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A transformation is investigated that mixes quarks with composites of N -  1 antiquarks in a gauge-invariant way for QCD with 
gauge group SU(N). An infinite family of identities among fermionic Green functions is derived in the form of a generating 
functional. 

A popular  choice for the lat t ice d iscre t iza t ion of  
eucl idean fermions is the staggered act ion [ 1 ] 

s= Z r~(x)[ ¢( x) U~(x)v/(x + u) 
x~t 

- ~ (x+l~)  U*u(x) ~ ( x ) ]  + m ~  ~ ( x )  ~ ( x )  
x 

=." • ( ~ ,  + m ~ u )  , 
. v  

(1) 

t ransform as a triplet.  This becomes manifest  i f  we 
int roduce a field ~1 X ~ ( x )  with a new index a =  1,2 

) ~ l ( x ) = ~ a b ~ b ( X ) ,  )~2(X)=~I/a(X).  (4)  

An easy rearrangement  of  terms shows that  (1) reads 
in terms o f z ~  ( N = 2 )  

s= Y F~(x) [ ~ U~ (x)] a b d  Z~(X)Zg(x + ~) 
X~t 

where F u ( x )  are the s tandard  phase factors stem- 
ming from the Dirac  matrices,  and  Uu(x) is an ar- 
b i t rary  S U ( N )  Wilson type gauge field. F rom the 
Grassmann  fields ~u, ~7 we form the local 
( an t i )ba ryon  and meson composi tes  

B ( x )  = (1/N!)E ........ ~ , ,  (x)...~t,,,.(x) , 

/~(x) = (1/X!) e ....... ~ , ,  (x ) . . .~ , ,  ( x ) ,  

M ( x )  = q / , ( x ) ~ , ( x )  . 

(2) 

(3) 

m 
(5) 

where r is a Pauli  matrix.  Clearly, for m = 0, S is in- 
var iant  under  a global S U ( 2 )  acting on a ,  i.e., mix- 
ing ~' and ~. Such a mixing also occurs as the 
analogue o f  Bogoliubov t ransformat ions  [ 3 ], i f  the 
BCS model  par t i t ion  function is formula ted  as a 
Grassmann  functional  integral over  non-relat ivis t ic  
fe rmion fields [ 4].  The baryon and meson fields as- 
sume the form 

In (2)  and (3)  we exhibit  the color index a , =  1,...,N, 
which is the only index carried by ~u, ~7 and E ........ is 
the S U ( N ) - i n v a r i a n t  an t i symmet r ic  symbol.  It is 
known [2] that  for N =  2 mesons and baryons  "are  
the same".  This  case is popular ,  because the formi-  
dable numerical  p roblem of  incorpora t ing  fermions  
is somewhat  amel iora ted  as compared  to the phys- 
ical value N =  3. A more  precise s ta tement  is that  for 
N = 2  and vanishing mass in (1) there is an addi-  
t ional global SU(2 )  symmetry  under  which (B,/~, M )  

t'(x) = ½ (~)  ~/~ eobZ~(x)zg(x) 

= ( B ( x ) + B ( x ) , i ( B ( x ) - B ( x ) ) , M ( x ) )  . (6)  

We see that  for N =  2 a mass term is s imilar  to an ex- 
ternal  field "magnet iz ing"  P in a fixed direction,  and  
fermion number  is the left-over symmetry  o f  rota- 
t ions a round  that  axis. 

~ For euclidean fermions ~u and q) are independent integration 
variables. 
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in this letter we discuss consequences o f  the pos- 
sibility to mix ~u and ~ in a gauge-invariant way also 
for N ~  3. To that end we consider a transformation 

~u~ ~ ~t'~ = ~,~ + a~%, ¢ ~ ¢ ' ~ = q ~ , + a ¢ ~ ,  (7) 

with 

~o~ = [ I / ( N -  1 ) ! ]  e . . . . . . . . . . . .  gT~.,._, . . .q / , ,  , 

~ = [ 1 / ( N - 1 ) ! I ¢  ............ ~%...~, ...... . (8) 

The parameters a,  a are (an t i )commut ing  scalars if 
N is even (odd) .  Note, that we always mix odd 
Grassmann numbers, and that (7) is a gauge-co- 
variant equation. For N = 2  the fermion number  
phase group together with (7) compose the extra 
SU(2)  symmetry % For N >  2, however, the kinetic 
term varies under (7),  and also the jacobian of  the 
transformation has to be worked out as (7) is non- 
linear. The variations of  gauge-invariant composites 
are as follows 

M ~ M + N ( B a + 6 ~ B )  + [6~a~(N - 1 ) ! ] ( - M )  ~-1 , 

B ~ B + [ o d ( N - 1 ) ! ] ( - M )  N L--3N,2a2B, 

B ~ B + [ a / ( N - I ) ! ] ( - M )  N-' --(~N,2aZB (9) 

and 

S-,S+S,+So~+So~¢, , (10) 

with 

v v 

S,  = ~ ~z~q/ + m X Z  ~xB , 
• x 

m 
S , ,  = Va04(0c~ q- ,- ( N _  1 ) ! ~ a a (  - ~ t ) N - '  (11) 

The possibility of  non-linear changes of  variables 
in Grassmann integrals has already been mentioned 
in ref. [ 5 ] and presented in detail in ref. [ 6 ]. For our 
purpose it is adequate to consider a generic integral 
over an n-dimensional Grassmann algebra, 

l=  f dn, . . .dq,f(n) , (12) 

~2 This is strictl,, true for infinitesimal a, ~; otherwise the field 
has to be rescaled trivially to define a proper SU(2) mixing. 

and a "general coordinate transformation",  

~,, -~ q;,(~). ( 1 3 )  

Here tl~ is assumed to be odd, i.e., even monomials  
in the expansion of  rg have c-number coefficients, 
and odd ones, if they occur, have ant icommuting 
coefficients. Moreover we want (13) to be invertible 
as a power series, which is the case if its linear part 
0~g/0r/p I,=0 is a non-singular c-number matrix. Then 
it follows from results in ref. [ 6] that 

f dr h . . .dq,f(r / )= f d~h ...dq, det ( Otl'J Otb ) - ~ f(  tl' ) (14 ) 

holds. As in the linear case the only difference as 
compared to ordinary integrals is the exponent of  the 
jacobian determinant. Note that only even Grass- 
mann elements appear under det( ) -  ~ which can be 
defined purely algebraically. Also, left and right dif- 
ferentiation [5] give the same matrix elements. For  
transformation (7) the resulting jacobian is given by 

, ~ .  . (o(~ , ' (x ) ,  ¢ ' ( x ) ) ) - '  
exp(Sj)  =1 l a e u  - -  

., k o(~,(x), ~(x) )  

= 1-[(1 +02a) -2 for N = 2 ,  
x 

= l ~ l  - 2 [ ~ c ~ / ( N -  2)! ]( _ ~ )  N-2 
x 

for N >  2 ,  (15) 

and thus for the non-trivial cases N >  3 

Sj= ~{_Z[6~a/(N_Z)!](_~p~/)N 2 
x 

+6x,4 ½ ( a a ) z ( ~ q / )  4 }, (16) 

where the nilpotency properties (~V) x+~ = 0  and 
(c~a) 2 = 0 for N =  odd have been used. Note that for 
the physical case N =  3 the chiral condensate appears 
in (16). I f  we now combine our results it can been 
shown that 

yDq/Dq~ exp(S) 

= f D ~ u D t p e x p ( S + S ~ + S a + S . ~ + S j )  (17) 

o r  

( e x p ( S .  +Sa + S . .  +Sj )  > = 1 . (18) 

Differentiation of  the RHS of  (18) with respect to 
the general x-dependent c~, & produces gauge-invar- 
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iant  identit ies.  Since we worked with an arbi t rary  
background gauge field they hold for both  dynamica l  
and quenched staggered fermions.  One example  o f  
an ident i ty  following from (18) (order  c~oL at one 
site) is 

( [ ( ~ ) ( x ) q ~ ( x )  + m N B ( x ) ]  

× [~o(x)(Ib~,)(x) + m N B ( x ) ]  

- [ m / ( N -  1 ) ! ] [~g t (x ) ]  u-~ 

- [ 2 / ( N - 2 ) ! ] [ ~ g t ( x ) ]  x -2  ) 

= 0 ,  (19) 

with B , /?  sources. Thus the notorious negative weight 

p roblem for fermions reappears  and renders tile Bo- 

gol iubov t ransformed version of  staggered fermions 

useless for Monte  Carlo s imulat ion by the d imer  
method.  Nevertheless,  we thought that  the applica-  

t ion of  non-l inear  changes of  Grassmann  variables is 

of  interest,  and that  identi t ies  conta ined in (18) may 

be useful in other contexts. 

The author  would like to thank the DESY theory 

group for their  hospitali ty.  

or  for m = 0 and N =  3 

2(~u~,(x) ) = ( (~ (x ) (x )~o(x )O(x) ({b~ , ) (x ) ) .  (20)  

Such a relat ion could in pr inciple  be used or  mon-  
i tored in numerical  s imulat ions.  Clearly, (20)  is eas- 
ily checked in terms of  Feynman  diagrams,  but  the 
Bogoliubov t ransformat ion  systematical ly  produces  
an infini te family o f  such gauge-invariant  identit ies.  

One of  the original mot iva t ions  to develop gen- 
eral ized Bogoliubov t ransformat ions  for staggered 
fermions was related to the d imer  s imula t ion  of  bar- 
yons at strong coupling [7] .  These sources conjugate 
to B, /~ had to be in t roduced to run the algori thm, 
and then they had to be numerical ly  ext rapola ted  to 
zero strength. A t ransformat ion  with o~, o~ constant  
and non-zero ( N =  2 or  4) produces  the source terms 
automat ica l ly  without  changing the physics. A closer 
inspect ion o f  the new terms in (11 ) and (16) re- 
vealed, however,  that  it is unavoidable  to produce  
new negative ampl i tudes  in the d imer  model  along 
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