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A transformation is investigated that mixes quarks with composites of N— 1 antiquarks in a gauge-invariant way for QCD with
gauge group SU(N). An infinite family of identities among fermionic Green functions is derived in the form of a generating

functional.

A popular choice for the lattice discretization of
euclidean fermions is the staggered action [1]

S= _ZH(X)[W(X) U.(x)y(x+u)
—@(x+ ) UL () w(x)] +mE g (x)w(x)

= (Why +myy) , (1

where I',(x) are the standard phase factors stem-
ming from the Dirac matrices, and U,(x) is an ar-
bitrary SU(N) Wilson type gauge field. From the
Grassmann fields y, @ we form the local
(anti)baryon and meson composites

B(x)=(1/NY)e, anWo (X))o on(X)
B(x)= (1N ey anWan(X).tf (X)), (2)
M(x) =y, (X)w.(x) . (3)

In (2) and (3) we exhibit the color index a,=1,...,N,
which is the only index carried by v, 7 and ¢,, ,, is
the SU(N)-invariant antisymmetric symbol. It is
known [2] that for N=2 mesons and baryons “‘are
the same™. This case is popular, because the formi-
dable numerical problem of incorporating fermions
is somewhat ameliorated as compared to the phys-
ical value N=3. A more precise statement is that for
N=2 and vanishing mass in (1) there is an addi-
tional global SU(2) symmetry under which (B, B, M)

transform as a triplet. This becomes manifest if we
introduce a field #' y%(x) with a new index a=1,2

Xa(X)=€aWs(X), Xi(X)=W.(x). (4)

An easy rearrangement of terms shows that (1) reads
in terms of y§ (N=2)

S=Y T (x)[ €U (X)) ane® x5 (x) x5 (x+u)

m
+_2‘Zeab‘[?ﬁxg(x)xg(x) » (5)

where 7 is a Pault matrix. Clearly, for m=0, S is in-
variant under a global SU(2) acting on «, i.e., mix-
ing ¥ and ¥. Such a mixing also occurs as the
analogue of Bogoliubov transformations [3], if the
BCS model partition function is formulated as a
Grassmann functional integral over non-relativistic
fermion fields [4]. The baryon and meson fields as-
sume the form

P(x) =13 (e7) €25 (x) x4 (x)
=(B(x)+B(x),1(B(x)=B(x)), M(x)) . (6)

We see that for N=2 a mass term is similar to an ex-
ternal field “magnetizing” P in a fixed direction, and
fermion number is the left-over symmetry of rota-
tions around that axis.

# For euclidean fermions y and ¥ are independent integration
variables.
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in this letter we discuss consequences of the pos-
sibility to mix y and ¥ in a gauge-invariant way also
for Nz 3. To that end we consider a transformation

VanrWa=Wot a9, , Y,>W,=¥,tag,, (7)
with

Pa=[1V(N=1)T€s an_iaWar_Va >
Pa=[1V(N=1)€u anraWar-War_, - (8)

The parameters «, & are (anti)commuting scalars if
N is even (odd). Note, that we always mix odd
Grassmann numbers, and that (7) is a gauge-co-
variant equation. For N=2 the fermion number
phase group together with (7) compose the extra
SU(2) symmetry **>. For N> 2, however, the kinetic
term varies under (7), and also the jacobian of the
transformation has to be worked out as (7) is non-
linear. The variations of gauge-invariant composites
are as follows

Mo>M+N(Ba+aB)+[aa (N —131](=M)M-",

BoB+[a/(N= I (=M) ' —65, 0B,

BoB+[a/(N=IN(-M)N"' =8py,a’B (9)
and
SoS+Sy+Sz+Ssa » (10)
with

So=Ywhpa+mNy Ba,

Se=> agAy+mN} aB,

oAt

Saa =S aglhpa+

The possibility of non-linear changes of variables
in Grassmann integrals has already been mentioned
in ref. [ 5] and presented in detail in ref. [6]. For our
purpose it is adequate to consider a generic integral
over an n-dimensional Grassmann algebra,

1= [an.an.fn) . (12)

2 This is strictly true for infinitesimal «, @; otherwise the field
has to be rescaled trivially to define a proper SU(2) mixing.
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and a “‘general coordinate transformation”,

N —Mu() - (13)

Here 7, is assumed to be odd, i.e., even monomials
in the expansion of 7, have c-number coefficients,
and odd ones, if they occur, have anticommuting
coefticients. Moreover we want (13) to be invertible
as a power series, which is the case if its linear part
on,/9n, | ;o is a non-singular c-number matrix. Then
it follows from results in ref. [6] that

[an.an, fim = [, .., dexcamsom) = 100y 14

holds. As in the linear case the only difference as
compared to ordinary integrals is the exponent of the
jacobian determinant. Note that only even Grass-
mann elements appear under det( ) ~' which can be
defined purely algebraically. Also, left and right dif-
ferentiation [5] give the same matrix elements. For
transformation (7) the resulting jacobian is given by

Ay’ (x), W’(x))>"
Iw(x), w(x))

=[[0+a&a)? forN=2,

exp(S)) =Hdet<

=H1 =2[Ga/(N=-2M W —wy)"~2

for N> 2, (15)
and thus for the non-trivial cases N> 3

S =Z{—2[o’za/(N_2)!](_V;y,)N,z

+onaz(aa)*(gy)'}, (16)

where the nilpotency properties (@) ¥*!'=0 and
(@a)? =0 for N=o0dd have been used. Note that for
the physical case N =13 the chiral condensate appears
in (16). If we now combine our results it can been
shown that

JDW Dy exp(S)

=JD!// Dy exp(S+S,+Sa +Sax +5)) (17)
or
(exp(Sy+Sg+Se+S)>=1. (18)

Differentiation of the RHS of (18) with respect to
the general x-dependent «, & produces gauge-invar-



Volume 199, number 2

1ant identities. Since we worked with an arbitrary
background gauge field they hold for both dynamical
and quenched staggered fermions. One example of
an identity following from (18) (order &« at one
site) is

() p(x) +mNB(x)]
X[9(x)(4w)(x) + mNB(x)]
~ [m/(N=-D)1[gy()]¥!
=[2/(N=D)1[gw()]**)
=0, (19)

or for m=0 and N=3

2wy (x) ) = (W) (x)p(x)p(x) (Ay)(x)>.  (20)

Such a relation could in principle be used or mon-
itored in numerical simulations. Clearly, (20) is eas-
ily checked in terms of Feynman diagrams, but the
Bogoliubov transformation systematically produces
an infinite family of such gauge-invariant identities.

One of the original motivations to develop gen-
eralized Bogoliubov transformations for staggered
fermions was related to the dimer simulation of bar-
yons at strong coupling [ 7]. These sources conjugate
to B, B had to be introduced to run the algorithm,
and then they had to be numerically extrapolated to
zero strength. A transformation with «, & constant
and non-zero (N=2 or 4) produces the source terms
automatically without changing the physics. A closer
inspection of the new terms in (11) and (16) re-
vealed, however, that it is unavoidable to produce
new negative amplitudes in the dimer model along
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with B, B sources. Thus the notorious negative weight
problem for fermions reappears and renders the Bo-
goliubov transformed version of staggered fermions
useless for Monte Carlo simulation by the dimer
method. Nevertheless, we thought that the applica-
tion of non-linear changes of Grassmann variables is
of interest, and that identities contained in (18) may
be useful in other contexts.

The author would like to thank the DESY theory
group for their hospitality.
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