
Volume 199, number 4 PHYSICS LETTERS B 31 December 1987 

H I E R A R C H I C A L  S T R U C T U R E  O F  F E R M I O N  M A S S E S  A N D  M I X I N G S  

Johan BIJNENS J and Chr i s tof  W E T T E R I C H  
Deutsches Elektronen-Synchrotron DESK D-2000 Hamburg, Fed. Rep. Germany 

Received 17 August 1987 

We examine patterns where ratios of the fermion masses and the W-boson mass (x,= mjmw)  are proportional to powers of a 
small parameter 2 (x, = c,2 r,). For a simple estimate of the uncertainty in the coefficients ci we determine the allowed values of P, 
and the corresponding range of 2. Using this information we search for realistic patterns in a large class of anomaly-free 
SU (3) × SU(2 ) × U ( 1 ) × U ( 1 ) models where ,l is related to a symmetry breaking scale and the P, follow from the quantum num- 
bers. No realistic model is found. In contrast, realistic mass patterns can he induced from an anomalous U(1 ) symmetry. 

It has been proposed  [ 1 ] that  small quant i t ies  ap- 
pear ing in the fermion mass matr ices  cor respond to 
different  powers of  a small pa ramete r  2. Models  have 
been constructed where all small  mixing angles and 
small  mass rat ios x ~ = m J m w  can be unders tood  in 
terms of  a symmetry,  x~ =c,2  e' [2] .  The pa ramete r  
it is a rat io o f  symmet ry  breaking scales and the var- 
ious powers o f  2 follow from the quan tum numbers  
under  this symmetry.  No small  quanti t ies  besides it 
are needed. In par t icular  all the d imensionless  cou- 
plings (Yukawa,  gauge and scalar) are supposed to 
be o f  the same order  of  magni tude.  

Firs t  we discuss in what  sense 2 and P, de te rmine  
the var ious  quanti t ies.  Then we give an approx imate  
diagonalizat ion of  the ferrnion mass matrices and use 
this to es t imate  the uncer ta inty  in c,. This infor- 
mat ion  together with the experiental  values o f  the 
fermion masses and mixings then fix the al lowed re- 
gions of  it and powers Pg. A typical  Yukawa coupling 
o f  the order  o f  the weak gauge coupling leads to a 
fermion mass of  o rder  row. We write the d imension-  
less mass ratios and the mixing angles as 

x, = m , / m w  = ciite' ( 1 ) 

0ij =cij2 P'' • (2)  

In (2)  0,j is the mixing angle between generat ion i 
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and j.  We now want to fix 2 and P~, P~j from the x~ 
and 0~j. This  is course depends  on the allowed range 
of  values for the ci and c~j. These quanti t ies  cannot  
be unders tood purely in terms of  symmet ry  and their  
values depend  on specific details  of  a model.  For  the 
models  considered in ref. [2] these coefficients are 
given by rat ios o f  dimensionless  coupling constants.  
In the context  of  higher d imensional  unif icat ion they 
correspond to generalized C lebsch -Gordan  coeffi- 
cients [ 3 ]. In addi t ion  the c, often have several con- 
tr ibutions.  The number  o f  contr ibut ions  typical ly 
increases with a higher power P,. We therefore expect 
a larger uncer ta inty  for the smaller  quanti t ies ,  in par- 
t icular  for the first-generation masses. We will take 
the c, to be equal to one within a mul t ip l ica t ive  un- 
certainty Ai, which reflects our lack o f  knowledge of  
the details  of  a model.  

1/& <~c,~A, . (3)  

So i f  x, .+ and x , -  are the exper imenta l  upper  and 
lower bound  for x, the allowed values for it for a given 
P, are those that  satisfy 

x 2  /,J, <~2 P' <~A,x + • (4)  

In this letter we will take for the masses o f  the third 
generat ion a s tandard  uncer ta inty  A = 2. The uncer- 
tainty for the other  xi, 00 is taken as , ~ , A  and 
,,fn~A with n, discussed below. 

The powers P, and the coefficients c, come from a 
diagonalizat ion of  the fermion mass matrices. We will 
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perform this diagonalization explicitly. The ele- 
ments of the up quark mass matrix M u  are given by 

uo=ct /2U"mw . (5) 

Here i labels the species of right-handed quarks u7 
and j stands for the generation of left-handed quarks 
U,. We assume the matrix to be properly ordered so 
that u33 is the largest element, i.e. the mass of the top 
quark rn, We are only interested in the power of 2 
and neglect unnatural cancellations. This allows us 
to use the observed smallness of the mixings with the 
third generation to perform a simplified diagonali- 
zation of Mu. We first rotate the elements/,/13 and u23 
to zero. The 33 element of the resulting matrix v 0 de- 
termines the top quark m a s s  ( m t = v 3 3 ~ u 3 3 ) .  The 
other matrix elements induced by this rotation are 
of order ~ 

~31Ul3 U21 b/23U13 
vll =Ull + + (6) 

m t  rn~ ' 

U22U23UI3 /312 ~-'=b/12-t - U32UI3 "t- ( 7 )  
m t mt 2 , 

U31 ~23 UI1U23U13 
1321 ~--'~/21 "j- "dr ( 8 )  

m t m~ ' 

UI2U23UI3 U22 =U22"t - U32/'/23 "~- (9) 
m t rn~ ' 

U21 U23 UllUI3 
v31 =u31 + + - - ,  (10) 

m~ D'/~ 

V32 =U32 ,9ff U22U23 + UI2Ul~ 3 (11) 
m~ m t 

Next we rotate away the elements v3~ and v32. This 
defines the contributions from Mv to the mixing an- 
gles with the third generation: 

U21U2~3 Ull Ul~3 01u3= u3~ + _ _ + _ _  (12) 
m~ m~ m? ' 

- -  U22U~3 UI2UI~3 02u3 = u32 + _ _  + _ _  (13) 
m, m? m, ~ 

This, of course, again induces elements in the top 
quark column (u~3, u23). They are, however, sup- 
pressed by the smallness of the angles 0,3 and the 

~ Remember that we only determine the order of magnitude, not 
the exact value. 

small relative size of v, for i, j =  1, 2. We neglect them 
and consider only the remaining 2 × 2 matrix for the 
lower generations. Up to negligible corrections 

u U ~013023 this matrix is given by v o ( i , j =  1, 2). This 
is easily diagonalized and one obtains 

U32 U23 UI2b/23Ul 3 
me=u22+ + - -  (14) 

m, m~ ' 

OU2 = U2~I-t- U31U23 "Jr 1/11/223b/~3 ( 1 5 )  
rnc r n c  m t  mcmY ' 

1/31 U13 
mu ~ U l l  --~ _ _  

m, 

( u32u,3"~{ u31u23 ] + 1 ~ u 1 2  + + 
m e \  rn, ~ L/21 rn, / 

I/21 //23 U~3 
+ rn~ (16) 

We have neglected terms which are proportional to 
other terms up to a factor of order one or smaller. 

The diagonalization of MD is similar. The final 
mixing angles are a combination from Mu and MD. 

0,j =0~ +00 r) . (17) 

For the lepton mass matrix nothing is known about 
mixing angles. We nevertheless adopt the same pro- 
cedure and take care of the large mixing case by con- 
sidering the additional contributions to the effective 
2 X 2 matrix in the second step. 

From (12)-(16) we can easily compute the pow- 
ers P;, P0 in terms of U;j, D o and L o like 

Pb = D 3 3  , (18) 

Ps =min ( D22, D32 -t-D23 - 0 3 3  , 

D12 q-D23 -t-D13 - 2D33) . (19) 

For the uncertainty factors we choose n; as the num- 
ber of undetermined matrix elements on the right- 
hand side of the corresponding formulae ( 12 ) -  ( 16 ). 
Here the contributions involving more than one fac- 
tor of the heaviest mass are denoted with an asterisk 
and are not counted in the uncertainty since they are 
important only under relatively rare circumstances. 
For example, from (8) one obtains ns= 3, no=4. (We 
note that m,  in contrast with all other mass values 
should be treated as an unknown matrix element.) 
The n; derived from (12)-(16) are given in table 1. 
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Quantity Experimental value n~ Y7 -Y,+ 

m, >~41 GeV 1 
mb 4.0 _+ 0.1 GeV 1 
m~ 1784.2 _+ 3.2 MeV 1 
m~ 0.88 _+ 0.03 GeV 4 
m~ 105 _+ 35 MeV 3 
m~ 105.695 MeV 3 
mo 3.1 _+ 0.9 MeV 12 
m~ 5.4 _+ 1.6 MeV 9 
m~ 0.511003 MeV 9 
023 0.039-0.050 3 
0~3 0.0-0.008 3 
0~_, 0.219-0.225 7 

0.1 l-oo 
0.010-0.042 
0.011-0.043 
0.011-0.019 
0.00011-0.0025 
0.00037-0.0044 
1.6)< 10-6-0.00014 
3.4>( 10 6-0.00022 
1.0×10 ~'-3.7)<10 .5 
O.Ol 1-0.17 
0.0-0.027 
0.039-1.19 

This s imple count ing rule for the uncer ta inty  can be 
mot iva ted  by the following reasoning: For  two ma- 
trix elements  with uncer ta in ty  factors A~, A2, the un- 
cer ta inty o f  the product  (or  ra t io)  is approx imate ly  
A I 2 = x / ~  + Az: i f  the two Ai are t reated as stat ist ically 
independent  errors. The error  o f  a sum or  difference 
cannot  be so easily es t imated  but  a square root  ad- 
d i t ion Zll+2=x/~2 +A~ reflects at least some quali- 
ta t ive features. Our  rule for the error  then follows i f  
all mat r ix  elements  have the same uncer ta inty  factor 
A and all terms in ( 1 2 ) - ( 1 6 )  contr ibute  equally. One 
may  argue that  often not  all cont r ibut ions  to a given 
quant i ty  are impor tan t  and therefore the uncer ta in ty  
for the lower generat ions is smaller. On the other  
hand  the uncer ta in ty  of  a given matr ix  e lement  also 
tends to increase with the power  o f  2 since usually 
more  rat ios o f  d imensionless  couplings are involved 
(see refs. [2,4] for examples . )  No more  accurate es- 
t imate  o f  the uncer ta in ty  involved seems possible 
without  using more  deta i led informat ion  about  spe- 
cific models.  Our  s imple es t imate  should be re- 
garded as an educated  guess which qual i ta t ively  
reproduces  the increase of  uncer ta in ty  for the lower 
generations.  

We now turn to the de te rmina t ion  o f  the allowed 
regions in 2 and the corresponding Pi. We assume first 
that  the rough equal i ty  o f  Yukawa couplings holds at 
some large scale M =  10 t7 GeV. The generat ion sym- 
metry is spontaneously  broken somewhat  below this 
scale. We have to correct  for the different  scale de- 
pendence o f  lepton, quark and the W-boson masses 
according to the different  renormal iza t ion  group 
equat ions of  the corresponding dimensionless  cou- 

plings. The relevant multiplicative factors in the one- 
loop approx imat ion  for a small top mass (mt~< 100 
GeV)  for the rescaling from I00 GeV to 1017 GeV 
are 0.76 for the leptons, 0.32 for m ,  mc, mu, 0.33 for 
mb, ms, mo and 0.79 for mw ~2. A s tandard  uncer- 
ta inty A =  2 allows for factors o f  four in (correc ted)  
masses to be explained by differences in Clebsch- 
Gordan  coefficients. The regions for the different 
quanti t ies  are given approximate ly  by 

Y7 =0.43  x ,  /x/~A<~2 p' <<.y+ 

= 0.43 x+,f~M (20) 

for the quarks, and 

y;- = x .  / ~ < ~ , ~  ", ~ y  ? 

= x ? ~ / ~ , J  (21) 

for the leptons. The values y,-+ are shown in table 1. 
Quark  masses are taken from ref. [ 5 ] except for the 
recent UA 1 lower bound  on the top quark mass [ 6 ]. 
The running quark masses at # = 100 GeV are quoted 
(neglecting electroweak effects). Values for the mix- 
ing angles are taken from ref. [7] and the lepton 
masses from the part icle data  book [8] .  We use a 
value o f  81.5 GeV for rnw. 

The allowed values for 2 for the different  quan- 
t i t ies in terms of  the P, are plot ted in fig. 1. The al- 
lowed regions o f  2 can be d iv ided  according to Pb 
equal to 1, 2, 3 and Pc 1 or 2. There is no solution 

~2 For a 160 GeV top mass a further multiplicative factor of 1.3 
for rn, 1.1 for rnb, 1.15 for me, mu and 1.2 for m~, md and the 
lepton masses is needed. 

527 



Volume 199, number 4 PHYSICS LETTERS B 31 December 1987 

0.01 0015 0.025 
m, ' [ I  ' ', 

I I 
I 

m b  'lli ] 1  

rn, [i 
, il 

I 

11 m s  i i  
ii 

2 i i  
I 

I 
II 
II 
II 

m. II 

r %  

-2  l', 
3 u 

h 

i I ',! 

m e I I 

h 

e ] s  *l 1 

e 2 s  

1 

Ii  

£ 

0.05 0.1 0.15 X 025 
I i - :  I 

', }.: 
, 1 
I I I 

I 

i I J 

! t', 
i 5  , r - ~ -  
i i 

I ' I  
3 

i i 
' I [ ' , :  

5 6 

?- 
I 

------4-- 6 7 
, i 
, 1 

i i 
I i 

5 16 ' - 
7 8 -g 

t 

1 

i 

l 
l 
l 

i L  i 

5 

1 

[2 
i 

-!1 I 
l l 
l 
a i , I 

1i 

r I "- 

i i 

Iii 15[ ?z 

Fig. 1. The allowed regions for 2 in terms of the power P, for all 
masses and mixing angles for the unification scenario. 

for 2 ~< 0.019 and we do not consider 2 i> 0.2 5 because 
the distinction between differences in c, and differ- 
ent powers of  2 disappears. We have subdivided the 
region for Pb = 2 (III  and IV in fig. 1 ). The allowed 
values o f  P, for the other quantities are given in table 
2. The SU (5) example discussed in ref. [2 ] corre- 
sponds to case II. 

The above regions are those relevant for genera- 
tion symmetries broken at a large scale. For com- 
parison we have done a similar analysis without 

renormalization group corrections for the fermion 
masses. This scenario is more relevant for composite 
models. Yukawa couplings here are a consequence of  
strong interactions between bound states. We took 
this into account by replacing mw in (1) by the vac- 
uum expectation value v=  175 GeV. The resulting 
values for 2 and P, can be found in table 3. 

In models with a generation symmetry broken 
somewhat below the unification scale the powers Pi 
can be computed in terms of  the generation quantum 
numbers [2].  We can use the results in table 2 to de- 
cide if a given set quantum numbers leads to a re- 
alistic fermion mass pattern. We have investigated a 
three-parameter (m, p, r) set of  anomaly-free U (1)- 
generation symmetries. These models can all be ob- 
tained from compactification of  a six-dimensional 
SO(12) model [9].  The quark and lepton charges 
are obtained from a linear combinat ion of  the U (1)1 
subgroup of  a generation group SU (2) ~ and another 
abelian symmetry U(1 )q: 

Q=Q, +rQq . (22) 

The quantum numbers of  the fermions under 
SU(2) ]MU(1)q  are 

q: [½(3+P)]~/2+[½(3-P)]_,/2,  

uC: [ ½ ( 3 - p + 2 r n ) ] , / 2  

+ [ ½ ( 3 + p - - 2 m ) ] _ , / 2 ,  

de: [ ½ ( 3 - p - 2 m ) ]  ~/2 

+ [ ½ ( 3 + p + 2 r n ) ] - , / 2 ,  

L: [½ ( 3 -  3p)],/2 + [ 1 ( 3 +  3p) ]_ , /2 ,  

eC: [ ½ ( 3 + 3 p - 2 m ) ] , / 2  

+ [ ½ ( 3 - 3 p + Z m ) ] - , / 2  • (23) 

The standard notation is used for the 
SU(3)  × S U ( 2 )  XU(1 ) y representation. The num- 
ber in brackets is the SU (2), representation and the 
subscript the U(1)q quantum number. A negative 
number  in brackets means a mirror particle in the 
conjugate representation under SU (3) × SU(2)  X 
U(1 ) y × U ( 1  )q whose SU(2)I  representation is given 
by the absolute value of  the number  in brackets. The 
mirror particles acquire a mass from spontaneous 
breaking of  the U(1 ) generation symmetry. We elim- 
inate the supermassive quark-mirror pairs, taking 
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Table 2 
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Scenario 2 P, Pb P, P. P~ P~ Pu Pd P~ /°23 Pt 3 PI 2 

I 0.019 0 1 1 1 2 2 3 3 3 1 >~I 0 
II 0.033-0.042 0 1 1 2 2 2 3,4 3,4 3,4 1 >/2 0,1 
111 0.10-0.14 0,1 2 2 2,3 3,4 3,4 4-6 4-6 5-7 1,2 />2 0,1 
IV 0.14-0.20 0,1 2 2 3,4 4,5 3,4 5-8 5-7 6-8 1,2 >--2 0-2 
V 0.22-0.25 0,1 3 3 3,4 4-6 4,5 6-9 6-8 7-9 2,3 >/3 0-2 

into account  the mixing with light fermions accord- 
ing to the algori thm for mass  matr ix  d iagonal iza t ion 
discussed in detail  in section 3 of  ref. [4]. This leaves 
us then with three generations of  light fermions which 
are l inear  combina t ions  of  those in (23) .  We then 
allow for an arb i t ra ry  charge of  the " lead ing"  weak 
Higgs doublet  [2] under  the extra U(1 ) and search 
for a realist ic set of  resulting Pi. These are given by 
the difference of  the fermion bi l inear  quan tum num- 
bers and the Higgs ones [2] .  We have per formed a 
computer ized  scan for p = l,  3, 5, m = - 5, - 4,..., 5 
and r = -  11/2, - 9 / 2  ..... 11/2. (This  leads to integer 
differences of  the U(1 ) charge between fermion bil- 
inears.)  We found no realist ic mass pat terns  corre- 
sponding to cases I - V  o f  table 2. 

This demons t ra tes  how difficult  it is to reproduce  
realistic masses from higher d imens iona l  field or  
string theories. (These theories generically fulfil our  
assumption o f  dimensionless couplings all o f  the same 
order  o f  magni tude  so that  the structure o f  mass ma- 
trices should be expla ined by symmetr ies . )  A real- 
istic fe rmion mass pa t te rn  is therefore a very 
restr ict ive phenomenologica l  cr i ter ion for an ac- 
ceptable ground states in such theories.  

Fo r  a rb i t ra ry  generat ion symmetr ies  it is in gen- 
eral possible to f ind quan tum numbers  to reproduce  
all the different  scenarios discussed here. A ra ther  
complete  list for scenario II can be found in ref. [ 2 ]. 
We list here possible sets o f  quan tum numbers  for 
the different  fermions  under  an extra U(1 ) that  lead 
to each o f  our scenarios: 

scenario I: 

q (1, 1 , 0 ) , u  c (2, 0 , 0 ) ,  & (2, 1, 1), 

L ( l , l , 0 ) , e  c ( 2 , 1 , 1 ) ,  

scenario II: 

q ( 2 , 1 , 0 ) , u  c ( 2 , 1 , 0 ) , &  ( 2 , 1 , 1 ) ,  

L ( 2 , 1 , 0 ) , e  c ( 2 , 1 , 1 ) ,  

scenario III, IV: 

q ( 3 , 2 , 0 ) , u  c ( 3 , 1 , 0 ) , d  c ( 3 , 2 , 2 ) ,  

L (3, 2, 0),  e c ( 4 , 2 , 2 ) ,  

scenario V: 

q ( 4 , 3 ,  1 ) , u  c ( 3 , 1 , 0 ) , d  c ( 3 , 2 , 2 ) ,  

L ( 4 , 2 , 1 ) , e  c ( 4 , 2 , 2 ) .  

In each of  these cases the Higgs doublet  has zero 
charge under  the extra U(1 ). Very s imilar  solutions 
exist for the composi te  case. 

As an example  we assume all c i=  1 for the scena- 
rios III, IV ment ioned  above. The following rela- 
t ions and mass values for 2 =  1/6 are obtained:  

012 = 2 =  1/6 , (24)  

023 =022 =0.028  , (25)  

0~3 =032 =0 .005  , (26)  

mr --Oz3mw =2 .3  G e V ,  (27) 

Table 3 

Scenario 2 Pt P~ P~ Pc Ps P~ Po Pd Pe P-,3 P13 PI2 

I 0.015-0.020 0 1 1 l 2 2 2,3 2,3 3 1 >~ 1 0 
II 0.12-0.15 0,1 2 2 2,3 3,4 4 5,6 4,5,6 6,7 1,2 ~>3 0,1 
III 0.17-0.22 0,1 2 3 3,4 4,5 4,5 5,6,7 5,6,7 7,8,9 2 >/3 0,1 
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m b = 2 . 3  m,  = 5 . 3  G e V ,  

m~ = 0 1 2 m  b = 8 8 0  M e V ,  

m~ = m2c/mb = 145 M e V ,  

m ,  = 0 2 3 m  ~ = 6 3  M e V ,  

mu,e = 022 ms = 4 M e V ,  

mc =O{2m~ = 0 . 3  M e V .  

(28)  

(29 )  

(30) 

(31 )  

(32 )  

(33 )  

C o m p a r i s o n  wi th  the  mass  va lues  in table  1 shows 

surpr is ingly  good  a g r e e m e n t  d e m o n s t r a t i n g  tha t  ou r  

a p p r o a c h  can also w o r k  m u c h  smal le r  unce r t a in ty  

factors.  In  this pa r t i cu la r  m o d e l  the  top  qua rk  mass  

is large. Tak ing  for  u ~ the  charges  (3, 1, 1) ins tead  

o f  (3, 1, 0)  wou ld  lead  to mflmc=mb/ms, m , = 3 2  

GeV.  
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