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The recently proposed formulation of lattice field theory as a percolation process is tested 
numerically in the 0(3) o-model. Its spins decompose into fluctuating clusters similar to Fisher 
droplets which are rotated as a whole. The autocorrelation time of the algorithm is reduced by a 
factor - 2 only. The information residing in the clusters is used to define improved estimators for 
physical quantities. They are found to allow measurements of large-distance correlations with 
considerably higher accuracy as compared to a standard simulation. 

1. Introduction 

Monte  Carlo  simulation on computers  has become a s tandard tool to extract 
in format ion  f rom models in statistical mechanics and field theory. Most  physically 

interesting features of  these models are related to their long-range collective behav- 

ior which can be accurately calculated analytically in exceptional cases only. Since 

the s imulat ion is always (much too) finite we have to introduce cutoffs wherever 

nature  is truly or effectively infinite. In field theory the introduction of  a finite 

volume together  with a finite resolution in the form of a non-zero lattice spacing are 
prerequisites for a numerical simulation. Since in our present understanding these 

scales are artifical rather than constants of  nature, observable results have to be 
insensitive to their values once the cutoffs are remote f rom physical scales. F rom the 

statistical mechanics  point  of  view one is thus required to work with large correla- 

t ion lengths which are still small compared  to the linear system dimension. This 
clearly calls for large lattices. If  one is able to increase the lattice size - for instance 

by the advent  of  a new computer  generation - one may either expand the simulated 
volume or  shrink the lattice spacing. 

Grea t  progress has been made in understanding the approach to the infinite- 
vo lume limit [1]. The asymptotic  dependence on the volume of an underlying torus 

can be extrapolated with good confidence and even be used to obtain informat ion 

about  scattering. For  the lifting of  the ultraviolet-cutoff universality and the 
renormal iza t ion  group [2] provide an unders tanding and a parametrization.  This, 
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however, seems to be a more problematical limit at present. Even in asymptotically 
free theories, where the asymptotic dependence on the lattice spacing is supposed to 
be known and no critical exponents have to be fitted, it is still to some degree 
controversial when and where scaling sets in. Consequently, one may want to use 
larger lattices mainly to reduce the lattice spacing, i.e. get closer to criticality. The 
additional problem of critical slowing down [3] has then to be faced. Clearly the 
computing time for one pass through the lattice is proportional to the number of 
degrees of freedom. In the critical region, estimates for observables derived from 
successive configurations produced with standard local algorithms become more 
and more statistically dependent. The computer time needed to measure a quantity 
to a given accuracy then grows with a higher power of the lattice size. Physically the 
reason is that the long wavelength fluctuations are inefficiently sampled by the local 
updates. Improved behavior in this respect can only [4] be hoped for if we design 
algorithms performing collective moves of many variables. Previous attempts aiming 
in this direction are Fourier acceleration [5, 6] and multigrid methods [7]. 

Recently, Swendsen and Wang (SW) [8] have put forward an amazingly efficient 
algorithm for models involving Potts spins. It is based on the numerical exploitation 
of an alternative but equivalent representation of the model by Fortuin and 
Kasteleyn (FK) [9] which is closely related to percolation theory. In this article we 
explore a generalization of this method to arbitrary and, in particular, to continuous 
fields. 

The paper is organized as follows. In sect. 2 we review the FK-representation in a 
form also useful for non-Potts models. In sect. 3 a microcanonical variant of the 
SW-algorithm is constructed and briefly tested in the Ising model. This is followed 
in sect 4. by the report of extensive numerical studies for the asymptotically free 
0(3) o-model in two dimensions. Finally, sect. 5 contains conclusions and open 
questions. 

2. Dynamical dilution 

The method of introducing additional two-valued bond variables as dynamical 
fields (annealed summation) in spin models has already been briefly introduced in 
[10]. Here we start with a rather general lattice system with dynamical variables %, 
where r are sites, links or even higher dimensional objects. A number of them 
interact locally on bonds b (links, plaquettes, etc.). The partition function of such a 
system is given by 

z = f l-J d (qor)exp( sb(%)). (2.1) 

Both the integration measure d/~(%) and the one-bond action Sb(~gr) determine the 
invariance properties, and each s b depends only on the % connected by bond 
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b (r  ~ b). By the introduction of a dynamical field ks,  with values 0 and 1 on the 
bonds, a new and in general different model results, with partition function 

g= ~] f~d~(%)exp{~;%[~+sb(%)]}. 
{kb=0,1 } b 

(2.2) 

A chemical potential r for bonds has been included as a free parameter, and for 
--* oo the bonds will freeze to  k b = 1, bringing us back to the original model up to 

a trivial normafization factor. Of course we are interested in new members of the 
family of models (2.2) with r < ~ .  Then, for a typical given configuration { k b }, the 
model is diluted as part of the interaction bonds is absent. The variables % may be 
grouped into a maximal number of N C independent clusters c such that there are no 
active bonds ( k  b = 1) between % in different clusters. A consequence is that each 
cluster enjoys the symmetry of the whole system (global spin rotations, gauge 
invariance) independently. The number and shape of clusters is a complicated 
function of the bond variables, and fluctuates. Nevertheless, at least for standard 
cases like bonds on links corresponding to nearest-neighbor spin models, algorithms 
[11] are known from percolation theory that identify clusters very efficiently. In 
particular, the time to do so grows only linearly with the volume. Explicit knowledge 
of the clusters may then be used to perform large collective moves along constant- 
action surfaces in the simulation of eq. (2.2); each cluster is moved as a whole by a 
randomly chosen member of the symmetry group. Such moves, interspersed between 
standard update sweeps on { kb, ¢Pr }, may very well result in an improved algorithm 
at reasonable cost in computer time. Let us now think of s b as an action of 
ferromagnetic character, which is maximal for configurations like aligned spins or 
pure gauges. Then eq. (2.2) shows a tendency to have active bonds between aligned 
variables and vice versa. Clearly the clusters will bear at least qualitative resemb- 
lance with Fisher droplets [12]. 

We now discuss what kind of system actually has resulted from introducing the 
bond variables in eq. (2.2). Although we plan to numerically simulate the joint 
distribution ( kb, % } we may also perform the kb-summation exactly, producing an 
effective action gb(%) 

~b(%) = log[(1 + e~+~b(~A)/(1 + e~)]. (2.3) 

Here, the irrelevant constants in s b, gb have been fixed by demanding them to 
vanish for classical configurations of maximal Boltzmann weight denoted by % -  1 

sb( % =  1) = 0 = g b ( % =  1). (2.4) 

The new action is trivially of the same geometrical structure (nearest neighbor, 
one-plaquette etc.) as the original. Also, if s b is ferromagnetic, so is Sb, but the 
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suppression of non-aligned configurations has become weaker since 

ds b 
0 < = (1 + e - ~ - ' h ) - '  < 1. (2.5) 

ds a 

Obviously ferromagnetism has weakened as each bond is active only "par t  of the 
time" for K < ~ .  

The simplest cases with regard to the transformation (2.3) are q-state Potts 
models. Their bond actions are only capable of two different values S b ( % )  

(0,-- K } for any configuration of the q-valued %. Then gb is a Potts action, too, 
with 

- K =  log[(1 + e " - K ) / ( 1  + e ' ) ] .  (2.6) 

Each Potts theory of fixed K is exactly equivalent to a one-parameter family of 
dynamically diluted models. Its extremal member at K = oo, K = log(e R -  1) corre- 
sponds to the FK-representation used by SW. The %-integration in eq. (2.2) then 
degenerates to counting the number of %-confignrations that saturate all bonds by 
s b ( % )  = 0. In the simple nearest-neighbor Potts-spin model all spins have to be 
parallel and equal to one of the q possible values, thus entailing the weight factor 
q u, [9]. Although the terminology is somewhat different, SW [8] effectively simulate 
the joint distribution of (k  b, %} at K =  oo. For the critical Ising model in two 
dimensions they find an energy autocorrelation time, , ,  growing as r 0c L °35, when 
L is the side length of a square lattice. This clearly represents quite an appreciable 
improvement over standard local algorithms with • (x L 2.125 (see, also, sect. 3). 

Most lattice models, whose scaling limits are of interest as quantum field theories, 
possess continuous spin or gauge field variables. Then, in general gb will have a 
different functional dependence on % than s b for any ~ < m. One strategy that 
comes to mind is to try to find an s b such that gb coincides with some standard 
action for the model at hand. In practical applications we found this inefficient, if at 
the same time all weights in eq. (2.2) ar kept positive (real s b, x) .  If we evaluate eq. 
(2.3) for fields that receive maximal suppression gh = - A  (like antiparallel spins 
at b) we find an inequality 

x >I A + log(1  - e - a ) .  (2 .7 )  

Close to the scaling limit it seems very unnatural in continuous models that the 
bond chemical potential is essentially determined by the energy penalty for maxi- 
mally frustrated bonds. We found that when this is tried for the o-model, bonds 
practically never break. We then decided to choose a readily implementable stan- 
dard form for s b, and to work with the gb that we are able to produce by tuning x 
and the parameters in s b. We as sume-  as far as long range physics is 
concerned - that this is covered under the umbrella of universality. If tuning leads 
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to long-range correlations we expect to see universal features of the theory that are 
independent of details in the lattice action. At present, it is not clear to us to which 
degree of rigor this can actually be established analytically, or if the new kind of 
action may even approach the continuum more smoothly. 

It may be noted that, on the one hand, there is an infinite set of extra terms, when 
gb is expanded in terms of s b. On the other hand, since we stick to effective actions 
of one and the same range and geometry, they are in a way all neighbors in the 
space of all conceivable actions [2,13]. One could also regard the fluctuating linkage 
of degrees of freedom as a step in the direction of a random lattice [14]. Among the 
other acceleration methods, the multigrid formalism [7] is closest to the method 
presented here. There, the clusters are chosen " b y  hand" in a hierarchical order 
while we "derive" them in a stochastic way correlated with the energy fluctuations 
of the fields. An advantage of the multigrid algorithms is presumably that they 
allow one to test a more general class of collective moves which are only condition- 
ally accepted. 

3. Microcanonical algorithm for diluted models 

The number of active bonds mediating interactions between fields N b -~ ~..bkb is a 
simple observable in the system (2.2). It is an extensive variable equal to a fraction 
Pb of all possible bonds Nb max which we assume to be of the order of the number of 
lattice sites 

( N o )  = P b N ~  ax . (3.1) 

For  given action Sb, the bond fraction Pb will be a monotonically growing function 
of r. According to the general principles of thermodynamics, fluctuations in N b will 
be irrelevant in the large-lattice limit. Instead of adjusting x to produce a desired 
value for Pb we may equally well directly restrict the values N b in the sum over 
configurations (microcanonical ensemble). Creutz [15] has developed a practical 
algorithm to carry out such simulations. If we use his demon method to fix the 
number  of bonds in a dynamically diluted two-dimensional Ising model, we are led 
to the partit ion function 

( k x ~ = 0 , 1  } xp, - x/z - 
{ox= _+1) 

where Pb is the fraction of active links. The 0-function is implemented by the 
demon who holds excess bonds if the argument is positive and prevents bonds from 
being switched off if it vanishes. 

Originally, we thought that it was simply more convenient to control Pb instead 
of K. From uncorrelated-bond percolation [16] we have some experience of the fact 
that typical bond probabilities around 0.5 lead to nontrivial cluster structure. In 
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TABLE 1 
Results of simulations in the two-dimensional critical Ising model 

L Type N C E r E A E C = x / L  2 r c A c sw/1000 

20 1 - 0.7210(10) 40(4) 0.21 0.5112(43) 46(3) 2.1 200 
20 2 17.8 0.7225(7) 3.4(1) 0 .013 0.5156(20) 3.4(1) 0.11 50 
20 3 17.5 0.7222(2) 1.4(1) 0.00093 0.5215(9) 1.5(1) 0.019 50 

40 1 - 0.7138(11) ( -  140) 0 . 2 7  0.4293(86) 260(40) 9.5 200 
40 2 70.7 0.7144(5) 4.2(1) 0.0051 0.4317(19) 4.1(2) 0.094 50 
40 3 71.0 0.7123(1) 1.9(2) 0.00034 0.4305(9) 2.0(1) 0.022 50 

80 1 - 0.71114(104) ( -  550) 0 . 2 2  0.3651(135) 750(200) 16 200 
80 2 284 0.71082(28) 5.3(1) 0.0020 0.3642(18) 5.5(2) 0.091 50 
80 3 286 0.70884(6) 2.5(3) 0.00012 0.3576(9) 2.2(1) 0.019 50 

Type 1 are standard heatbath runs, type 2 uses the Swendsen-Wang formulation and type 3 its new 
microcanonical version. Sizes of square lattices are given under L. We quote nearest neighbor correlation 
E, magnetic susceptibility X and their autocorrelation times ~. N,. is the mean number of clusters with 
more than one spin. A E and A c are products of the variances and autocorrelation times of the respective 
quantities; they are direct measures for the number of sweeps needed for an attempted accuracy. In the 
last column numbers of sweeps are given. 

pract ice it tu rned  out that even for the Ising model  a microcanonical  version of the 

SW-s imula t ion  brings about  considerable further improvement ,  as will be shown in  

the remainder  of this section. For  the 0(3)  o-model we completely switched to the 

microcanonica l  control  of bond  occupat ion after a few initial  experiments with the 

canonica l  form. 

To  test the microcanonical  algorithm by compar ison with ref. [8] we ran simula- 

t ions  for the Ising model at the (infinite-volume) critical point.  For  the usual  

fo rmula t ion  (x = ~ )  it is located at tic = ½logo + 7~-). According to eq. (2.6), 

appl ied to the Ising model (two-state Potts model, K = 2fl) this implies criticality 

for all (fl, x) fulfilling 
1 + e ~-2B 

= e -2& = 7~- - 1. (3.3) 
l + e "  

In  par t icular  the FK- l imi t  is included at /3----m, x - l o g ( e  2 & -  1 ) =  ½l og2= :  ~c- 

The  results of our  Ising s imulat ion are shown in table 1. On square lattices of sizes 

L = 20, 40 and  80 we ran three types of simulations.  Type-1 are s tandard heatbath  

runs  at tic with all bonds  in place. In  type-2 runs we simulate the canonical  

ensemble  at /3 = ~ and r = Xc; these runs are of the same kind as in ref. [8]. For  

type-3 runs  we use our new microcanonical  formula t ion  (3.1) a t /3  = m.  F r o m  exact 

results, as well as from our type-2 simulation,  we know that we have Pb = ½ at 

criticality, and  consequently we use this value as an inpu t  parameter  in our  type-3 

runs  ( P b  in  eq. (3.2)). Incidental ly,  pb  = ~ is also the percolat ion threshold for 

uncor re la ted- l ink  percolation on a two-dimensional  square lattice [17]; such a 
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coincidence between Ising and percolation criticality ceases, however, to be true in 
three dimensions [18]. After each update sweep on {k~,} in type-2,3 calculations, 
we run the Hoshen-Kopelman algorithm [11] to sort out the clusters. It produces a 
label for each spin which uniquely denotes the cluster that the spin belongs to. Then 
one of the two-spin orientations is randomly assigned to the cluster as a whole. A 
new bond-sweep follows, where fl = oo is taken into account by never activating a 
bond between opposite spins. We call this whole sequence of operations one sweep. 
The number of sweeps constituting each simulation is quoted in the tables in 
multiples of 1000. Note in which way the cluster structure is allowed to fluctuate; 
bonds within a cluster may break with probability (1 + e~) -1, while broken bonds 
between different clusters of the same spin orientation may be switched on with the 
complementary probability. 

Beside the average number N c of dusters (not including one-spin clusters) we 
report values and autocorrelation times for two kinds of observables in table 1. The 
nearest-neighbor correlation E is defined as 

E =  - ~  ~oxox+l, , (3.4) 
x/z 

and the (unsubtracted) magnetic susceptibility as 

1(t / E ox . (3.5) 

We use it as a simple quantity sensitive to long-distance behavior. Instead of X we 
actually quote the susceptibility per volume C --- x/L 2, 0 ~< C ~< 1. For our numerical 
work we used improved estimators for E and C. They take into account that 
correlations between spins in different clusters would vanish exactly if the complete 
spin summations were carried out for each { kx~ } configuration. This guarantees E 
and X to be also given by 

1( ) 
E = - ~  Eoxox+~O(x,x +#;kx,) , (3.6) 

x~ 

 =vx c 
(3.7) 

Here 8(x, y; kxj,) equals unity if x and y are in the same cluster associated with 
(kx~,} and vanishes otherwise. The sum in eq. (3.7) is over all clusters c, i.e. the 
susceptibility is additive in the clusters. We found these improved estimators to have 
the same means but smaller variances than the naive ones. This is intuitively 
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understandable [19[. Instead of sampling one random member  of a set of configura- 
tions whose contributions cancel exactly, we just record a zero. One could say that 

in this way, by symmetry, we take into account more spin configurations than 
actually appear  in the computer memory. In our susceptibility measurements we 
found a medium size benefit from using improved estimators; a typical finding was 
a saving of - 40% sweeps to measure X to given accuracy. For purely long-distance 
correlations the gain will be shown to be more dramatic. 

Autocorrelation times have been estimated by monitoring the connected correla- 

tion function in time (number of sweeps) of the measured quantities for about 3z. 
The error estimates on ,r are derived " b y  eye" only from the oscillations in the 

ratios of successive values of the correlation function over the plateau where they 
are stable and not yet swamped by noise. Some multiple independent runs have 
been made to see consistency, too. The errors quoted for observables take into 

account the measured correlations up to the window described above and add the 
tail as extrapolated by a pure exponential with the estimated ~-. The quantities A E 

and A c are products of the variance and the autocorrelation time for the respective 
observables. If  the correlation is simply exponential in time, then 2X/r2X/N is the 

error if N sweeps with correlation time 1 << ~- << N are made. This is the rule that it 
takes -2~-  sweeps [20] to produce an independent estimate. Our more refined 
errors usually deviate from the above estimate only by small margins. We propose A 
as a convenient measure to compare different algorithms. The ratio of A-values 
equals the inverse ratio of the number of sweeps necessary to achieve the same 

accuracy. 

With all this said we see the enormous advantage of type-2, 3 runs over standard 
type-1 simulations from table 1. Our data are compatible with the same growth rate 

in ~- versus L for type 2 and 3, but correlation times are cut by another factor - 2, 
and the improved observables are less noisy for case 3. Results from type I and 2 
are always compatible within errors as they have to be, and correlation times for the 
latter agree well with ref. [8]. Small deviations between 2 and 3 are finite-volume 
effects of order 1 / L  2. Due to physical rounding of the phase transition, and for 3 
also due to the presence of the demon, in neither case {Nb>/2L 2 equals 0.5 exactly. 
We rather find, for instance, ( N b ) / 2 L  2 = 0.5011 for type 2 and (Nb>/2L  2 = 0.5002 
for type 3 on the 802 lattice. We conclude that the microcanonical algorithm works 
well, and on the L = 80 lattice it reduces the needed number of sweeps by another 
factor of - 15 for E and by - 5 for C. Returning to the standard algorithm one 
feels somewhat like trading a razor blade for a mallet. 

4. Simulation of the 0(3)  non-linear o-model 

All Ising model formulas in the last section carry over to O(n)  o-models if 
products of spins are interpreted as the appropriate O(n)-invariant contractions, 
and if sums over spin orientations are replaced by integrations over spheres S n_ 1 at 
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each site. Our numerical work will be concerned with n = 3, the minimal n for 
asymptotic freedom in two dimensions. The 0(3) o-model is a standard testing 
ground for methods to be applied to non-abelian gauge theory. There exists a large 
amount of reliable reference" data in the literature [21]. 

For the dynamically diluted o-model the (canonical) partition function may be 
written in the suggestive form 

Z =  ~_, fFIdoxexp(B~F_,k~,[ax'Oz+~-(1-K/B)]}. 
(kx~=0,1 } x/t 

(4.1) 

In the action, the cosine of the angle between neighboring spins is compared with 
1 - x/ft. Tiffs is precisely the expected weak-coupling behavior (fl ~ oo) of neigh- 
bor correlations for spins in one cluster. Although typical spin fluctuations become 
smaller when fl grows, the combination in the action will keep fluctuating in sign, 
and the bonds will get strongly correlated to these fluctuations. Spins that are 
members of different clusters will point in random relative directions on S,_ i. A 
sizable probability to establish an active bond between them is only given if one is 
inside a cone around the other with an angle of order X/~/fl. It is related to the ratio 
in area of the intersected part of the sphere to the full sphere and thus proportional 
to (x/fl)("- :)/2. 

To emphasize the role played by clusters we may write 

Z= (~)exp(K~kx~)I~flz~(kx~) (4.2) 

The spins in each cluster contribute a complicated weight factor given by the 
multiple integral 

z¢= f ~ do~exp(flc~ k~(O:°x÷~-l) ). (4.3) 

For the sum in the exponent no ambiguity arises, since when x and x +/~ are not in 
the same cluster kx~ necessarily vanishes. The very definition of clusters guarantees 
that for fl---> oo all spins in c become aligned, and z~ may then be evaluated in 
perturbation theory (spinwave approximation). Such a calculation is deferred to the 
appendix, and the result is 

z c = (1 c [ f l /2er)("- 1)/2C~ (det'Kc) - ("- 1)/2. (4.4) 

Here [c[ is the number of spins in c, C, is the surface of the unit sphere in n 
dimensions, and the operator under the determinant is the diluted lattice laplacian 
(A.13). The zero mode has to be omitted in the evaluation of det'. The weak 
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coupling form (4.4) generalizes the factor q for each cluster in the FK-representa- 
tion of the Potts model. Obviously, continuous field variables probe considerably 
more geometrical details of clusters and incorporate them in the form of com- 
plicated weights, when the system is regarded as a correlated percolation process. 
The features of the O(n) o-model that enter into the weak coupling evaluation of z c 
look consistent with universality: the number of field components and the symmetry 
structure. 

The adaption of the microcanonical Monte Carlo algorithm to O(3)-spins is 
straightforward for the local spin and bond updates for which we implemented the 
heatbath form. As collective moves we perform rotations of the clusters with 
elements chosen randomly from 0(3) according to the invariant group measure. We 
found that restrictions to SO(3) or a bias toward the unit element only enhance 
autocorrelations. For the 0(3) o-model the extra operations of kx;updat ing and 
cluster analysis and rotation take about 50% of the computer time needed for the 
spin heatbath and it grows in a manner exactly proportional to L 2. These computer 
times refer to a scalar machine (PDP 10). 

In asymptotically free theories the critical point can be approached only from one 
side at asymptotically vanishing coupling. A simulation at criticality as in the Ising 
model, is hence not possible. In quantum field theory, however, this is not desired 
anyway as we want physical correlation lengths to stay away from the volume 
cutoff. To test the diluted form of the o-model we decided to always choose 
parameters such that the susceptibility is roughly 10% of the volume for various 
lattice sizes (C = 0.1). From data on the standard formulation [21] we know that this 
corresponds to L/~ = 3 . . . . .  4 where ~ is the spin-correlation length. We think that 
this is a setting representative for numerical calculations. 

We present our data, in a form similar to sect. 3, in table 2 for lattices with 
L -- 20, 28 and 40. The various runs are now distinguished by their bond fraction Pb 
as used in the o-model version of eq. (3.2) and by ft. In some cases we determined 
the mass gap by fitting the improved (for Pb < 1) zero-momentum correlation 

to the form 

D ( t )  = ~-S E O~OyO(X,y;k~.) 
x,y 

Ixo-Yol = t  

D(t) + 

(4.5) 

(4.6) 

We fitted from about t = 1/m to t = L/2 and estimated errors for the mass by 
partitioning our data into subsamples and analyzing their fluctuations. Glancing at 
the tables we note that the gains we achieve are not as dramatic as in the critical 
Ising model. Although a quantitative statement is not possible on the basis of our 
data, we see that the dynamical exponent characterizing the growth of ~- with L 
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TABLE 2 
Results of simulations in the 0(3) o-model 

511 

L Ph fl N,. E C = x / L  2 z c A c m sw/1000 

20 1.0 1.3 - 0.51967(20) 0.0940(10) 15.3(6) 0.054 0.2279(42) 100 
20 0.55 4.5 12 .4  0.53272(14) 0.0998(9) 13.2(4) 0.040 100 
20 0.525 5.5 17.1 0.53202(11) 0.1033(7) 10.4(4) 0.029 100 
20 0.512 6.5 20 .2  0.53589(10) 0.1108(6) 10(1) 0.027 100 
20 0.5 7.0 22 .9  0.52651(9) 0.1007(5) 9(1) 0.020 0.2318(18) 100 
20 0.475 10 .0  29 .8  0.51798(8) 0.1022(5) 18(3) 0.032 100 
20 0.45 17.0 36 .7  0.50095(9) 0.1107(7) 26(3) 0.041 100 

28 1.0 1.4 - 0.56303(15) 0.0940(15) 37(1) 0.11 0.1486(48) 100 
28 0.55 6.0 27 .9  0.57329(22) 0.1035(22) 19(1) 0.052 20 
28 0.525 7.5 38 .1  0.56335(15) 0.0936(15) 18(3) 0.038 20 
28 0.512 9.0 44 .8  0.55982(7) 0.0990(6) 18(4) 0.035 0.1529(13) 100 
28 0.5 11.0 51 .6  0.55375(15) 0.1042(16) 18(4) 0.032 20 

40 1.0 1.5 - 0.60244(11) 0.1007(21) 75(3) 0.22 0.00945(33) 100 
40 0.55 8.0 66 0.60148(11) 0.1021(22) 35(5) 0.086 30 
40 0.525 11.5 92 0.58787(5) 0.1090(9) 36(5) 0.069 0.00943(16) 100 
40 0.515 12.0 101 0.57194(7) 0.0892(10) 36(8) 0.047 50 
40 0.5 15.0 115 0.56112(8) 0.0942(16) 63(7) 0.075 30 

Quantities similar to those in table 1 are quoted for various degrees of dynamical dilution Pb and 
values of ft. The mass gap m is computed in some cases. 

( and  ~) is p r o b a b l y  not  vast ly di f ferent  for the d i lu ted  and  the s t anda rd  version, and  

cr i t ica l  s lowing down has cer ta in ly  not  been e l iminated.  On  the o ther  hand,  on the 

40 z la t t ice  we do  realize ra t ios  of  necessary sweeps for fixed accuracy  in the 

suscept ib i l i ty ,  up  to a fac tor  of  5 in favor  of  the new algori thm. 

In  figs. l a  and  l b  we show his tograms of  cluster  size d is t r ibut ions  on the 40 2 

la t t i ce  for  Po  = 0.55 and Pb = 0.525. As  a reference,  we also d i sp lay  the ana logous  

d i s t r i bu t ions  for  uncorre la ted  perco la t ion  (/3 = 0) at  Pb = 0.51 and Pb = 0.49, i.e. 

j u s t  above  a n d  be low the pe rco la t ion  threshold.  The s imi lar i ty  in the plots  is c lear ly 

visible.  The  p e a k  at large sizes is a precursor  of  the inf ini te  cluster in an inf ini te  

sys tem b e y o n d  threshold.  We found,  exper imenta l ly ,  that  working  far  be low this 

t r ans i t i on  a rea  no cr i t ical i ty  is reached with reasonab le  r -va lues ,  while far  above  it 

o n l y  few large  clusters form, and the advan tage  of  dynamica l  d i lu t ion fades quickly.  

F r o m  fig. 1 we m a y  suspect  that ,  in the presence of  0 (3 )  spins corre la t ing the bonds ,  

the  t r ans i t i on  moves  to Pb > ½ for our  r -va lues .  This  looks consis tent  with the 

p e r t u r b a t i v e  resul t  (4.4) which favors  a larger  n u m b e r  of  smal ler  clusters as fl grows. 

To  s tudy  the benefi t  f rom improved  es t imators  in more  detai l  we ran  s imula t ions  

for  Pb = 1, fl = 1.3 and  Pb = 0.5,/3 = 7 on an asymmet r i c  20 × 50 lattice.  In  this way  

we are  ab le  to  fol low the corre la t ion  ana logous  to eq. (4.5) up to t = 25. In  fig. 2 we 

p lo t  the  ra t io  R of  squared  errors  of the ze ro -mome n tum corre la t ions  at  Pb = 1 and  
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Fig. 1. Distribution of cluster sizes in the o-model run on the 402 lattice for: (a) Ph = 0.55 (see table 2), 
(b) Pb = 0.525. 
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Fig. 1. Distribution of cluster sizes for uncorrelated percolation on a periodic 402 lattice at: 
(c) Pb = 0.51, (d) Pb = 0.49. 

Pb = 0.5 as a function of time separation. It  rises exponentially until it flattens due 
to periodic boundary conditions. The masses seen in both cases are very similar and 
consistent with table 2. The effect demonstrated in fig. 2 can be understood 
heuristically. Let us consider a small correlation between two fixed, widely sep- 
arated, spins at x and y 

(.x'oyO(x, y; k ~ , ) ) = e .  (4.7) 
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Fig. 2. Ratio of squared errors in the zero-momentum correlation as a function of distance for Pb = 1, 
fl = 1.3 and Pb = 0.5, fl = 7. 

For  the standard case, pb = 1, the 0-function is always unity, and the smallness of e 
is due to o x • Oy being almost evenly distributed over [ - 1,1]. This leads to a variance 
of order one for the observable (4.7). In the diluted model, 0 mostly vanishes since 

o x, Oy rarely belong to one cluster; if they do, however, they are typically almost 
parallel due to the large fl = 7. This means that we essentially average over zeros and 
ones with a variance of order e. The behavior of two single spins carries over to the 
combinat ion of such terms summed in the zero-momentum correlation. The slope in 
the middle of fig. 2 is very well described by R ( t )  oc e mt with m = 0.2 in agreement 

with the previous argument. 

5. Conclusions 

In this article we demonstrated that the Monte Carlo algorithm by Swendsen and 
Wang for the Ising model is improved further by employing a microcanonical 
version of it. Our main interest, however, centered around defining and testing an 
extension of their method that may be used for theories with continuous dynamical 
variables. In the two-dimensional 0(3) o-model we found that our new formulation, 
al though clearly superior to a standard local heatbath simulation, falls short of 
offering advantages comparable to those realized in the critical Ising model as far as 
autocorrelation times go. The main advantage, rather, seems to lie in the possibility 
of defining low-noise estimators for long-distance correlations. In the standard 
formulat ion of spin models an exponentially decaying correlation gets eventually 
lost in essentially constant noise in a numerical simulation. We found that in the 
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dynamically diluted model, with a suitable choice of parameters, the statistical 
errors also decay exponentially with half the decay constant (inverse correlation 
length) of the signal. 

Apart from numerical applications we feel that our concept of adding dynamical 
dilution to an arbitrary lattice model and analyzing it from a percolation point of 
view is also of theoretical interest. A key question is does the model really stay in 
the same universality class as we assumed for the o-model. We find this hard to 
decide in the two-dimensional model due to the shortage of universal physical 
quantities. For the application to abelian or non-abelian gauge theory a more 
complicated labelling algorithm for plaquette percolation clusters has to be devel- 
oped along the lines of ref. [11]. Otherwise this important extension seems straight- 
forward. For the special case of Z(2) gauge theory an exact equivalence, a la FK, 
arises. We hope to return to these issues in the near future. 

The author would like to thank Burkhard Bunk for supplying him with a 
subroutine package for estimating autocorrelations and errors. The hospitality of the 
DESY theory group is gratefully acknowledged. In particular, discussions with 
Istvan Montvay about improved estimators were helpful. 

Appendix 

In this appendix we want to compute the weight factor corresponding to one 
cluster c of O(n)-spins 

z<= f J-Jcd%exp(fl ~xffx~(%'%+~,-1) ) , (A.1) 

in leading-order perturbation theory. In this limit all spins in c are forced to carry 
out small oscillations around one common direction, because by definition of a 
cluster each pair of spins may be connected by a chain of bonds. Since all overall 
directions on the sphere are equivalent we have to fix n -  1 collective symmetry 
coordinates before the perturbative expansion of eq. (A.1) can be set up. This is 
done in the usual way by introducing 

1 =A(o)f dgf(og)/fdg, (A.2) 

into eq. (A.1). In eq. (A.2) we integrate with the Haar measure over all g ~ SO(n), f 
is a still arbitrary function, and A(o) is defined by eq. (A.2). After changing 
variables o ~ o g 1 the group integrations factor out and cancel, and we have 

X ~ C  C ~  X ~  
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We define the total spin as 

and choose 

S = E °x, (A.4) 
XE¢ 

f ( o )  = ~ ( S  1) ~ ( 3 2 ) . . .  ~ ( s n - 1 ) O ( g n ) ,  (A.5) 

i.e. the total spin is constrained to lie along the n-axis in spin space. To this choice 
of f there belongs a compensating A, 

1 / f  A(O) -1 -  [s[n_~fdgn((~")l)...~((~gl"-l)O((gg) ") dg, (A.6) 

where S is the unit vector in R" parallel to S. When g runs over SO(n) the vector 
Sg moves over the sphere S,_1, and in fact the integral in eq. (A.6) is the unique, 
normalized, invariant integral over the sphere that we may also write as 

1 
a(°)-I = Q I s  I "-1 f d"x~(Ixl - 1 ) 8 ( x l ) .  . . 8 ( x " - l ) O ( x  ") , (A.7) 

with 

Q = f d " x  8(Ixl - 1) = 2 ¢ r " / 2 / F ( n / 2 ) ,  (A.8) 

the surface of the unit sphere in n dimensions. The trivial integration in eq. (A.7) 
then leaves us with 

A(o)  = IS 1"-1C,,. (A.9) 

Clearly, this geometric factor corresponds to the phase space of the rotated copies of 
c that we exorcized by the fixing function f.  

We are now ready for the expansion of eq. (A.3) and parameterize 

. . . . .  _- ( 1o) 

To leading order in 1 / f l  we have 

n--1 

-- dq~x 8 ~¢Px exp -~/~ ~ kx~(Ogx-q)x+~) 2 
xEc x C~xp, 

(A.11) 

In eq. (A.11) we used IS I = [c1(1 + O(1/f l))  with Icl the number of spins in c. We 
dropped all subleading terms in the action as well as in the measure. Also, 
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factorization into n - 1 identical contributions has been used, and c G is a one-com- 
ponent  field now. The integral may finally be evaluated by introducing an orthonor- 
mal system of functions on c that contains the constant qJ0(x)= 1 / V ~ - .  The 
3-function takes care of the integration over this mode while the I cl - 1 remaining 
ones are gaussian. The result reads 

z~ = Cnlcln-l{Ic [ -1/2(2~r/18)(Icl-1)/2(det'K~)-l/2}n 1 (A.12) 

The quadratic form K c (Icl x Icl matrix) is read off from the exponent in eq. (A.11) 

K~(x,y)= Y~{kxu(3x, y-3x+~,y)+ky~(3x, y-3x, y+~)}. (A.13) 

It is a diluted version of the standard lattice laplacian. Finally, we note that factors 
of the form A Lcl in zc only affect the normalization of the full partition function Z 
in eq. (4.2), on which correlations do not depend. Using this freedom to multiply eq. 
(A.12) by (fl/2rr) Icl~"-l)/z we have derived eq. (4.4). 
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