion through a set of (computable) linear 
relations. We expect the same is true for any "trivial" field theory irrespective of 
whether there are Goldstone particles, gauge fields or other complications. In 
particular, our methods should apply straightforwardly to the 4-component 0 4 
theory and thus we hope to come back to this physically more interesting case in the 
near future [17]. 

Appendix A 

PERTURBATION EXPANSION OF THE CALLAN-SYMANZIK COEFFICIENTS/~, 7 AND 8 IN 
THE BROKEN SYMMETRY PHASE 

The method of calculation is exactly the same as in the symmetric phase 
(appendix A of ref. [1]) so that here we merely quote the results. The universal 
coefficients /~, ~,~, and 8~ as defined through eqs. (I.A.1)-(I.A.3) are given up to 
three loops in table 4. For the full mR-dependent coefficients u~, v~ and w~ (eqs. 

TABLE 4 
Perturbation expansion coefficients for/~, 7, and 8 in the broken symmetry phase 

u (16~2)"~ ( 1 6 ~ 2 ) ~  (16~2)"~ 

1 3 0 - 1  
2 - 1 7 / 3  7/24 13/12 
3 14.715616 1.1224089 0.13543414 
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TABLE 5 

Coef f i c i en t s  in  the C h e b y s h e v  e x p a n s i o n  (I.B.9) o f  the in tegra l  ,/4 
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1/ c4. n 

0 1 .0159974 

1 0 .0211666 

2 0 .0034174 

3 - 0 .0030079 

4 - 0 .0012099 

5 0 .0001196 

6 0 .0000626 

7 - 0 .0000110 

8 - 0.0OOO004 

(I.A.4)-(I.A.6)), we have up to one loop 

4m2 (A.1) 
u °  = 1 6  - m 2 ' 

tA 1 
Uo 3 2 (256_48m 2 +  2mR)J3(mR) 1 6 - - m ~  {Jl(mR)+(32--TmR)J2(mR)+ 7 4 

+3m2R(16--m2R)(8+m2)J4(mR)}, (A.2) 

m~t (A.3) 
v° 16 - m 2 ' 

01 
o o 

16 - -m 2 { J l (mR) + 8J2(mR) - (128 - 2ma)J3(mR) 

+ 3m 2 (16 - m~t)(8 + m~)J4(mR) } , (A.4) 

2m2 (A.5) 
w° - 16 - m 2 ' 

Wo 1 2 (8 - 5ml~ + ~mR)Jz(mR) w l -  16--m~t ((l_~mR)Jl(mR) + 1 4 

- - (128- -m 4 + ~ m 6 ) J 3 ( m R ) - 3 m ~ t ( 1 6 - m 2 ) ( 8 + m ~ ) J a ( m R )  }. (A.6) 

The integrals Jp(#) in these equations are the same as in [1] (eq. (I.A.13) and 
appendix B). An accurate numerical representation, using Chebyshev polynomials, 
was given there for J1, ,/2, and J3 in the range 0 </* ~< 1. This representation (eq. 
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(I.B.9)) is also valid for J4 to a relative accuracy of better than 10 -6, if we choose 
N = 8 and insert the values listed in table 5 for the coefficients c4, n. 
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