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We examine patterns where ratios of the fermion masses and the W-boson mass (x,=m,/my) are proportional to powers of a
small parameter A (x; =¢,A*"). For a simple estimate of the uncertainty in the coefficients ¢; we determine the allowed values of P;
and the corresponding range of A. Using this information we search for realistic patterns in a large class of anomaly-free
SU(3) xSU(2) xU(1)xU(1) models where A is related to a symmetry breaking scale and the P, follow from the quantum num-
bers. No realistic model is found. In contrast, realistic mass patterns can be induced from an anomalous U(1) symmetry.

It has been proposed [ 1] that small quantities ap-
pearing in the fermion mass matrices correspond to
different powers of a small parameter 1. Models have
been constructed where a// small mixing angles and
small mass ratios x,=m,/my can be understood in
terms of a symmetry, x; =c,A”" [2]. The parameter
A is a ratio of symmetry breaking scales and the var-
ious powers of A follow from the quantum numbers
under this symmetry. No small quantities besides 4
are needed. In particular all the dimensionless cou-
plings (Yukawa, gauge and scalar) are supposed to
be of the same order of magnitude.

First we discuss in what sense A and P, determine
the various quantities. Then we give an approximate
diagonalization of the fermion mass matrices and use
this to estimate the uncertainty in ¢, This infor-
mation together with the experiental values of the
fermion masses and mixings then fix the allowed re-
gions of A and powers P;. A typical Yukawa coupling
of the order of the weak gauge coupling leads to a
fermion mass of order m,,. We write the dimension-
less mass ratios and the mixing angles as

X =m/my =c;A" )
6,'}'=C,'jipu . (2)

In (2) 6, is the mixing angle between generation /

! Present address: Sektion Physik, Universitdt Miinchen,
Theresienstr. 37, D-8000 Munich 2, Fed. Rep. Germany.

and j. We now want to fix A and P, P; from the x;
and 6. This is course depends on the allowed range
of values for the ¢; and ¢;. These quantities cannot
be understood purely in terms of symmetry and their
values depend on specific details of a model. For the
models considered in ref. [2] these coefficients are
given by ratios of dimensionless coupling constants.
In the context of higher dimensional unification they
correspond to generalized Clebsch-Gordan coeffi-
cients [3]. In addition the ¢; often have several con-
tributions. The number of contributions typically
increases with a higher power P;. We therefore expect
a larger uncertainty for the smaller quantities, in par-
ticular for the first-generation masses. We will take
the ¢, to be equal to one within a multiplicative un-
certainty 4,, which reflects our lack of knowledge of
the details of a model.

4, <c <4, . (3)

So if x/ and x; are the experimental upper and
Jower bound for x; the allowed values for A for a given
P, are those that satisfy

X714, AT <A xT . (4)

In this letter we will take for the masses of the third
generation a standard uncertainty 4=2. The uncer-
tainty for the other x,, 6, is taken as \/n.,A and
/n;4 with n, discussed below.

The powers P, and the coefficients ¢; come from a
diagonalization of the fermion mass matrices. We will
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perform this diagonalization explicitly. The ele-
ments of the up quark mass matrix My, are given by

uiJ'=C%/‘)iU”mW - (5)

Here i labels the species of right-handed quarks u¢
and j stands for the generation of left-handed quarks
u;. We assume the matrix to be properly ordered so
that us, is the largest element, i.e. the mass of the top
quark m,. We are only interested in the power of 4
and neglect unnatural cancellations. This allows us
to use the observed smallness of the mixings with the
third generation to perform a simplified diagonali-
zation of My,. We first rotate the elements 1,5 and u55
to zero. The 33 element of the resulting matrix v; de-
termines the top quark mass (m,=vy3~us;). The
other matrix elements induced by this rotation are
of order #!

Ui Uz | U UxzUpy
v =u;,t+ + > s (6)
i n
Uz U3 UzoUaz Uy
vip=U;pt+ + > s (7
m, my
Uz Uz Ui Upzlys
Uy =Uy + + 3 > (8)
m, m?
Uz Uss UiaUs U3
1% 2=u 2+ + 9
2 2 mt m‘z 3 ( )
Uy Uys U Ui
vy =y + 2L T (10)
ml ml
UpaUas UiralUr3
U37_=u32+‘—‘—+——“. (11)
m, m,

Next we rotate away the elements »3;, and v;,. This
defines the contributions from A/ to the mixing an-
gles with the third generation:

Uz, U U3s | uyuts

U

BY = 2L 4 B g BNTD (12)
ml ml ml
Usy | UpU%s | UjpuTs

6, = T2 4 B2 4 Bah (13)
m, mi m?

This, of course, again induces elements in the top
quark column (u,3, u,3). They are, however, sup-
pressed by the smallness of the angles #,; and the

# Remember that we only determine the order of magnitude, not
the exact value.
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small relative size of v, for i, j=1, 2. We neglect them
and consider only the remaining 2 X 2 matrix for the
lower generations. Up to negligible corrections
~67;6%; this matrix is given by v, (i, j=1, 2). This
is easily diagonalized and one obtains

Usr U Uy Uz Ut
Mo =tz + 3 = (14)
m, y
u U U Uy Uss UT
05{’2: 21 + 23+ 11 23213, (15)
me m.m, m.my
Uz Uy
mu=u11+ 3 '3
t
1 Usa U3 Uz U
+—{up+ = )y, + 22
mC m\ ml
Uy Us3 Y5
+ —=—. (16)
my

We have neglected terms which are proportional to

other terms up to a factor of order one or smaller.
The diagonalization of My, is similar. The final

mixing angles are a combination from My and Mp.

0,=07+6% . (17)

For the lepton mass matrix nothing is known about
mixing angles. We nevertheless adopt the same pro-
cedure and take care of the large mixing case by con-
sidering the additional contributions to the effective
2% 2 matrix in the second step.

From (12)-(16) we can easily compute the pow-
ers P, P, in terms of Uy, D;; and L; like

Pb=D33 s (18)
Py=min(Ds;, D3, + D33 —D;35 ,
D3+ Dy3+Dy3—2D53) . (19)

For the uncertainty factors we choose #; as the num-
ber of undetermined matrix elements on the right-
hand side of the corresponding formulae (12)~(16).
Here the contributions involving more than one fac-
tor of the heaviest mass are denoted with an asterisk
and are not counted in the uncertainty since they are
important only under relatively rare circumstances.
For example, from (8) one obtains n,=3, n.=4. (We
note that m,, in contrast with all other mass values
should be treated as an unknown matrix element.)
The n, derived from (12)-(186) are given in table 1.
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Table 1
Quantity Experimental value n o=yt
m, =41 GeV 1 0.11-c0
my 4.0 £ 0.1 GeV 1 0.010-0.042
m. 1784.2 + 3.2 MeV 1 0.011-0.043
m, 0.88 + 0.03 GeV 4 0.011-0.019
my 105 *+ 35 MeV 3 0.00011-0.0025
m, 105.695 MeV 3 0.00037-0.0044
m, 3.1 £ 0.9 MeV 12 1.6 107°-0.00014
my 5.4+ 1.6 MeV 9 3.4 107°-0.00022
me. 0.511003 MeV 9 1.0x10-%-3.7x107°
654 0.039-0.050 3 0.011-0.17
0,4 0.0-0.008 3 0.0-0.027
G, 0.219-0.225 7 0.039-1.19

This simple counting rule for the uncertainty can be
motivated by the following reasoning: For two ma-
trix elements with uncertainty factors 4,, 4,, the un-
certainty of the product (or ratio) is approximately
A=/ 47 + 43 if the two 4, are treated as statistically
independent errors. The error of a sum or difference
cannot be so easily estimated but a square root ad-
dition 4,,,=./47 +45 reflects at least some quali-
tative features. Our rule for the error then follows if
all matrix elements have the same uncertainty factor
A and all terms in (12)-(16) contribute equally. One
may argue that often not all contributions to a given
quantity are important and therefore the uncertainty
for the lower generations is smaller. On the other
hand the uncertainty of a given matrix element also
tends to increase with the power of A since usually
more ratios of dimensionless couplings are involved
(see refs. [2,4] for examples.) No more accurate es-
timate of the uncertainty involved seems possible
without using more detailed information about spe-
cific models. Our simple estimate should be re-
garded as an educated guess which qualitatively
reproduces the increase of uncertainty for the lower
generations.

We now turn to the determination of the allowed
regions in A and the corresponding P.. We assume first
that the rough equality of Yukawa couplings holds at
some large scale M=10'" GeV. The generation sym-
metry is spontaneously broken somewhat below this
scale. We have to correct for the different scale de-
pendence of lepton, quark and the W-boson masses
according to the different renormalization group
equations of the corresponding dimensionless cou-

plings. The relevant multiplicative factors in the one-
loop approximation for a small top mass (m,< 100
GeV) for the rescaling from 100 GeV to 10'7 GeV
are 0.76 for the leptons, 0.32 for m,, m., m,, 0.33 for
my, m,, my and 0.79 for my, #. A standard uncer-
tainty 4=2 allows for factors of four in (corrected)
masses to be explained by differences in Clebsch-
Gordan coefficients. The regions for the different
quantities are given approximately by

yi =043 x7 /1 nA<A” <y}

=043 x; \/H—,A (20)
for the quarks, and
yro=x; I mA<At <y}

= x;j/m4a (21)

for the leptons. The values ¥/ are shown in table 1.
Quark masses are taken from ref. [ 5] except for the
recent UA1 lower bound on the top quark mass [6].
The running quark masses at 4= 100 GeV are quoted
(neglecting electroweak effects). Values for the mix-
ing angles are taken from ref. [7] and the lepton
masses from the particle data book [8]. We use a
value of 81.5 GeV for m,,.

The allowed values for A for the different quan-
tities in terms of the P, are plotted in fig. 1. The al-
lowed regions of 4 can be divided according to P,
equal to 1, 2, 3 and P. 1 or 2. There is no solution

#2 For a 160 GeV top mass a further multiplicative factor of 1.3
for m,, 1.1 for my, 1.15 for m., m, and 1.2 for m,, m, and the
lepton masses is needed.
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0 00 008 005 01 0% A %25 renormalization group corrections for the fermion
\ # t— : ‘—“—‘J‘f“‘T masses. This scenario is more relevant for composite
! i | ! | .
My i Lo ! ! P models. Yukawa couplings here are a consequence of
]ii 1 :r 2 :I i ;T strong interactions between bound states. We took
| . . . .
me j! ' I b this into account by replacing my in (1) by the vac-
T 1 1 . .
i P : 52 I ; ;T uum expectation value v=175 GeV. The resulting
Me 1 : ;2 L L 0l values for 1 and P, can be found in table 3.
.l | 3 33 N In models with a generation symmetry broken
M | Lo i P somewhat below the unification scale the powers P,
1 — + ) . .
2 li' E 3 : i can be computed in terms of the generation quantum
h ' E 15 ‘; 53 numbers [2]. We can use the results in table 2 to de-
My Lo . i i cide if a given set quantum numbers leads to a re-
| 2 i | T——I.L————T L alistic fermion mass pattern. We have investigated a
| ]
. I Do 5 | Eﬁ three-parameter (m, p, r) set of anomaly-free U(1)-
1 ! \ ! { . .
—23 1'§ L | U generation symmetries. These models can all be ob-
! D ——— - ' . . . . . .
1 'E 4 g——-v:—G— ! tained from compactification of a six-dimensional
Ei : ; 7w SO(12) model [9]. The quark and lepton charges
- Ei b E {19 are obtained from a linear combination of the U(1),
t t i .
2 3{',L :ﬁ : | : subgroup of a generation group SU(2), and another
':1 Lo R abelian symmetry U(1):
! Lo ; 715
. ]
m L | Q=0 +1Q, . (22)
3 i ] b .
E.‘ i i 5————:;—— t ! The quantum numbers of the fermions under
H ; } | 7 —;‘”,%_ SU(2),xU(1), are
i Lo ! P
N DR R a BB+ +13G-p)] s,
4 [ 1 Pt
T + : T E . L
o ; E =3 ! us [3(3—p+2m)] 1
23 ! 1
7 | > i E +[3(3+p-2m)] 1,2,
i ! ! 113
1 E '; de: [3(3—p-2m)].
A >
1. I
0 K | h7 +[5(3+p+2m)]_.n,
] t 1 [
1 I i
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I I I ~ Y

Fig. 1. The allowed regions for A in terms of the power P, for all
masses and mixing angles for the unification scenario.

for A<0.019 and we do not consider 4> (.25 because
the distinction between differences in ¢; and differ-
ent powers of A disappears. We have subdivided the
region for P,=2 (III and IV in fig. 1). The allowed
values of P, for the other quantities are given in table
2. The SU(5) example discussed in ref. [2] corre-
sponds to case II.

The above regions are those relevant for genera-
tion symmetries broken at a large scale. For com-
parison we have done a similar analysis without
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e [3(3+3p-2m)},n
+[3(3=3p+2m)] 12 . (23)

The standard notation 1is used for the
SU(3)xSU(2)XU(l)y representation. The num-
ber in brackets is the SU(2), representation and the
subscript the U(1), quantum number. A negative
number in brackets means a mirror particle in the
conjugate representation under SU(3) XSU(2) X
U(1)yxU(1), whose SU(2), representation is given
by the absolute value of the number in brackets. The
mirror particles acquire a mass from spontaneous
breaking of the U(1) generation symmetry. We elim-
inate the supermassive quark-mirror pairs, taking
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Table 2

Scenario A P, P, P, P. P, P, P, Py Pe P Pis Py

1 0.019 0 1 1 [ 2 2 3 3 3 1 21 0

11 0.033-0.042 0 1 1 2 2 2 3.4 34 3.4 1 =2 0,1
I 0.10-0.14 0,1 2 2 2,3 34 34 4-6 4-6 5-7 1,2 =2 0,1
v 0.14-0.20 0,1 2 2 34 4,5 3,4 5-8 5-7 6-8 1,2 =2 0-2
v 0.22-0.25 0,1 3 3 3,4 4-6 4.5 6-9 6-8 7-9 2,3 =3 0-2
into account the mixing with light fermions accord- scenario I:

ing to the algorithm for mass matrix diagonalization
discussed in detail in section 3 of ref. [4]. This leaves
us then with three generations of light fermions which
are linear combinations of those in (23). We then
allow for an arbitrary charge of the “leading™ weak
Higgs doublet [2] under the extra U(1) and search
for a realistic set of resulting P.. These are given by
the difference of the fermion bilinear quantum num-
bers and the Higgs ones [2]. We have performed a
computerized scan for p=1, 3, 5, m=-5, —4,.., 5
and r=—11/2, —9/2,..., 11/2. (This leads to integer
differences of the U(1) charge between fermion bil-
inears.) We found no realistic mass patterns corre-
sponding to cases [-V of table 2.

This demonstrates how difficult it is to reproduce
realistic masses from higher dimensional field or
string theories. ( These theories generically fulfil our
assumption of dimensionless couplings all of the same
order of magnitude so that the structure of mass ma-
trices should be explained by symmetries.) A real-
istic fermion mass pattern is therefore a very
restrictive phenomenological criterion for an ac-
ceptable ground states in such theories.

For arbitrary generation symmetries it is in gen-

q(1,1,0),u(2,0,0),d° (2,1, 1),
L(1,1,0),e (2,1,1),
scenario IL:
q(2,1,0),u(2,1,0),d° (2,1, 1),
L(2,1,0),e° (2,1, 1),
scenario 111, I'V:
q(3,2,0),u°(3,1,0),d°(3,2,2),
L(3,2,0),¢°(4,2,2),
scenario V:
q(4,3,1),u(3,1,0),d°(3,2,2),
L(4,2,1),e°(4,2,2).

In each of these cases the Higgs doublet has zero
charge under the extra U(1l). Very similar solutions
exist for the composite case.

As an example we assume all ¢;=1 for the scena-
rios III, IV mentioned above. The following rela-
tions and mass values for A=1/6 are obtained:

. 0,,=A=1/6, 24

eral possible to find quantum numbers to reproduce 2 (24)
all the different scenarios discussed here. A rather 0,,=6%,=0.028 , (25)
complete list for scenario II can be found in ref. [2].

p . und [2) 0,3 =67 =0.005 , (26)
We list here possible sets of quantum numbers for
the different fermions under an extra U(1) that lead m, =0,3my =2.3GeV, (27)
to each of our scenarios:
Table 3
Scenario A P, P, P, P, P, P, P, Py P, Py Py P>
I 0.015-0.020 0 1 1 1 2 2 2,3 2,3 3 1 >1 0
It 0.12-0.15 0,1 2 2 2,3 3.4 4 5.6 4,5.6 6,7 1,2 23 0,1
11 0.17-0.22 0,1 2 3 3,4 45 45 56,7 56,7 7,8,9 >3 0,1
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my=2.3m,=53GeV, (28)
m.=60,,m,=880MeV, (29)
my=m2/m, =145 MeV , (30)
m, =0,,m, =63 MeV , (31)
Myq =0} m;=4MeV, (32)
m,=0%,m, =0.3 MeV . (33)

Comparison with the mass values in table 1 shows
surprisingly good agreement demonstrating that our
approach can also work much smaller uncertainty
factors. In this particular model the top quark mass
is large. Taking for u® the charges (3, 1, 1) instead
of (3, 1, 0) would lead to m,/m.=my/m,, m=32
GeV.
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